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ABSTRACT 
 

Structural decomposition analysis (SDA) is a well-known methodology to assess the relative 
importance of effects that together constitute the actual change in a variable of interest. A widely 
recognized problem of SDA is that the results often depend strongly on the specific 
decomposition formula chosen, while numerous formulae are equivalent from a theoretical point 
of view. This “non-uniqueness” problem is often solved rather pragmatically, by reporting an 
average of (a subset of) all possible formulae. In this paper, we propose an approach that uses 
maximum entropy econometrics techniques to incorporate additional information to choose a 
specific decomposition formula. We illustrate the method empirically by investigating the sources 
of change in sectoral real labor costs in Spain, 1980-1994. 
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1. Introduction 
 
A most basic input-output model allows to predict (ex ante) to what extent gross output levels are 
affected by changes in the final demand vector or the input-output matrix. In fact, the first input-
output tables were constructed to make such impact analyses possible. The same basic model 
enables us to assess ex post the actual contributions of changes in these underlying factors to 
observed changes in gross output levels. The latter type of analysis has been coined structural 
decomposition analysis (SDA). An extensive overview of the methodology and its relatively early 
applications was provided by Rose & Casler (1996). More recent applications of different sorts 
include De Haan (2001), Hoekstra & Van den Bergh (2002) and Dietzenbacher et al. (2000, 2004). 
As was shown by Dietzenbacher & Los (1998, 2000), typical SDA results should be taken with 
care, because several methodological problems pertain to the techniques employed. This paper 
aims at providing a new perspective on the so-called “non-uniqueness” problem. Dietzenbacher 
& Los (1998) showed that this problem, which will be outlined below, is not only of theoretical 
interest. It is also an issue that is important in an empirical sense. Relative contributions of 
distinct sources of change (such as final demand change and changes in input coefficients, in the 
above-mentioned simple example) were shown to depend considerably on the specific 
decomposition form chosen. 

If one decomposition form would be preferable over the others, the problem would not be 
relevant. Dietzenbacher & Los (1998) argue that the number of theoretically equivalent forms 
amounts to n!, in which n represents the number of distinct sources of change. Their admittedly 
pragmatic solution is to present averages of results obtained for all decomposition forms. They 
also show that it is often defendable from an empirical point of view to report averages over a 
well-defined small subset of forms. Nevertheless, an explicit choice for a specific decomposition 
form, or in other words, a specific attribution of interaction terms to the distinct sources of 
change is not made. 

This paper proposes a different perspective. We argue that any available additional 
information for periods inbetween the initial and final time period considered can be used to 
divide the interaction terms in a way that fits the data better than implied by simply taking 
averages. The additional data are used in a Maximum Entropy (ME) estimation procedure to 
arrive at parameter estimates that together specify a unique division of the interaction terms.1 

The paper is organized as follows. In Section 2, we present the “non-uniqueness” problem in 
SDA in formal terms. An illustration of a simple decomposition analysis with two determinants 
shows that the two single decomposition forms are special cases of a much broader class of 
divisions of the interaction term introduced in Section 3. So is the average, but this only holds for 

                                                 
1  Maximum Entropy econometrics and strongly related Cross Entropy methods have been used in an intersectoral 

setting before. See, for example, Golan et al. (1994) and Robinson et al. (2001) for methods to estimate missing 
data in input-output tables and social accounting matrices.  
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the case with two determinants. We will show that the class can be represented by two simple 
equations. Specific divisions of the interaction term are characterized by two parameters. We will 
also show that the appoach can relatively easily be generalized to cases with more than two 
determinants. In Section 4, the principles of ME estimation are highlighted, and we show how 
ME estimation techniques can be used to estimate the parameter of interest in solving the “non-
uniqueness” problem in SDA. Section 5 is devoted to a discussion of two types of additional 
information that can be used to implement the ME approach. In Section 6 we present an 
empirical illustration of the approach. We will study changes in sector-level labor costs in Spanish 
sectors between 1980 and 1994. Our aim is to assess the importance of sector-specific changes in 
the labor costs per unit of output on the one hand, and structural effects as a consequence of 
changes in the matrix of input coefficients and the vector of final demands on the other. We 
show that the most likely division of the interaction term within the class of divisions considered 
often deviates substantially from the average of all forms analyzed by Dietzenbacher & Los 
(1998), among others. Consequently, the shares of the total change attributed to specific 
determinants will be different as well. Section 7 concludes.      

     
 
2. The Non-Uniqueness Problem 
 
In input-output analysis, the most basic equation is q=Lf. Sectoral gross output levels q are 
expressed as the product of the Leontief inverse matrix L and the vector of sectoral final demand 
levels f. Differences in gross output levels (be it over time or over countries or regions) can thus 
be due to differences in the values contained in the Leontief inverse and/or to differences in the 
final demand levels. The basic aim of SDA is to quantify the part of the differences in q that can 
be attributed to differences in L and the part caused by differences in f. Because this problem is 
very much alike problems encountered in other subdisciplins in economics, we prefer to explain 
the more traditional approaches and our new approach in terms of a more general notation.2 

 Assume that the value of an endogenous variable z is given as the product of a set of n 
exogenous variables (or, determinants) x1, x2, ..., xn.3 That is:  
 

nxxxz ...21=  (1)

 

                                                 
2  Actually, Fernández (2004, Chapter 4) offers an application of our methodology to a shift-share analysis of 

employment growth in Spanish regions. 
3 The endogenous and exogenous variables can be represented by scalars, vectors and/or matrices. Throughout 

the paper, we adopt the convention that scalars are represented by italic lowercase symbols, (column) vectors by 
lowercase bold symbols and matrices by bold capitals. Primes denote transposition and hats indicate diagonal 
matrices. 
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A fundamental assumption is that the exogenous variables can be assumed to be independent, 
not only in a mathematical sense (see Dietzenbacher and Los, 2000, for an account of problems 
related to mathematical dependency of determinants) but also from an economic-theoretical 
viewpoint. That is, we assume that each determinant could change without an necessarily 
accompanying change in the values of one or more of the other determinants. 

