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Abstract: Technical coefficients change is an important issue in empirical work of input-

output modeling, due to the lack of recent I-O tables in most countries.

In the literature we find different approaches for updating input-output coefficients, most of

them adjust technical coefficients ‘along the row’ starting from 'hypothetical output' given by

a base year matrix and actual output (e.g. Conway, 1990). On the other hand we find – mainly

in CGE models – variable input coefficients ‘along the column’ stemming from factor input

equations derived from production or cost functions.

In this paper we attempt to combine these two approaches into a bi-proportional method. For

the adjustment ‘along the column’ we use econometric factor input functions for total

intermediates and for energy separately to arrive at a sum of non-energy intermediate inputs.

For the adjustment ‘along the row’ we start from the adjustment functions described in the

literature and put special emphasis on econometric specification and 'cointegration

accounting' in order to overcome the usual more or less ad-hoc treatment in empirical

applications.

________________________________________________________________________



Introduction

The issue of updating1 I-O coefficients has had a long tradition in economics. The reasons for

this can be found in the very nature of the construction of input-output tables and their

coefficients: First, I-O coefficients represent averages of the underlying industry levels.

Changes in the sectoral mix within one sector thus invalidate the estimated coefficients rather

quickly. Second and more importantly, the tables describe input-output relations between

sectors at a certain point of time. Since survey-based I-O-tables rely on a vast amount of data

and their complexity usually entails a long construction period, I-O-tables get published with

a considerable lag of time. The high cost of setting up such a table furthermore prohibits more

frequent construction such that a time interval between the publication of two successive

national tables of at least 5 years exists. The 1995 I-O table for Austria (see Statistics Austria,

2001) for example was released in summer of 2001 and was hence already 6 years old at the

date of its publication.

It therefore does not come as a surprise that mainly the static nature of input-output tables was

often criticised, since changes in the structure of the underlying economy over time might

invalidate the direct usage of comparatively old tables. As a corollary many researchers have

dealt with non-survey and partial survey methods for constructing more up-to-date input-

output tables and thus overcome at least in part this lack of timeliness. The seminal work in

this field of partial survey techniques was done by Stone and Brown (1962) who for the first

time applied the so-called RAS approach to economic data. The basic idea of RAS is to utilize

(usually more frequently available) data on the row and column sums of a matrix in order to

update the structure of the matrix itself via an iterative procedure. Assuming an n x n matrix,

RAS hence tries to accomplish the updating of n² coefficients using 2n data points (i.e. the

row and column sum, respectively) which is clearly an underdetermined system once n > 2.

Therefore, the approach relies on the concept of closeness, that is, those coefficients are

obtained, that are closest to the original ones while at the same time obeying the new row and

column sums (see e.g. Lecomber, 1975).



The RAS approach, however, cannot directly be implemented within disaggregated

econometric models mainly because information needed to make the approach operable (i.e.

sectoral row and column sums) has to be derived from the models which in turn rely on input-

output tables. In the literature only a few applications of updating procedures within

econometric I-O models can be found. Among those is the work of Conway (1990), which is

described and applied also in Israilevich et. al. (1996) and which is also the basis of the

updating procedure applied in the models described here. Ciaschini (1983) and Nyhus (1983)

provide a slightly modified methodology of updating coefficients which was adopted within

the family of INFORUM models. Most of these methods use hypothetical or predicted output

calculated with fixed technical coefficients and time series data of output and then adjust the

technical coefficients to be consistent with actual output data and with certain a priori

restrictions. This method to a certain extent introduces a bias towards an adjustment 'along the

row' of the technical coefficient matrix (the absorption effect in terms of the RAS

methodology), whereas the column data mostly only enter in the form of restrictions. Implicit

changes in the matrix of technical coefficients can be found in CGE models with factor input

functions, mostly at the level of total intermediate inputs. This method is biased towards an

adjustment 'along the column' assuming an equiproportional adjustment for all inputs in a

certain industry, according to the factor S in RAS (fabrication effect).

In this paper we propose a combination of both methods yielding a bi-proportional method

without fully integrating RAS. The first step is a description of the widely used adjustment

'along the row' mechanism. In this method predicted or hypothetical output is adjusted to

actual output in econometric equations. As an alternative we put forward our bi-proportional

adjustment mechanism consisting of (i) factor demand functions for energy and other

intermediates as adjustment 'along the column' and (ii) new econometric specifications of

adjustment of predicted (hypothetical) intermediate demand (by commodities, i.e. along the

row) to actual intermediate demand. Our empirical applications show the relative importance

of the column and row adjustment by looking at predictive capacity for the rows, if only the

adjustment 'along the column' is applied and for the columns, if in the second step the

adjustment 'along the row' is applied. From this comparison of the relative importance we

derive conclusions for future research.