Without loss of generality, we will assume that the difference in z to be studied relates to a 
difference over time. Denoting the value of z in the initial period 0 by 0z  and its value in the 
final period 1 as 1z , we can write 
 

00
2

0
1

0 ... nxxxz =  (2)

11
2

1
1

1 ... nxxxz =  (3)

 
To decompose the change in z, two approaches can be chosen. First, the ratios between the left-
hand sides and the right-hand sides of equations (3) and (2) provide the starting point for a 
multiplicative decomposition form. In an input-output context, this approach was rather recently 
introduced by Dietzenbacher et al. (2000). We will not pursue this approach in this paper, 
however. Instead, we will focus on the probably more popular additive decomposition form, 
which is based on the differences between the left-hand sides and the right-hand sides of equations 
(3) and (2). We obtain: 
 

00
2

0
1

11
2

1
1

01 ...... nn xxxxxxzzz −=−=∆  (4)

 
The objective of additive decomposition analyses is now to express the value of the left-hand side 
as the sum of the respective effects of every determinant ix : 
 

effect ...effect effect  n21 xxxz ∆++∆+∆=∆ (5)

 
To explain the nature of the non-uniqueness problem that emerges, we rely on the case in which 
n=2. For notational convenience, we will denote the exogenous variables by x and y. Hence, we 
have: 
 

xyz =  (6)

 
and 
 

001101 yxyxzzz −=−=∆  (7)
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Now, we can obtain the equivalent of equation (5) by adding and subtracting 10 yx  in (7), 
obtaining: 
 

( ) ( )01010110100011 yyxyxxyxyxyxyxz −+−=−+−=∆  (8)

 
and: 
 

yxxyz ∆+∆=∆ 01  (9)

 
The first term on the right side of (9) represents the effect of changes in x to the actual change in 
z, and the second term quantifies the contribution of changes in variable y. The problem arises 
because different contributions could have been obtained if we had added and subtracted 01 yx  
in (7) instead of 10 yx . In this case, we would have obtained: 
 

yxxyz ∆+∆=∆ 10  (10)

 
The contributions of changes in x and y as obtained by expressions (9) and (10) can differ quite a 
bit and choosing one of them is an arbitrary decision.4 As a pragmatic solution, authors have 
traditionally applied average solutions of expressions (9) and (10). As Dietzenbacher & Los 
(1998) pointed out, this is equal to using midpoint weights if and only if two determinants are 
discerned. 
 

yxxyz ∆+∆=∆ )()( 2
1

2
1  (11)

 
where,   
 

2

10
)( 2

1 xxx +
=   and  

2

10
)( 2

1 yy
y

+
=  (12)

 
                                                 
4  We only consider “exhaustive” decomposition forms, which implies that the full effect is attributed to changes in 

the exogenous determinants. An example of a “non-exhaustive” or “approximate” (Dietzenbacher & Los, 1998) 
decomposition form is yxyxxyz ∆∆+∆+∆=∆ 00 . The last term is often labelled the “interaction effect”. 
In some cases, approximate forms may be preferred over exhaustive forms, for example if a clear economic 
interpretation can be given to the interaction term. If n>2, however, approximate decompositions will contain a 
number of interaction terms, for which no straightforward interpretation is available. In such cases, we feel that 
exhaustive decomposition forms are most appropriate.   
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This discussion is graphically summarized by Figure 1, which was originally proposed by Sun 
(1998). In period 0, the value of z is represented by the small lower left rectangle (Oy0Ax0). In 
period 1, it is given by the surface of the larger rectangle Oy1Cx1. It is undisputable that the parts 
of the change given by the rectangles x0ADx1 and y0y1BA should be attributed to the growth of x 
and y, respectively. The whole issue is about the treatment of the upper right rectangle (ABCD), 
the interaction effect. Equation (9) suggests to attribute it completely to the change in x, whereas 
equation (10) would attribute it completely to the change in y. Consequently, the contributions 
for x and y obtained by both expressions can imply remarkable differences. The actual size of the 
difference depends on the size of the interaction term. The larger its size, the larger the variability 
among the results.  
 

Figure 1. Polar and straight-line paths 
 
 

 

 

 

 

 

 

 

 

 

 
The specification of a temporal path for the determinants implies a particular decomposition 
form to split-up the interaction term. We will get back to the issue of temporal paths in much 
more detail in the next section. For now, it should be noted that path PP1 would mean that the 
effect of determinant x would be 0xy∆ , and the effect of determinant y would be yx ∆1 . If we 
suppose that the temporal path between the initial and the final period is path PP2, the respective 
contributions for determinants x and y would be 1xy∆  and yx ∆0 . Taking the average of these 
two alternative paths would imply an equal division of the interaction rectangle. It can easily be 
seen that taking the midpoint weights would yield an identical result. This result is also attained 
by Sun’s (1998) method, which amounts to attribute halves of the interaction effect to the effects 
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of changes in the two determinants. This amounts to drawing a straight line (LP) from (x0, y0) to 
(x1, y1).5  

In the general case, in which z is the product of n determinants, the number of possible basic 
decompositions such as those corresponding to PP1 and PP2 is increased, now being equal to the 
number of possible permutations for n variables. Therefore, !n  forms could be obtained to 
decompose the change z∆ . Specific cases among these are 
 

nnn xxxxxxxxxz ∆++∆+∆=∆ ............ 1
2

1
1

0
2

1
1

00
21  (13)

nnn xxxxxxxxxz ∆++∆+∆=∆ ............ 0
2

0
1

1
2

0
1

11
21  (14)

 
These expressions are usually called “polar decompositions” (Dietzenbacher & Los, 1998), 
because the expressions for the effects are characterized by identical indexes for all determinants 
on both the left hand-side and right hand-side of the ∆xi factor.6 The absence of uniqueness in 
the solutions leads to the arbitrary choice for one of the !n  possibilities, or alternatively one 
could obtain an average solution. As Dietzenbacher & Los (1998) showed, the average of the two 
polar decompositions is usually very close to the average taken over all n! forms. They also show 
that a midpoint weighted formula is not exhaustive if n>2.  

In the next sections, we will study the main features of a general method of decomposition 
that overcomes many of the limitations of the SDA approaches discussed so far. It allows us to 
obtain non-arbitrary solutions to measure the effects of the determinants of a change.  
 
 
3. The Path Based Approach 
 
In this section, a framework for an alternative decomposition method will be sketched. It builds 
on earlier work by Hoekstra & Van den Bergh (2002) and in particular Harrison et al. (2000), who 
introduced the basics of what we will call the Path Based (PB) approach. The alternative setup 
starts from the premise that both the value of z and the value of the determinants xi have 
changed continuously over time, between time 0 and time 1. Hence, we can write: 
 

)()...()()( 21 txtxtxtz n=  (15)

 
and, assuming differentiability of each xi(t) an infinitesimal change in z can be expressed as 
                                                 
5  Sun’s (1998) straight line can be considered as a special case of the continuous-time approach we will discuss 

below. Sun himself refers to his solution as the implication of a “jointly created and equally distributed” principle 
(Sun, 1998, p. 88). 

6  In fact, this property is also fulfilled by the decomposition forms corresponding to PP1 and PP2. We will 
therefore denote such paths as “polar paths” (PP). 
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dt
dt

dx
x
z

dt
dt

dx
x
z

dz n

n∂
∂

++
∂
∂

= ...1

1

 (16)

 
Finally, the total change in z can be expressed as the sum of all the infinitesimal changes between 
time 0 and time 1: 
 

∫ ∑∫
=

= =

=

= ∂
∂

==∆
1

0 1

1

0

t

t

n

i

i

i

t

t

dt
dt

dx
x
z

dt
dt
dz

z  (17)

 
The effects of the determinants xi can now be written as: 
 

∫ ∏∫
=

= ≠

=

=

=
∂
∂

=∆
1

0

1

0

effect 
t

t

n

ij

i
j

t

t

i

i
i dt

dt
dx

xdt
dt

dx
x
z

x  (18)

 
Equation (18) shows that the derivatives of the determinants xi to time t play an important role in 
the size of the effects attributed to changes in these determinants. Consequently, the choice of 
the functional forms of the functions xi(t)=fi(t), or in other words, the specification of the 
temporal paths that variables follow between initial and final periods, can have a big impact on 
the measurement of their effects that together add up to the variation in z. 

Harrison et al. (2000) proposed the solution arrived at by assuming straight-line paths of the 
variables xi: 
 

( ) txxtxxxtx iiiiii ∆+=−+= 0010)(  (19)

    
In the case of two determinants, this procedure amounts to attributing half of the interaction 
effect to the first determinant and the other half to the second determinant. Actually, this 
approach yields the same solution as Sun’s (1998) ‘equal shares’ method. Empirical values of the 
variables x and y at t=0.5 might however be such that the straight line assumption is very unlikely 
to be tenable. If, for example, x(0.5) would be very close to x(0) and y(0.5) would be very close to 
y(1), it would clearly be preferable to opt for attribution of the interaction term to the ∆x-effect 
(path PP2 in Figure 1). In this paper, we propose a method to take such information explicitly 
into account in attributing parts of the interaction effects to the effects of the respective 
determinants.    

The methodological innovation we propose is to relax the strict assumption of a straight line, 
by considering more flexible forms for the functions fi(t). In order to preserve possibilities to 
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estimate the parameters that characterize the time-paths of the variables, we choose to consider a 
specific class of monotonic functions without inflexion points: 
 

0   ;)( 0 >θ∀∆+= i
iθ

iii txxtx  (20)

 
Obviously, the temporal path of xi will be a straight line if θi equals 1. If this holds for all i (i=1, 
..., n), the solution obtained by the method introduced here will be identical to Harrison’s et al. 
(2000) solution. Figure 2 indicates what the path for xi looks like if θi takes on a values different 
from 1. 
 
Figure 2. Several temporal paths for factor xi 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
As can be seen from Figure 2, the class of paths considered contains all possible monotonic 
paths for x0 to x1 that do not have inflexion points. This is a limitation for sure. An important 
category of paths not covered by our class of paths are those that contain values that are below 
the initial value or exceed the final value (assuming, without loss of generalization that x1 is larger 
than x0). However, by plotting a diagram for two determinants comparable to Figure 1, we can 
show that the class of time paths implied by the still relatively simple expression in equation (20) 
comprises a nicely defined set of time paths (see Figure 3). The “polar” paths PP1 (θx/θy→0) and 
PP2 (θx/θy→∞), and the straight-line path (θx/θy=1) are included as special cases of this general 
class. 7 P1 and P2 are intermediate cases. 
 

                                                 
7  See Fernández (2004, pp. 29-32) for formal analysis proving these points for the case of two determinants.  
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Figure 3. Generalized monotonic temporal paths 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The basic idea is that the specific path implied by the parameter values θi determines the shares 
of the interaction effect that is attributed to the distinct determinants. In a situation like the one 
represented by P1 in Figure 3, a larger part of the interaction effect is attributed to determinant y 
than if a situation better reflected by P2 would occur. In the next section, we will propose a 
methodology to estimate the values of θi, which allows us to decide whether a path like P1 or P2 
(or PP2, for that matter) describes the real-world trends best. Before we turn to that important 
issue, we first express the general idea outlined so far in more analytical terms. 

For the most general case in which a change in z is decomposed into the effects of n 
determinants xi (see equation (15)), the expression for the respective contributions for any 
possible set of n time paths was already given in equation (18). Substituting the more specific 
temporal paths assumed in equation (20) into equation (18), we can write 
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
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
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
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dt
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The first term in this sum shows the smallest contribution for determinant ix , which is given by 

its growth ∆xi weighted by the initial values of the other variables.8 It does not contain any part 
of the interaction effects. The remaining terms show a set of interaction effects between the 
growth of groups of determinants, also weighted by the initial values of the remaining 
determinants. The distribution of these joint effects among effects of determinants clearly 
depends on the iθ  values. Multiple joint effects between the determinants exist. More 

specifically, there are 






 −
1

1n
 possibilities of interaction between ix  and each one of the 

remaining 1−n  determinants, 






 −
2

1n
 terms measuring the joint effect of ix  with groups of 

2−n  determinants, etc. In general, in the expression for the effect of ix  there will be 






 −
k

n 1
 

terms for the joint effects with groups of k determinants. The last terms (in equation 21d), shows 
the part of the joint contribution of all the determinants to the interaction effect attributed to ix . 

The importance of the values of the iθ  parameters for the measurement of the determinant’s 
contributions is clear from equation (21). The higher the value of iθ  in comparison to the 
remaining jθ , the greater the portions of the interaction effects attributed to ix  and, thus, the 
greater its contribution to the whole change in variable z. To illustrate this idea, it is helpful to 
give extreme values to a parameter iθ . Let us suppose firstly that iθ  tends to its minimum value, 
i.e. we are supposing that it is very close to zero. In this case we obtain: 
 

 ......effect lim 00
1

0
1

0
2

0
1

0
1
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0 niii

n

ij
ji

i

ij
ji xxxxxxxxxx

i
+−
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→θ

∆=







∆







=∆ ∏∏  (22)

 
This would be the case when the effect of changes in variable ix  is at its smallest, because we are 
weighting it by the remaining determinants at their initial values. It should be noted that equation 
(22) is one of the !n  feasible solutions obtained by SDA. The opposite situation will happen if 
we suppose that parameter iθ  has a much higher value than the rest of parameters jθ . Then, the 
contribution of ix  will be: 
 

                ...... effect lim 1
n

1
1i

1
1-i

1
2

1
1 xxxxxxx ii

i
+∞→θ

∆=∆  (23)

                                                 
8  For the sake of simplicity, let us hereafter suppose a situation in which nix i ,...,1 ; 0 =≥∆ . 
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In such a case, the contribution of ix  to changes in variable z is as large as it can be, since we are 
weighting its variation by the remaining determinants measured at their final values. Between 
these two extreme situations there exists a infinite range of possible contributions for each 
determinant, which depend on the value of parameters iθ . All solutions obtained by SDA 
techniques are included in this range. 

As we mentioned before, it is nowadays common practice in SDA analyses to present 
averages over decomposition forms. The average over all n! decomposition forms could be 
obtained by the PB approach as well. If we would not have any information on the evolution of 
the determinants over time other than the initial and the final observation, it would be most 
plausible to assume that the temporal path parameters are equal to each other (θ1 = θ2 = ... = θn). 
According to equation (21) we would find 
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n

j
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n 1
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The interaction effects are thus shared proportionally to the changes in the values of the 
determinants. This is identical to the solution proposed by Sun (1998) discussed in the previous 
section. In spite of the similarity between the numerical outcomes for the mean of the two polar 
decompositions only and the mean of all !n  decompositions (Dietzenbacher & Los, 1998), the 
mean of the polar decompositions cannot be obtained by means of specifying values for θi  in the 
above-mentioned PB approach.9 

In the next sections we will turn to methods to infer on plausible values for θi, which allow us 
to apply equation (21) to interesting empirical problems.  
     