                                                                                                                                                        
1 The term ‘updating’ here means the inclusion of recent data to obtain a better approximation of any matrix at

time t than the same matrix at some earlier point in time (t-k) can provide.



1. An adjustment method 'along the row'

The starting point of the traditional adjustment 'along the row' used for example in regional

input-output models as described in Conway (1990) and Israilevich et. al. (1996) is the

commodity balance of the I-O model2. The total goods supply vector Q is made up of the

imports vector M and the vector of domestic output QA equal to total demand, where QH is

the intermediate demand vector and F is the final demand vector:

(1) Q  =  QA  +  M  =  QH  +  F.

Introducing the technical coefficients matrix A (the sum of domestic and imported elements),

QH can be substituted by the product of A and QA, where F(M) now stands for the final

demand vector F minus the imports vector M :

(2) QA   =   A * QA  +  F(M),

with intermediate demand matrix V transformed to technical coefficients A = [aij] as:

aij = Vij/QAj,

or in matrix notation:

(3) A = V * diag(QA)-1.

The vector F(M) can be thought of having a k dimension of final demand components,

including private and public consumption, gross capital formation, exports, stock changes as

well as imports. Out of this new vector F(M) a coefficient matrix AF = [afik] is formed,

whose elements are computed as afik = fdik/ fk’, where [fk’] are the elements of the transposed

summation vector of final demand. Again, writing this relationship in matrix notation yields:

                                                
2 Both Conway (1990) and Israilevich et. al. (1996) actually apply the quadratic industry by industry matrix of

technical coefficients within their methodology. The approach outlined here starts from the intermediate demand

matrix (the USE matrix within the Make-Use system), therefore the approach of the aforementioned authors is

also outlined along these lines.



(4) AF = F(M) * diag(f)-1

Given matrices A and AF the following basic input-output relationship can be stated:

(5) A * QA + AF * F(M) = QA.

In order to account for changes in both matrices A and AF over time, their coefficients serve

as equilibrating forces in the quantity adjustment process of the models. The basic idea is to

form a deterministic predictor of output QA over the entire historical period out of equation

(5). Introducing time to the notation in (5) yields:

(6) At(0) * QAt + AFt(0) * F(M)t = QAH
t.

In (6) the output vector QAt is replaced by a corresponding deterministic predictor QAH
t,

which is termed predicted or hypothetical output. It becomes immediately obvious from the

notation that the time series of predicted output is obtained by inserting the actual values of

output and final demand while the coefficient matrices A and AF remain constant at their base

year levels (t(0)). The values of QAt and QAH
t will coincide only in this base year, but are

likely to diverge from each other in every other year. The reason for this is due to the fact, that

the variations in domestic output and final demand will not be sufficient to explain the entire

variation in (6) due to unobserved changes in the coefficient matrices. Hence, the difference

between output and its predicted counterpart can be attributed to the alterations taking place in

the coefficients of A and AF. Now, the relationship of QAH
t and QAt over time can be stated

as:

(7) Rt * QAH
t = QAt,



where Rt is a diagonal matrix. The aim is to alter (and hence update) A and AF such that the

entire variation in (6) is explained. Premultiplying both sides of (7) with Rt
-1 and inserting the

result for QAH
t into (6) yields:

(8) At(0) * QAt + AFt(0) * F(M)t = Rt
-1 * QAt,

and

(9) Rt * At(0) * QAt + Rt * AFt(0) * F(M)t = QAt.

That is, the coefficients of both matrices are updated at time t with a fixed factor along the

rows derived from matrix Rt. Note, that this ‘correction matrix’ Rt can be seen as the

analogue to the first component of the RAS-approach of updating I-O-coefficients. Following

the economic interpretation given by Stone and Brown (1962), it can be said that because Rt

pre-multiplies A and AF, the unexplained variation from (6) is attributed to the technology of

producing the output (row-wise multiplication with a constant, see also Snower (1990)).

In order to implement the approach within an overall model, the relationship between actual

and hypothetical output is estimated econometrically within a separate block of equations, one

for each industry under consideration. That is, the elements of the adjustment matrix Rt are

derived via:

(10) QAt = F(QAH
t).

Both Conway (1990) and Israilevich et. al. (1996) apply log-linear models to assess the

relationship between hypothetical and actual output.

The outlined method is widely used in large scale regional I-O models and can be seen as a

pure 'along the row' adjustment mechanism. It is well known (see e.g. Snower (1990)), that

the adjustment factors R and S in RAS have been given an economic interpretation as

'absorption' and 'fabrication' factors. The pure adjustment along the row puts the emphasis

only on the absorption factor, thereby assuming that technical change can be fully accounted

for by considering that certain inputs all change in a similar way in the production of different

sectors.