 

                                                 
9  See Fernández (2004, pp. 36-39) for a proof. 
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4. Maximum Entropy Econometrics 
 
In the previous section, we found that taking the mean contributions of all decomposition forms 
is the most reasonable solution to the non-uniqueness problem if the researcher has no 
information at all about the time paths of the determinants. In many cases, however, more 
information than the values of the determinants at t=0 and t=1 is available, for example about 
values of one or more of the determinants at intermediate points in time. Estimation of the 
parameters θi is generally not possible by means of classical econometric estimation procedures 
like least squares estimation. The amount of data is quite limited, which precludes the use of least 
squares estimation procedures based on limit theorems. Such procedures require at least more 
observations than parameters to be estimated, which is problematic in the input-output context 
studied here. 

In this section, we will give an introduction to maximum entropy (ME) econometrics, a 
collection of tools that can be very convenient to use scarce additional information in producing 
estimates for the temporal path parameters θi.10 To start with, let us assume that an event can 
have K possible outcomes E1, E2, ..., EK with the respective distribution of probabilities 

Kp,...,p,p 21=p  such that 1
1

=∑
=

K

i
ip . Following the formulation of Shannon (1948), the entropy 

of this distribution p will be 
 

∑
=

−=
K

i
ii ppH

1

ln)(p  (25)

 

which reaches its maximum when p is a uniform distribution ( K1,...,i ,1
=∀=

K
pi ). The entropy 

measure H indicates the ‘uncertainty’ of the outcomes of the event. If some information (i.e., 
observations) is available, it can be used to estimate an unknown distribution of probabilities for 
a random variable x which can get values { }Kxx ,...,1 . 

Suppose that there are T observations { }Tyyy ,...,, 21  available such that 
  

Tt1  ,)(
1

≤≤=∑
=

t

K

i
iti yxfp  (26)

 
with { })(),...,(),( 21 xfxfxf T  a set of known functions representing the relationships between the 
random variable x and the observed data { }Tyyy ,...,, 21 . In such a case, the ME principle can be 
applied to recover the unknown probabilities. This principle is based on the selection of the 

                                                 
10  See Kapur & Kesavan (1992) or Golan et al. (1996) for a detailed analysis of properties of the estimators obtained 

by means of these techniques. 
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probability distribution that maximizes equation (25) among all the possible probability 
distributions that fulfill (26). The following constrained maximization problem is posed: 
 

∑
=

−=
K

i
ii ppHMax

1

ln)( p
p

 (27)

subject to: 

Ttyxfp t

K

i
iti 1,...,  ,)(

1

=∀=∑
=

 

∑
=

=
K

i
ip

1

1 

 
In this problem, the last restriction is just a normalization constraint that guarantees that the 
estimated probabilities sum to one, while the first T restrictions guarantee that the recovered 
distribution of probabilities is compatible with the data for all T observations. The Lagrangian 
function for problem (27) is 
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
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
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i
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T
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i
itittii pxfpyppL

11 1 1

1)(ln  (28)

 
and the corresponding estimates for the probabilities pi are 
 

,
)(ˆexp

)(ˆexp
ˆ

1 1

1

∑ ∑

∑

= =

=





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


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



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


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=
K

i

T

t
itt

T

t
itt

i

xf

xf
p  K,...,i 1=∀  (29)

 
with tλ  the Lagrangian multipliers associated to the first T restrictions in the constrained 
maximization problem (27). It is important to note that even for T=1 (a situation with only one 
observation), the ME approach yields an estimate of the probabilities. Hence, in situations in 
which the number of observations is not large enough to apply econometrics based on limit 
theorems, this approach can be used to obtain robust estimates of unknown parameters.11 A 
disadvantage of ME estimators is that comparisons of means and variances of estimators are not 
possible. Such comparisons are common practice in classical least squares and maximum 
likelihood econometrics. 

                                                 
11  Golan et al. (1996, p. 12) contains a simple, classic example of this technique, the so called “dice problem”. 
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For our current purposes, it is important that the above-sketched procedure can be 
generalized and extended to the estimation of unknown parameters for traditional linear models. 
Let us suppose that the problem at hand is the estimation of a linear model where a variable y 
depends on n explanatory variables xi: 
 

eXθy +=  (30)

 
where y is a ( )1×T  vector of observations for y, X is a ( )nT ×  matrix of observations for the xi 
variables, θ  is the ( )1×n  vector  of unknown parameters ( )nθθ ,...,1=′θ  to be estimated, and e is 
a ( )1×T  vector reflecting the random term of the linear model. For each iθ , it will be assumed 
that there is some information about its 2≥M  possible realizations by means of a ‘support’ 
vector ( )Mbbb ,...,,...,' *

1=b , the elements of which are symmetrically distanced around a central 
value *bi =θ (the prior expected value of the parameter), with corresponding probabilities 

( )iMi pp ,...,1=′ip . For the sake of convenient exposition, it will be assumed that the M values are 
the same for every parameter, although this assumption can easily be relaxed. Now, vector θ can 
be written as  
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 (31)

 
with B and p of dimensions (nxnM) and (nMx1), respectively.  The value for each parameter is 
then given by 
 

∑
=

==θ
M

m
immi pb

1

' ipb ; ni ,...,1=∀  (32)

 
For the random terms, a similar approach is chosen. To express the lack of information about the 
actual values contained in e, we assume a distribution for each te , with a set of 2≥J  values 

( )Jvv ,...,' 1=v  with respective probabilities ( )Jttt www ,...,, 21=′tw .12 Hence, we can write 
 

                                                 
12  Usually, the distribution for the errors is assumed symmetric and centered about 0, therefore Jvv −=1 . 
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and the value of the random term for an observation t equals 
 

∑
=

==
J

j
tjjt wve

1

' twv ; Tt ,...,1=∀  (34)

 
And, consequently, equation (30) can be transformed into 
 

VwXBpy +=  (35)

 
Now, the estimation problem for the unknown vector of parameters θ is reduced to the 
estimation of Tn +  probability distributions, and the following maximization problem (similar to 
problem (27)) can be solved to obtain these estimates: 
 

∑ ∑∑∑
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−−=
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m
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1 1 11,
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 (36)

subject to: 
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By solving the associated Lagrangian function, we find 
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Finally, these estimated probabilities allow us to obtain estimations for the unknown 
parameters.13 The estimated value of iθ  will be:14,15 
 

∑
=

=θ
M

m
mimi bp

1

ˆˆ , n,...,i 1=∀  (39)

 
This approach can be applied to the decomposition problem studied in the previous section, 
since limited additional information would enable us to obtain estimates of the parameters that 
determine the contribution of each determinant to the total change that has actually been 
observed. In other words, non-arbitrary solutions to the decomposition problem could be 
obtained. In the next section several situations with availability of  various types of additional data 
will be considered, as well as the way to estimate the effects of the factors to the total change ∆z 
using this technique.  