2. Adjustment 'along the column' : factor input functions

Starting again from the economic interpretation of RAS, a method that only considers

adjustment along the column puts the emphasis on the 'fabrication' effect, i.e. it is assumed

that different industries witness different changes in the overall productivity of their inputs,

but that single inputs are affected in a proportional way. Such technical changes are implicitly

assumed in CGE models, where KLEM production or cost functions are applied. Only in

some cases fully endogenized I-O models for disaggregated types of inputs are formulated as

in Tokutsu (1994). In most models substitution only takes place at the aggregated input level

of capital, energy, other materials (intermediate inputs) and labour and repercussions on the

single input level are assumed to be proportional.3

In the Austrian disaggregated macroeconomic model MULTIMAC similar cost functions

have been introduced. Starting point is the separate treatment of energy transactions, such that

all matrices and vectors can be split into an energy (e) and a non-energy (ne) part. The

commodity balance for non-energy therefore becomes:

(11) Qne   =   Ane * QA  +  Fne.

The technical coefficients matrix Ane comprises the non-energy input in non-energy sectors as

well as the non-energy input in energy sectors; QA is the total output vector (energy and non-

energy).

At a first stage changes along the column are introduced. The sum of intermediate demand of

an industry i , Vi gives the column restriction, as data for V are given in time series from

National Accounts. The total input coefficient Vi/QAi can now be modelled with factor

demand functions or input functions. In MULTIMAC Generalized Leontief – cost functions

with an extension for technical progress are chosen where the variable factors are the inputs of

intermediate demand of an industry, V, with price  pv and labour input L with wage rate w,

                                                
3 Actually most studies do not fully describe all the implicit assumptions of input substitution for the technical

change in the input-output matrices.



and a deterministic trend t representing technological progress. Starting point is the (short

term) cost function for variable costs G:
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with pi, pj as the input prices of the variable factors.

Applying Shephard's Lemma we can derive factor demands, since the partial derivatives of

(1) with respect to factor prices (pv , w) yield the input quantities (V, L) :

(13)  tt
p

w

QA

V
ttVt

V
VLVV γγαα ++





+= 2

1
2

1

,

(14)  tt
w

p

QA

L
ttLt

V
VLLL γγαα ++





+= 2

1
2

1

.

The total input coefficient Vi/QAi therefore changes due to changes in factor prices as well as

technological change (deterministic trend).

Additionally substitution between energy and other intermediate inputs is further considered

by modelling the energy demand by industries (see Kratena and Schleicher (2000)). This

determines technological change in the sum of energy inputs ∑ ea in each industry.

Therefore the sum of non-energy inputs (along the column) is given by:

(15) ∑ ∑−= ene aQAVa / ,

which enters as the column restriction of the model.

The single coefficients of the technical coefficients matrix A = [aij] are given by the

assumption of a fixed structure along the column comprised in a matrix Γ = [γij],  such that

multiplying the column sum of non energy coefficient ane,j with the single elements of

Γ yields the technical coefficients:

(16) aij = ane,j*γij.



A side aspect of this approach is that the fixed structure within the column given by Γ also

determines the feedback of the technical change on the price of intermediate demand pv (see

Kratena and Zakarias (2001)).

This final result of this method is a new matrix of non energy technical coefficients, Ane, as

used in the commodity balance (11).



3. Adjustment 'along the row' : hypothetical and actual intermediate

demand

The new matrix of non energy technical coefficients, Ane, represents the starting point for the

second step, i.e. the adjustment 'along the row'. Therefore we use information from national

accounts on final demand structures and imports. This information is combined with slightly

changing structures of the bridge matrices which are derived from interpolations between

input-output base years. This allows us to depart from the usual approach as applied by

Conway (1990) and Israilevich et. al. (1996) and to assume that we can calculate actual

intermediate demand as:

(17) QHne,t = QAne,t + Mne,t – Fne,t.

This actual intermediate demand can be compared with a series of hypothetical intermediate

demand for non-energy sectors (QHne,t
H) calculated by applying the matrix of non energy

technical coefficients, Ane, within the adjustment 'along the column' as described above:

(18) QHne,t
H =  Ane,t * QAt.

As already mentioned above both Conway (1990) and Israilevich et. al. (1996) modelled

actual output within log-linear specifications. While Conway applies both series in levels and

accounts for first order autocorrelation, Israilevich et. al. estimate the fraction of the two

variables in first differences.