     
 
5. Incorporating Additional Information in SDA 
 
In this section we will first suppose a scenario in which we have some additional observations for 
intermediate periods. A “dynamic SDA” in the more traditional sense is not possible, however, 
since we suppose that these intermediate observations are only available for a few of the n 

                                                 
13  Golan et al. (1996, Chapter 6) show that these estimators are consistent and asymptotically normal. In Golan et al. 

(1996, Chapter 7) the finite sample behavior of the ME estimators is numerically compared to traditional least 
squares and maximum likelihood estimators. In experimental samples with limited data, the ME estimators are 
found to be superior.  

14  The construction of the vector b is based on the researcher’s prior knowledge (or beliefs) about the parameter. 
Sometimes, the choice of minimum and maximum values b1 and bM is quite obvious, but in other cases a ‘natural’ 
choice does not exist. In such a situation, it will not be possible to obtain an accurate solution to the estimation 
problem if the actual parameter value is out of the fixed range, say Mi b>θ . Therefore, one should be careful in 
choosing the maximum and minimum values of b. Golan et al. (1996, chapter 8) devote more attention to 
consequences of choices concerning the elements of the vector b. An almost universal result is that wider 
bounds can be used without substantial consequences for the characteristics of the estimators. 

15  Fernández (2004, pp. 69) proves that the solution of the constrained maximization problem (36) without 
additional information yields estimates equal to the expected value b* of the prior distribution. 
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factors.16 To assess the contribution of factor xi, equation (20) will be used again, but in a slightly 
different form. It contains a stochastic component εit that allows xi to diverge from the 
deterministic path that we would like to estimate17 
 

iti etxxtx iii
εθ∆+= 0)(  (40)

 
Defining 0)()( iii xtxtg −=  and taking logarithms, we have: 
 

iti
i

i t
x
tg

ε+θ=







∆

)ln(
)(

ln , or 

itii ttx ε+θ= ** )(  

(41)

 
Equation (41) is a linear model with one parameter to be estimated. Hence, it is possible to apply 
the Maximum Entropy estimation technique for linear relationships analyzed in the previous 
section, and (41) can be written as 
 

∑∑
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+=
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j
jtj
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m
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1

*

1

* )(  (42)

 
which ends up as a constraint in the following maximization problem 
 

∑ ∑∑
= = =

−−=
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)ln()ln(),( wp
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 (43)

subject to: 

,...,Tt wvtpbtx
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mimii 1 ,)(

1

*

1

* =∀+= ∑∑
==

 

∑
=

=
M

m
im   p

1

1  

                                                 
16  The term “dynamic SDA” was inspired by the related term “dynamic shift-share analysis” proposed by Barff & 

Knight III (1988). If observations for x1, x2, ..., xn would be available for a period s (0<s<1), dynamic SDA would 
amount to decomposing zs-z0 and z1-zs in the classic way outlined in Section 2, and subsequently adding results 
for the corresponding effects in the two decompositions to obtain the contributions for z1-z0. A discussion of 
transitivity problems in this approach is beyond the scope of this paper.  

17  We assume that εit = 0 in the final period. This ensures that xi(t) has value xi
1 in this period. 



 18

,...,Tt   w
J

j
tj 1,1

1

=∀=∑
=

 

 
According to equation (39), solving this problem yields an estimate for parameter iθ . For factors 
xi for which there is no additional information, the estimates  jθ̂  should equal 1 to resemble the 
linear path. Hence, the central value b* should be set to 1. Upon having obtained estimates for θ1, 
θ2, ..., θn, substitution of these values and the observations for x1, x2, ..., xn in equation (21) yields 
the estimated respective contributions of changes in the determinants. 

Another situation in which additional information can be incorporated in SDA emerges if we 
do not have intermediate observations for the factors involved in the decomposition problem 
itself, but have such observations for other variables highly correlated with them. In the next 
section we will discuss such an empirical case. 

Assume that there is another variable )(tri , which is correlated to a determinant )(tx i  and 
directly observable for at least one intermediate point between the initial and final periods (as 
opposed to )(tx i  itself). In such a situation, using the initial and final values for both variables, a 
linear model such as 
  

kikik rx ε+β+β= 10    (k=1, ..., K, K+1, ..., 2K) (44)

 
can be estimated, where kε  is a random term with the usual characteristics and K is the 
dimension of determinant )(tx i .18 This model can be employed to estimate the )(tx i  values 
from )(tri  values. If there are T observations for variable )(tri , T  estimates for )(tx i  can be 
obtained as: 
 

Tttrtx ii 1,...,  );(ˆˆ)(ˆ 10 =β+β=  (45)

 
and it would be possible to include these Tttx i 1,...,  );(ˆ =  values as additional information in a 
ME program to estimate the parameter iθ . It should be kept in mind that the accuracy of these 
estimates is positively related to the strength of the correlation. To take this into account, we 
propose to construct confidence intervals: 
 
[ ]xi aStx ˆ)(ˆ ±  (46)

 

                                                 
18  If xi(t) and ri(t) are vectors of dimension Kx1, for example, equation (44) can be estimated using K observations 

for the initial period and K observations for the final period, adding up to a total of 2K observations. This implies 
that this approach is only feasible if the determinants have at least dimension 2x1.  
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where xS ˆ  is the standard error of the estimated value )(ˆ tx i  and a is the t-value that corresponds 
to the confidence level 1-α. The lower and upper values of such intervals, say )(ˆ tx low

i  and 
)(ˆ tx high

i , will be used to estimate intervals for the parameters θi. The lower and upper bounds 
( low

iθ̂  and high
iθ̂ , respectively) are found by including )(ˆ tx low

i  and )(ˆ tx high
i  as additional information 

in ME programs. More specifically, these values show up as the left hand side variables in the 
first constraint in maximization problem (43). Since it is possible to estimate intervals for the 
parameters, it will be possible to compute intervals for the contributions of the determinants, too. 
Note that the higher correlation between determinant xi(t) and variable ri(t), the greater the 
expected accuracy of the estimate of the parameter, which implies narrower confidence intervals 
for the contributions of changes in the determinants. 

The use of both kinds of additional information in the framework outlined above can cause 
nontrivial problems if the information is rather unlikely to be generated by a time path belonging 
to the class of paths defined by equation (40). This happens if observations for intermediate 
periods rule out a monotonic path. In Figure 3, such points are located above or below the 
rectangle. We deal with such observations by fitting the most appropriate monotonic paths. 
Figure 4 depicts all possibilities if two intermediate observations are available. 