In MULTIMAC a different approach is pursued in this regard. In order to provide clear

treatment of the underlying long run relationship between the two variables of interest, the

econometric specification is carried out along the lines of the two step method proposed by

Engle and Granger (1987) in estimating an error correction model. The first step in estimating

such a system is to determine the order of integration of the respective time series. For the

present application the Augmented Dickey-Fuller test was used to determine the number of

unit roots within the series. The test results using various variants of the ADF test (including

constant or trend or both as well as different numbers of lags) for both series are shown in

tables A1 to A4 in the appendix. The results indicate that both series can be said to be I(1) in



almost every industry. At this point it must, however, be mentioned, that the ADF tests

applied are subject to a considerable small sample bias. To overcome these problem, some

authors such as Banerjee et. al. (1986) and Kremers et. al. (1992) recommended to test the

significance of the residual of (19) in the final error correction model (20) stated below by

means of  a standard t-test. The hypothesis of a cointegrating relationship is hence accepted if

the estimated parameter of the error correction term in (20) is significantly (and negatively)

different from zero, which is the case for each industry. Hence estimation of the error

correction model was continued for every industry. The long run equation can be stated as

follows:

(19) ( ) ( ) ti
H

tineiitine QHQH ,,,,, loglog εβα ++=

The estimated value of βi is crucial in determining the log run behaviour of the adjustment

factor appearing in the i-th main diagonal of the adjustment matrix Rt from equation (9). An

estimated value close or equal to one indicates that the underlying coefficients do not change

over time. Consequently a value larger than one indicates rising overall demand of the

respective good over time and vice versa. The magnitude of the estimated parameter of course

also determines the amount by which the coefficients will be altered each time period. This

can also be seen from figure 1 below, which shows the course of actual and hypothetical

output for industry Research and Development, Business Services (which is industry 34 in the

models terminology) over time.



Figure 1: Hypothetical and actual intermediate output for Research and

Development, Business Services
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Figure 1 shows that actual output is generally steeper than hypothetical output for the series

under investigation, while the two series take the same value in 1990 (as required by

definition).  The plot also indicates, that the respective good is growing in importance over

time. This can easily be seen by examining e.g. the year 1977 more closely. The hypothetical

output series shows the demand for Research and Development, Business Services in every

year assuming the Input-Output relations from 1990. Obviously actual demand for the good

under investigation was lower than hypothetical demand in 1977, indicating, that the good

was actually less important than it was in 1990. In the years after 1990 the picture

consequently changes and the series of actual output is above hypothetical output. The

growing importance of  Research and Development, Business Services is of course also

reflected in the estimated value of β34, which is equal to 1.64 (see table A5 in the appendix)

and statistically significantly larger than one.

The estimate of the long run relationship in equation (19) is accepted as establishing an

cointegrated relationship if the residuals do not exhibit serial correlation. Again an ADF test is

used to test the residual series. The results, which generally show that the resulting residual

series are indeed I(0), are shown in table A6 in the appendix. Except for industries 17 and 24

the results are clearly in favour of a stationary behaviour of the residual series. However, both



in industry 17 and 24 the estimated value of the parameter for the error correction term turned

out to be significantly different from zero, and hence the Engle-Granger two step

methodology is also applied in these cases. The error correction model is expressed as

follows:

(20) ( ) ( ) ( ) titii
H

tineiitine QHQH ,,,,,, loglog µεγλδ ++∆+=∆ −1 .

The third term on the right hand side is the so called error correction term, whose estimated

parameter must necessarily be negative. In case of deviations of the two series from their long

run trend, this term – as its name implies – corrects for these short run fluctuations by forcing

the relationship back towards the long run path.



4. Empirical Results

Since the primary goal of the proposed approach within MULTIMAC is to provide a better

approximation of the column sums of the matrix to be updated (due to the additional feature

of a one time adjustment of the row sum according to separately estimated values from

Generalized Leontief cost functions), the empirical investigations will concentrate on

assessing this issue.

Because of the usual adjustment along the rows of the matrix is taking place after the column

adjustment in MULTIMAC, the column sums will again deviate from the sums estimated

within the cost functions. That is, the column sums of the updated matrix will in general not to

be equal to the share of total intermediate demand per industry as estimated within the cost

functions. This is of course also true for the traditional approach applied in the literature,

however, the new approach should provide an improvement in meeting this target.

To implement this experiment, two different versions of MULTIMAC were set up, one

including the proposed approach and the other implementing the method of Conway (1990).

In order to compare the results, the second model consists of the same equations and data as

the first one, except of course for the updating itself.

Given the two models, the respective adjustment factors, that is the elements of Rt, were

derived via relationship (7). Given these estimates the elements of the coefficient matrix for

intermediate demand, Ane, are easily derived, which was done for the year 1995 in the

following experiment. Summing up the coefficients over each column yields the estimated

value of the summation vector of Ane, which can be compared to the intermediate demand

coefficient estimated in the cost function. This coefficient is equal to the true observed values

as obtained from National Accounts, since the experiment is conducted for a year within the

historical period of our model. To ensure the outcome of the cost function is equal to the true

value, we included the residuals series within the equation. The following table provides the

results of the experiment for both models.



Table 1: Deviations of the column sum of the updated matrix from the estimated total

input coefficient given by the cost function, 1995

s.s.d.1 ∑ dev. Mean Variance

Column and row adjustment 0,11 1,19 0,0025 0,0032

Row adjustment only 0,14 1,54 -0,0028 0,0030
              1 s.s.d denotes the sum of squared deviations

The sum of squared deviations is 0,11 in the first model and 0,14 in the second, which

confirms the presumption that the new approach is performing better on the selected criterion

of meeting the values from the column sums. The new method hence provides a better

approximation to the true column sum than the usual adjustment ‘along the row’. The

difference is, however, not very large, at least in terms of the squared deviations. Since the

ratio of the sum over the absolute value of the deviations between the models is almost the

same as for the sum of squared deviations (around 0.77 in both cases), the result does

obviously not depend on outliers among the industries. This outcome is also confirmed by a

visual inspection of the deviations per industry as plotted in figure 2 below.

Figure 2: Deviations per industry, 1995
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5. Conclusions and Future Research

This paper proposed an alternative way of approaching the issue of updating IO coefficients

within multisectoral econometric models, by supplementing the usual row adjustment with a

one time adjustment of the column sums of the matrix under investigation. The respective

column sums are derived from sectoral Generalized Leontief cost functions, which yield the

share of total intermediate demand in output for each industry. The empirical results indicate

that the new approach provides an improvement in updating the matrix under investigation,

since the deviations from the given column sum are smaller than in the traditional approach.

There appear at least two issues for future research, which are both related to the fact that the

proposed approach still lacks the implementation of a full bi-proportional adjustment. One

possible way in resolving this would be to incorporate further feedback effects after the row

sum was adjusted, since this causes the column sum to deviate from the summation

coefficient estimated in the cost functions. This would, however, introduce a considerable

increase in the interdependencies of the overall system and it is not yet clear whether the

convergence could still be achieved. Another possibility would therefore be to further exploit

the time series behaviour of the intermediate demand vector QHne. The changes in the

importance of certain single elements of this vector could provide information which could be

used to adjust the structure within the column of certain industries - e.g. of those industries

exhibiting comparatively large deviations from the row sum as obtained from the cost

functions.
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Appendix

The appendix first shows the results of various ADF tests for unit roots in the time series of

actual and hypothetical intermediate demand as well as the residuals from the long run

equation (19) above. The notation n in the tables denotes the usual ADF test including neither

a constant nor a trend. Both variants including only a constant (c) and including both a

constant and a trend (t) are also shown. The test was conducted including no lag as well as

one and two lags, where for the sake of brevity the results of only the first two variants (lag 0

and 1) are displayed. The stated critical values are the so called MacKinnon critical values for

the rejection of the hypothesis of a unit root in the investigated series. The tests were

conducted within Eviews 3.1. Table A6 finally shows the industry classification adopted

within MULTIMAC along with the corresponding two-digit NACE codes.

Table A1: ADF statistic for hypothetical intermediate demand ( H
neQH )

lag 0 lag 1
Industry n c t n c t

1 2.60 -0.60 -1.69 2.66 -1.52 -1.85
7 6.76 0.77 -3.90 4.93 0.77 -3.22
8 4.16 1.48 -0.74 2.03 0.46 -1.55
9 5.31 0.25 -1.17 2.51 0.69 -2.06