 
 

Figure 4. Estimated temporal paths with intermediate observations 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For intermediate period t’ observations for this determinant can be categorized as A, B, C or D, 
depending on whether they are above or below the linear path and inside or outside the rectangle. 
In the same vein, we have E, F, G or H for intermediate period t’’. If the two observations are 
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both like B, C, F and G, no problems are encountered. If A and E are observed, the closest 
monotonic path is PP1, which corresponds to θi=0. If D and H are observed, PP2 is most 
appropriate and θi=∞.19 If A (above the rectangle) and H (below the rectangle) are observed, we 
opt for the linear path, since it is the average of PP1 (implied by A) and PP2 (implied by H). If 
points like B and E or B and H are observed, there will be an observation inside the rectangle (B) 
and another one in the outside (E or H). In such cases, to obtain valid estimates of the parameter 
it will be assumed that points E or H are not outside the rectangle but just on the border of the 
rectangle (given by PP1 and PP2 respectively). The same procedure is applied in situations with 
observations like A and F or D and F.    

It should be noted that the two situations depicted concerning availability of additional 
information do not offer an exhaustive enumeration of all possibilities for incorporating such 
information into decomposition problems. The important issue is that the flexibility of this 
estimation method allows including information even if there were not direct observations of the 
factors appearing in the decomposition problem. If there is some kind of knowledge about the 
behavior of other variables that are somehow related to these factors, this information can be 
used to obtain estimates of the parameters.    
 
 
6. Illustration: Sectoral Labor Cost Growth in the Spanish Economy 
 
We apply the techniques developed in the previous sections to study the contributions of three 
determinants to changes in real sectoral labor costs in Spain, over the period 1980-1994. It should 
be emphasized that the aim of this section is not so much to provide a “deep” analysis of the 
dynamics of Spanish labor costs, but rather to provide an illustration of the methods proposed in 
this paper. The required data were taken from 21-sector input-output tables for these years, 
expressed in prices of 1986. The intermediate blocks of the tables contain domestic deliveries 
only. Appendix A contains detailed information about how we treated the basic data to arrive at 
the data used in the analysis outlined below. 

Our starting point is an input-output model that expresses the vector of sectoral labor costs c 
as the product of three factors, i.e. labor costs per unit of gross output u (included as a diagonal 
matrix), the Leontief inverse matrix L and the vector of final demands f. 
 

Lfuc ˆ=  (47)

 
and the objective is to decompose the total change ∆c into the following three components: 
 

                                                 
19  If θi=∞, a “very big” value must be inserted in equation (21) to obtain numerical results. In the empirical 

application described in the next section, we used the value 1020 in such cases.  
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effecteffect effect 094 ∆f∆L∆u∆ccc 8 ++==−  (48)

 
We assume the following temporal paths for the elements of the factors: 
 

ku
kkk tuutu

θ
∆+= 80)( ; k=1, ..., 21 (49a)

kjl
kjkjkj tlltl

θ
∆+= 80)( ; k=1, ..., 21; j=1, ..., 21 (49b)

kf
kkk tfftf

θ
∆+= 80)( ; k=1, ..., 21 (49c)

 
According to equation (21), the contributions of changes in elements of u, L and f to the changes 
in c can be written as20 
 

[ ] [ ] [ ] fLuΘfLuΘfLuΘfLuu 8080 ∆∆∆+∆∆+∆∆+∆=∆ ++++ ˆˆˆˆeffect 8080 ooo u
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u
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u
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[ ] [ ] [ ] fLuΘfLuΘfLuΘLfuL 80 ∆∆∆+∆∆+∆∆+∆=∆ ++++ ˆˆˆˆeffect 808080 ooo L
fLu

L
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L
Lu  (50b)

[ ] [ ] [ ] fLuΘfLuΘfLuΘfLuf ∆∆∆+∆∆+∆∆+∆=∆ ++++ ˆˆˆˆeffect 80808080 ooo f
fLu

f
fL

f
fu  (50c)

 
with the matrices Θ defined as 
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20  The symbol o  indicates element-by-element (Hadamard) multiplication.  
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As argued before, assuming that parameters θ  are the same for all the factors (i.e., 

kkjk flu θ=θ=θ ) for all j and k would yield Sun’s (1998) solution. This would be a natural thing to 

do if no information would be available for the years in-between 1980 and 1994. To illustrate the 
techniques outlined in the previous sections, we will estimate some of the θ parameters by 
employing additional information of two sorts. First, we incorporate information about sectoral 
final demands for 1986 and/or 1990. Afterwards, we will employ information about wage 
payments per unit of output, which we consider as a variable correlated to the first determinant 
in the SDA, labor costs per unit of output.   

In both cases, we had to decide on the values to be assigned to the a priori distributions 
contained in the support vector b (see equation 32) and the possible realizations for the random 
term in vectors v (see equation 33). The following vectors were used for all parameters 
throughout the empirical analyses below:21 
 
b=[-5.0, -3.0, -1.0, 1.0, 3.0, 5.0, 7.0]’   and   v=[-0.01, -0.005, 0, 0.005, 0.01]’  
 
6.a Inclusion of values of a determinant for an intermediate period 

We will report two sets of results obtained by incorporating information on the volumes of 
sectoral final demands. First, we used observations for sectoral final demand in 1990 only. These 
levels were reported in the Spanish National Accounts (INE, 1999). We subsequently expressed 
them in 1986 prices by means of the deflation procedure discussed in Appendix A. Next, we 
applied the very same procedure, but incorporated sectoral final demand levels for 1986 (INE, 
1987) and 1990, simultaneously. Consequently, Table 1 reports two sets of estimated 

if
θ , and 

two sets of associated decomposition results.  
 
 
 
 
 

                                                 
21 Fernández (2004, p. 142-143) tested the assertion by Golan et al. (1996, p. 138) that the estimation results are 

generally not very sensitive to the choice of a particular set in the specific context of a path-based shift-share 
analysis. His results strongly confirmed this assertion by Golan et al. 
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Table 1: Decomposition results for case with additional information for one of the 
determinants.* 

 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Sector ∆ca ∆u eff ∆L eff ∆f eff 
if

θ̂ ∆u eff ∆L eff ∆f eff
if

θ̂ ∆u eff ∆L eff ∆f eff

1 24.2 -193.0 105.9 111.4 ∞ -0.9 4.3 -5.7 ∞ -3.3 -5.5 -0.2
2 -44.7 -132.6 35.2 52.7 0.00 -3.6 17.3 -20.5 0.00 -2.8 -10.9 2.2
3 53.2 -45.8 -76.0 175.0 ∞ -5.4 -4.1 -3.2 ∞ -6.7 -8.6 -5.4
4 42.5 -167.7 56.8 153.5 6.34 3.7 5.2 2.1 8.40 -9.3 -8.8 -7.0
5 261.5 -163.5 104.1 320.9 1.55 -4.3 4.0 -3.5 1.93 -5.2 -6.2 -0.5
6 130.0 -80.1 41.5 168.6 0.30 6.0 1.4 2.5 6.71 -9.7 -5.3 -3.5
7 26.5 -122.5 49.8 99.2 0.00 13.2 0.9 15.9 0.00 -1.8 -6.9 0.8
8 216.6 -267.8 72.1 412.4 0.79 5.6 5.3 2.7 1.25 -9.5 -7.8 -4.9
9 232.0 -403.8 32.9 602.9 0.92 2.2 8.5 1.0 1.49 -10.8 -8.8 -6.8

10 228.4 -15.5 98.6 145.3 0.55 3.1 3.6 -2.1 1.74 -5.4 -5.2 3.1
11 249.5 -141.3 58.4 332.4 0.43 9.7 6.2 3.1 0.67 -4.9 -9.0 -0.6
12 108.2 -74.4 86.5 96.1 1.90 -0.7 4.4 -4.5 1.78 -2.9 -6.6 4.1
13 -77.9 -156.7 39.4 39.4 0.00 -3.7 3.3 -18.2 0.00 -3.7 -5.3 -10.4
14 570.1 9.7 53.4 506.9 0.00 16.1 7.4 -1.1 0.90 -13.5 -8.5 1.3
15 527.0 -169.0 235.9 460.2 0.31 6.6 3.7 0.5 1.19 -7.7 -6.3 0.3
16 163.6 -36.7 35.7 164.6 0.23 8.7 3.5 1.2 0.78 -6.7 -5.9 -0.3
17 359.7 -463.5 506.6 316.6 1.71 -2.9 3.7 -10.1 1.42 -0.5 -6.5 11.2
18 105.8 83.5 -111.8 134.1 1.89 0.5 -0.5 -0.8 1.52 -3.9 -4.1 -0.9
19 265.1 -424.8 525.9 164.0 0.00 -0.5 3.0 -11.0 0.00 -3.5 -6.3 13.2
20 388.5 121.3 172.7 94.4 2.89 -0.5 3.9 -6.5 7.32 -3.1 -6.5 17.4
21 3090.6 343.9 258.2 2488.6 0.69 5.1 4.7 -1.2 1.04 -5.4 -5.9 1.4

Total 6920.4 -2500.4 2381.6 7039.0 0.9 4.6 -1.2 -5.6 -6.6 0.3
* Column (5) presents estimated coefficients after incorporating one intermediate observation. Columns (6-8) 

present %-differences between contributions obtained by the PB method incorporating one intermediate 
observation and obtained by calculating averages over traditional decomposition formulae (the latter are used as 
base values). Column (9) presents estimated coefficients after incorporating two intermediate observations. 
Columns (10-12) present %-differences between contributions obtained by the PB technique when incorporating 
two intermediate observations and obtained by the PB technique incorporating one intermediate observation (the 
latter are used as base values). 

a Columns (2-4) do not always add up to the numbers in column (1) due to rounding. 

 
The first column reports the actual change in sectoral labor costs in the 21 Spanish sectors 
between 1980 and 1994, expressed in billions of 1986 pesetas. Labor costs increased in all but 
two sectors, “energy” (2) and “other manufacturing” (13). 

Columns (2)-(4) present the results of the decomposition analysis if the averages would have 
been taken over the six possible traditional  decomposition formulae. The values for the Spanish 
economy as a whole in the bottom row are obtained by simply adding the sectoral results. Clearly, 
declining labor costs per unit of gross output would have led to lower labor costs in most sectors 
if nothing else would have changed (the ∆u effect is generally negative). Exceptions to this rule 
are mostly found in services sectors (“construction” (14), “communication services”(18), “real 
estate and business services” (20) and “other services” (21)). The generally positive results for the 
∆L effect suggest that the domestic input coefficients have changed in such a way that labor 
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costs would have increased, in the absence of changes in the level and composition of final 
demand. This finding can be due to changes in technology (technological progress or substitution 
of inputs induced by changes in relative prices) or to changes in the trade pattern of Spain. Only 
for “minerals and mining” (3) and “communication services” (18) a negative contribution of 
changes in the Leontief inverse L is obtained. Finally, the contributions of the ∆f effect are 
positive. This is not a very surprising result, since the consumption and investment levels went up 
considerably in the period studied. In the demand-driven input-output model, positive final 
demand growth will always yield increases in labor costs, unless labor costs per unit of output are 
reduced considerably and/or input coefficients cause substitution of inputs towards inputs with 
lower labor cost coefficients. In SDA studies, these potentially offsetting effects are assumed to 
be absent by construction, however. 

From the viewpoint of this paper, the most interesting results are contained in the righthand 
side part of Table 1. Column (5) presents the estimates for the 

if
θ parameters obtained by 

maximum entropy techniques for the PB method using the final demands for 1990 only.22 The 
most prominent result concerns the frequency of extreme estimates. As often as five times a 
value of 0.00 was found, next to three times infinity. In these cases, the error committed by 
assuming a linear path may be very considerable, as polar paths appear more plausible. 

Columns (6), (7) and (8) report the percentage deviations from the results obtained by 
computing averages as found after substituting the estimates in column (5) in equations (50) and 
(51). A couple of comments are called for. First, the deviations are sometimes considerable. The 
most substantial deviations are found for the ∆f effect, associated with the determinant for which 
additional information was incorporated. Nevertheless, considerable effects of applying the PB 
methodology are also found for the other two effects. Second, the deviations are generally 
strongest for the sectors for which the estimated parameters deviate strongly from one, the value 
implicitly chosen when taking averages. The results for “transport services” (17), however, shows 
that deviations exceeding 10% can also occur for sectors for which the parameter deviates only 
modestly (1.71) from one. This property is due to the matricial nature of the decomposition at 
hand. Consequently, a different estimated time path for the final demand for commodities 
produced by sector i can well affect the contribution of changes in final demand as assessed for 
sector j. If the results are added over sectors, the most marked deviation from the decomposition 
using averages is found for the ∆L effect. This results carries over from deviations in relative 
terms to deviations in its absolute value. 

The results contained in column (9) are similar to those in (5), except that another 
observation for the final demand vector was incorporated in the estimation procedure. This 
clearly had impacts on the estimated 

if
θ . In five cases, an estimate below one in column (5) 

                                                 
22  The parameters relating to the determinants for which no additional information was used (the elements of the 

vector θu and the matrix ΘL) were set equal to one. As mentioned before, this implies that we assume a linear 
path for these determinants. 
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turned into an estimate above one after including the final demand levels for 1986. The most eye-
catching change was found for sector 6, “metallic products”, for which the estimated value is 6.71 
now, as opposed to 0.30 before. Another interesting case is sector 14 “construction”, for which 
the incorporation of more information yielded a switch from an extreme value for the parameter 
(0.00) to a value indicating an almost linear path (0.90). For the majority of sectors, however, the 
changes are relatively minor. The decomposition results in columns (10) to (12) show percentage 
differences between the respective contributions found with additional information for two years 
and for one year. With regard to the ∆u effect, the most substantial changes are found for sectors 
9 and 14, “transport equipment” and “construction”, respectively. For these two sectors, the 
difference between the contributions of this effect exceeds 10 percent. Concerning the ∆L effect, 
only one sector fulfills this admittedly rather arbitrary criterion for a change to be ‘exceptional’. In 
sector 2, “energy”, the difference between the contributions estimated using averages and the PB 
technique becomes much smaller if the latter method is applied with information not only for 
1990, but also for 1986. With respect to the ∆f effect, four sectors yield differences that exceed 
10 percent: “other manufacturing” (13), “transport services” (17), “finance and insurance” (19) 
and “real estate and business services” (20). For the economy as whole, a notable result is that the 
inclusion of more additional information hardly affects the contribution of the effect of the 
determinant for which more information was included. The contribution of the other two effects 
changed more strongly. In both cases, the absolute size of the effects tend to be closer to zero 
than suggested by the use of contributions averaged over traditional decomposition formulae.        