10 5.30 0.85 -1.28 2.72 0.62 -2.14
11 5.54 1.65 -1.29 2.58 0.52 -1.61
12 4.95 1.02 -1.92 2.77 0.18 -2.02
13 9.64 3.30 -2.22 4.31 1.78 -0.71
14 6.97 2.26 -0.46 3.78 2.03 -0.67
15 5.57 2.19 -0.42 2.62 1.01 -0.99
16 3.60 -0.53 -1.58 2.97 -2.34 -2.81
17 1.47 -0.42 -2.51 1.14 -0.93 -4.00
18 4.65 1.15 -2.48 3.24 0.86 -2.50
19 5.00 0.20 -1.74 2.30 -0.37 -2.41
20 9.04 2.55 -1.77 3.49 1.21 -1.07
21 6.86 1.70 -1.27 2.77 0.64 -1.78
23 8.33 1.53 -1.67 3.56 1.05 -1.73
24 9.04 1.54 -1.33 4.72 1.73 -1.33
25 8.96 2.16 -1.30 3.21 0.92 -1.37
26 7.27 0.64 -2.07 2.91 0.38 -2.52
27 10.61 2.76 0.03 3.18 2.10 -0.68
28 4.49 -0.45 -2.32 2.48 -0.41 -2.73
29 11.17 3.50 0.58 4.75 3.34 0.25
30 10.38 4.39 0.25 3.35 2.12 0.89
31 10.29 3.25 -0.90 3.90 1.71 -0.30
32 10.65 2.47 -1.79 4.23 1.63 -1.16
33 11.03 3.80 -1.61 4.48 2.05 -0.36
34 9.73 2.41 -1.89 3.68 1.06 -1.14
35 6.93 1.53 -2.74 3.45 0.18 -2.11
36 11.79 2.85 0.00 3.91 2.44 -0.62

1% Critical Value -2.67 -3.75 -4.42 -2.68 -3.77 -4.44
5% Critical Value -1.96 -3.00 -3.62 -1.96 -3.00 -3.63
10% Critical Value -1.62 -2.64 -3.25 -1.62 -2.64 -3.25



Table A2: ADF statistic for first difference of hypothetical intermediate demand

( H
neQH∆ )

lag 0 lag 1
Industry n c t n c t

1 -3.42 -4.87 -4.93 -1.68 -2.50 -2.40
7 -2.15 -6.15 -6.21 -1.13 -6.19 -6.42
8 -2.13 -3.00 -3.20 -2.14 -3.16 -3.83
9 -2.43 -3.56 -3.74 -1.28 -2.11 -2.22

10 -2.05 -3.50 -3.62 -1.16 -2.51 -2.59
11 -1.77 -3.20 -3.29 -1.77 -3.36 -3.96
12 -2.11 -3.77 -3.69 -1.74 -3.43 -3.55
13 -0.85 -3.83 -4.42 -0.46 -2.89 -4.31
14 -1.84 -3.63 -4.57 -0.84 -2.47 -3.43
15 -1.54 -2.85 -3.21 -1.39 -2.96 -3.58
16 -2.40 -4.55 -4.91 -1.53 -2.39 -2.25
17 -3.54 -3.77 -3.70 -3.38 -4.04 -3.86
18 -2.52 -4.26 -4.56 -1.45 -3.12 -3.41
19 -1.83 -3.32 -3.22 -1.39 -2.90 -2.82
20 -0.64 -3.22 -3.55 -0.22 -2.40 -2.92
21 -1.42 -3.11 -3.24 -1.14 -2.88 -3.15
23 -1.37 -3.78 -4.06 -0.47 -2.36 -2.60
24 -1.54 -4.61 -5.29 -0.69 -3.35 -4.16
25 -0.99 -3.21 -3.41 -0.69 -2.76 -3.16
26 -1.48 -3.87 -3.86 -0.86 -3.34 -3.29
27 -0.67 -2.34 -3.33 0.10 -1.23 -2.11
28 -2.38 -4.36 -4.25 -1.62 -3.94 -3.87
29 -1.13 -2.93 -4.86 0.35 -1.23 -2.42
30 0.14 -1.92 -2.83 0.53 -1.05 -2.22
31 -0.58 -3.17 -3.77 -0.14 -2.08 -3.00
32 -0.87 -3.90 -4.48 -0.31 -3.23 -4.01
33 -0.64 -3.63 -4.42 -0.21 -2.06 -3.41
34 -0.78 -3.65 -3.85 -0.39 -2.59 -3.05
35 -0.96 -4.08 -3.93 -0.51 -2.49 -2.58
36 -0.82 -2.77 -4.00 -0.13 -2.29 -3.49

1% Critical Value -2.68 -3.77 -4.44 -2.68 -3.79 -4.47
5% Critical Value -1.96 -3.00 -3.63 -1.96 -3.01 -3.65
10% Critical Value -1.62 -2.64 -3.25 -1.62 -2.65 -3.26



Table A3: ADF statistic for actual intermediate demand ( neQH )

lag 0 lag 1
Industry n c t n c t

1 2.62 0.07 -2.20 3.21 0.32 -1.45
7 0.76 -1.10 -3.26 1.06 -1.17 -2.98
8 1.04 -0.61 -2.22 1.43 0.18 -1.29
9 1.07 -0.68 -1.90 0.81 -0.80 -2.22

10 0.83 -1.88 -1.70 0.89 -1.54 -1.12
11 1.39 -0.06 -2.04 1.74 0.31 -1.66
12 0.13 -2.10 -3.43 1.47 -0.32 -1.38
13 0.32 -0.58 -3.64 0.32 -0.60 -4.00
14 1.75 -0.89 -3.67 2.26 -0.33 -2.89
15 -0.10 -3.02 -3.14 0.08 -2.88 -3.01
16 2.34 -1.38 -2.11 1.90 -1.09 -2.01
17 -2.83 -1.57 -2.24 -2.53 -1.68 -2.47
18 1.72 0.15 -2.51 1.56 0.14 -3.01
19 3.27 0.81 -1.60 2.99 0.96 -1.37
20 2.13 -2.27 -1.22 1.42 -1.82 -1.13
21 2.39 0.71 -0.71 1.54 0.39 -1.16
23 -0.84 -2.33 -2.09 -0.64 -1.19 -0.32
24 0.10 -2.68 -3.10 0.41 -1.32 -1.80
25 1.42 -0.98 -3.87 1.91 -0.75 -3.16
26 -2.57 0.44 -2.34 -1.93 0.37 -3.08
27 -0.52 -0.62 -0.65 -0.25 -1.62 -1.49
28 4.81 2.55 0.20 2.91 1.93 -0.25
29 -0.60 -1.59 -0.86 -0.67 -1.82 -1.12
30 5.89 3.69 2.34 2.88 3.00 2.25
31 3.90 -0.36 -2.89 2.29 -0.16 -3.96
32 6.02 0.30 -2.77 3.18 0.17 -3.16
33 4.70 1.89 -1.47 1.27 0.54 -1.74
34 6.67 1.78 -1.18 2.43 1.07 -2.42
35 2.13 -0.10 -2.49 1.29 -0.69 -3.18
36 0.94 -0.86 -1.22 0.54 -0.91 -1.73

1% Critical Value -2.67 -3.75 -4.42 -2.68 -3.77 -4.44
5% Critical Value -1.96 -3.00 -3.62 -1.96 -3.00 -3.63
10% Critical Value -1.62 -2.64 -3.25 -1.62 -2.64 -3.25



Table A4: ADF statistic for first difference in actual intermediate demand ( neQH∆ )

lag 0 lag 1
Industry n c t n c t

1 -4.52 -6.34 -6.30 -2.17 -3.51 -3.51
7 -5.30 -5.53 -5.41 -4.12 -4.69 -4.60
8 -5.99 -6.28 -6.47 -3.31 -3.64 -3.94
9 -3.91 -4.00 -3.90 -3.41 -3.77 -3.61

10 -5.35 -5.48 -5.65 -3.35 -3.55 -3.86
11 -4.85 -5.38 -5.58 -4.04 -4.93 -6.17
12 -8.77 -9.20 -9.06 -3.11 -3.31 -3.37
13 -5.58 -5.89 -5.81 -5.58 -6.31 -6.29
14 -5.06 -6.34 -6.19 -3.04 -4.43 -4.32
15 -5.29 -5.21 -5.11 -4.88 -4.82 -4.81
16 -3.74 -4.60 -4.50 -2.67 -3.54 -3.43
17 -3.83 -4.57 -4.60 -4.24 -5.89 -6.05
18 -4.04 -4.50 -4.65 -3.70 -4.50 -4.97
19 -3.54 -4.91 -5.23 -2.03 -3.18 -3.61
20 -3.16 -3.84 -4.11 -2.03 -2.52 -2.71
21 -3.17 -3.58 -3.91 -2.55 -3.13 -3.53
23 -7.33 -7.20 -7.64 -3.29 -3.24 -3.68
24 -7.68 -7.57 -7.60 -4.71 -4.69 -4.97
25 -5.71 -6.58 -6.42 -4.40 -7.05 -7.03
26 -3.34 -4.14 -4.34 -2.25 -3.09 -3.45
27 -3.26 -3.17 -3.78 -2.81 -2.74 -3.76
28 -2.42 -3.24 -4.11 -0.86 -1.76 -2.44
29 -4.11 -4.01 -4.32 -2.82 -2.74 -3.26
30 0.25 -0.79 -1.96 0.48 -0.62 -2.35
31 -2.69 -3.93 -3.80 -2.46 -6.17 -6.04
32 -1.79 -4.41 -4.33 -0.71 -3.58 -3.48
33 -1.31 -2.37 -2.71 -0.83 -1.67 -1.97
34 -1.19 -2.52 -2.96 -0.86 -2.80 -3.07
35 -3.10 -4.71 -4.58 -2.28 -3.78 -3.68
36 -3.60 -3.67 -3.59 -2.47 -2.57 -2.52

1% Critical Value -2.68 -3.77 -4.44 -2.68 -3.79 -4.47
5% Critical Value -1.96 -3.00 -3.63 -1.96 -3.01 -3.65
10% Critical Value -1.62 -2.64 -3.25 -1.62 -2.65 -3.26



Table A5: ADF statistic for the residuals of the long run equation ( ti ,ε )

lag 0 lag 1
Industry n c t n c t

1 -4.31 -4.40 -5.03 -2.45 -2.52 -3.26
7 -2.47 -2.91 -2.80 -2.34 -2.65 -2.83
8 -2.48 -2.86 -3.83 -1.19 -1.51 -2.43
9 -2.91 -3.19 -3.07 -2.68 -2.98 -2.97

10 -3.82 -3.76 -3.73 -3.01 -2.96 -2.94
11 -2.94 -2.91 -2.89 -2.06 -2.03 -2.03
12 -3.99 -4.45 -5.21 -2.08 -2.43 -3.16
13 -5.67 -5.65 -6.53 -3.72 -4.18 -4.33
14 -2.17 -2.51 -3.21 -1.05 -1.20 -2.50
15 -5.12 -5.07 -5.10 -4.26 -4.25 -4.40
16 -4.51 -4.44 -4.37 -4.11 -4.04 -3.99
17 -0.43 -1.69 -1.63 -0.65 -1.75 -2.39
18 -3.99 -4.19 -4.25 -3.36 -3.60 -3.75
19 -5.79 -5.73 -5.72 -5.10 -5.04 -5.18
20 -6.23 -6.49 -6.38 -3.90 -4.15 -4.20
21 -5.76 -6.01 -5.83 -3.77 -4.05 -3.97
23 -5.98 -6.31 -6.58 -3.12 -3.42 -3.66
24 -1.15 -1.23 -1.51 -1.47 -1.46 -2.05
25 -3.60 -3.83 -4.59 -2.46 -2.73 -3.43
26 -2.99 -2.95 -2.91 -3.90 -3.86 -3.86
27 -3.73 -3.78 -3.73 -3.54 -3.50 -3.67
28 -2.74 -2.70 -2.65 -2.07 -2.05 -2.05
29 -3.81 -3.85 -4.24 -3.57 -3.63 -4.32
30 -3.54 -3.51 -3.48 -2.72 -2.68 -2.63
31 -4.58 -4.53 -4.47 -3.98 -3.91 -3.82
32 -2.73 -2.64 -4.97 -1.61 -1.64 -4.08
33 -4.72 -4.77 -4.06 -2.01 -2.10 -1.87
34 -2.99 -3.06 -3.18 -3.74 -3.96 -3.99
35 -2.39 -3.18 -3.00 -1.16 -1.80 -1.77
36 -2.68 -2.74 -2.63 -2.51 -2.62 -2.55

1% Critical Value -2.63 -3.64 -4.26 -2.64 -3.65 -4.27
5% Critical Value -1.95 -2.95 -3.55 -1.95 -2.96 -3.56
10% Critical Value -1.62 -2.61 -3.21 -1.62 -2.62 -3.21



Table A6: The industry classification in MULTIMAC

Model Industry 2-digit NACE
codes

1 Agriculture, Forestry and Fishing 1,2,5

2 Mining of Coal and Lignite 10

3 Extraction of Crude Petroleum and Natural Gas 11

4 Gas Supply

5 Manufacture of Refined Petroleum Products 23

6 Electricity, Steam and Hot Water Supply 40

7 Collection, Purification and Distribution of Water 41

8 Ferrous & Non Ferrous Metals 27

9 Non-metallic Mineral Products 13, 14, 26

10 Chemicals 24

11 Metal Products 28

12 Agricultural and Industrial Machines 29

13 Office Machines 30

14 Electrical Goods 31, 32

15 Transport Equipment 34,35

16 Food and Tobacco 15, 16

17 Textiles, Clothing & Footwear 17, 18, 19

18 Timber & Wood 20

19 Paper 21

20 Printing Products 22

21 Rubber & Plastic Products 25

22 Recycling 37

23 Other Manufactures 33, 36

24 Construction 45

25 Distribution 50, 51, 52

26 Hotels and Restaurants 55

27 Inland Transport 60

28 Water and Air Transport 61, 62

29 Supporting and Auxiliary Transport 63

30 Communications 64

31 Bank, Finance & Insurance 65, 66, 67

32 Real Estate 70, 71

33 Software & Data Processing 72

34 R&D, Business Services 73, 74

35 Other  Market Services 92, 93, 95

36 Non-market Services 75, 80, 85, 90, 91

37 Statistical Differences