      
6.b Incorporating information from variables correlated to a determinant 

As we explained in the previous section, additional information for other variables than the 
determinants can also be incorporated in the PB method, provided that this information 
concerns intermediate periods. We will illustrate this by using Spanish data on wages per unit of 
output (vector r), a variable that is expected to be correlated quite strongly to the determinant u, 
labor costs per unit of gross output. The data on r were taken from INE (1999). Our sample of 
42 pairs (21 for 1980 and 1994 each) indicated a high correlation coefficient of 0.976.23 We 
constructed 95%-confidence intervals for the elements of u in 1986 (equation (46)), using 
information on the wage costs per unit of gross output for that year taken from INE (1987). 
Next, we used the upper and lower bounds of these intervals to generate upper and lower bounds 
for the estimated parameters 

kuθ . The parameters for which no additional information was 
included (the LΘ matrix and fθ vector) were all set equal to 1. The results are presented in Table 
2. 
 

                                                 
23  The estimated equation reads as follows: )(099.1030.0)( trtu kk += . The t-statistics are 3.48 and 28.72 for 

the interecpt and the slope parameters, respectively. The standard error of the equation is 0.026 and R2 is 0.95. 
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Table 2: Decomposition results for case with additional information for a variable 
correlated to one of the determinants.* 

 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Sector ∆ca ∆u eff ∆L eff ∆f eff low
uk

θ̂ high
uk

θ̂ ∆u eff ∆L eff ∆f eff

    low high low high low high
1 24.2 -193.0 105.9 111.4 0.19 0.69 2.8 -15.5 -14.3 3.8 -13.3 1.3
2 -44.7 -132.6 35.2 52.7 0.92 ∞ -5.3 -5.0 0.3 -6.0 -9.3 -12.7
3 53.2 -45.8 -76.0 175.0 0.00 0.00 -7.2 -11.9 -2.1 -2.8 -4.6 -2.8
4 42.5 -167.7 56.8 153.5 0.00 0.00 1.7 -3.4 -7.1 2.6 -1.1 0.9
5 261.5 -163.5 104.1 320.9 0.00 0.00 -21.6 -29.6 -4.6 3.0 -13.6 -12.0
6 130.0 -80.1 41.5 168.6 0.00 0.00 -12.4 -4.3 -9.1 -2.9 -3.6 -1.3
7 26.5 -122.5 49.8 99.2 0.00 0.00 0.3 -8.6 -8.0 3.2 -6.6 -1.2
8 216.6 -267.8 72.1 412.4 0.00 0.08 3.5 -34.5 -3.8 5.2 -22.2 1.4
9 232.0 -403.8 32.9 602.9 0.50 0.75 -6.9 -16.7 -15.3 -8.3 -10.3 -4.2

10 228.4 -15.5 98.6 145.3 0.00 1.03 3.0 -11.7 -0.4 -0.4 -0.9 0.6
11 249.5 -141.3 58.4 332.4 0.00 0.32 -9.9 -22.3 2.6 2.6 -9.9 -4.7
12 108.2 -74.4 86.5 96.1 0.00 0.00 -4.0 -15.7 -4.9 2.6 -7.7 -5.5
13 -77.9 -156.7 39.4 39.4 0.01 0.22 -2.0 2.4 -3.1 -9.0 10.8 6.9
14 570.1 9.7 53.4 506.9 ∞ ∞ 17.1 17.1 -4.0 -4.0 0.1 0.1
15 527.0 -169.0 235.9 460.2 0.00 0.00 -9.6 -15.8 -3.9 0.5 -4.9 -3.8
16 163.6 -36.7 35.7 164.6 0.00 ∞ 16.0 -15.3 0.9 0.9 -2.6 3.4
17 359.7 -463.5 506.6 316.6 0.00 0.02 -10.7 -25.5 -11.2 0.8 -19.3 -15.9
18 105.8 83.5 -111.8 134.1 0.00 0.08 -1.1 1.4 8.8 6.0 4.1 8.1
19 265.1 -424.8 525.9 164.0 0.00 0.02 -1.4 -16.4 -12.3 -2.7 -4.6 3.4
20 388.5 121.3 172.7 94.4 0.00 0.76 -7.1 5.7 -3.3 3.5 -1.3 2.9
21 3090.6 343.9 258.2 2488.6 ∞ ∞ 25.8 25.8 -4.2 -4.2 -4.4 -4.4

Total 6920.4 -2500.4 2381.6 7039.0 -9.3 -25.2 -8.4 -0.5 -6.8 -3.4
* Columns (1-5) are identical to columns (1-5) in Table 1, but are presented again for ease of reference. Columns 

(6-12) present %-differences between contributions obtained by the PB method and contributions obtained by 
calculating averages over traditional decomposition formulae (the latter are used as base values). 

a Columns (2-4) do not always add up to the numbers in column (1) due to rounding.  

 
The lower and upper estimates for the parameters that characterize the time paths indicate that 
extreme paths were found very often. For a number of sectors, one of the boundaries of the 
confidence interval indicates an extreme path, while the opposite boundary suggests a path that is 
strictly inside the rectangle. In general, the parameter estimates are very small. The zero estimates 
outnumber the infinity estimates, and the remaining estimates are generally below 1. Due to the 
strong correlation between the determinant u and the variable r for which we have information, 
the confidence interval for the path parameters turn out to be narrow. The most remarkable 
exception is sector 16, “restaurants, hotels, etc.”, for which the additional information does not 
narrow the confidence interval at all. 

The implications for the contributions of the respective determinants of using this kind of 
additional information in the PB approach are documented in columns (7-12) of Table 2. These 
columns indicate the relative differences between these results and those obtained by taking 
averages over traditional decomposition formulae, expressed in percentages. Clearly, the 
differences are sometimes sizeable. At the level of single sectors, differences of more than 20% 
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are encountered. The differences between the results obtained by using the set of lower 
boundaries and the results obtained by using the upper boundaries is often quite small, but not 
always. Such substantial differences are especially prominent in cases where one of the bounds 
characterizes a polar path, while the other does not. Examples are sectors 8 (“office equipment”), 
11 (“textiles and clothing”) and 17 (“transport services”). Another interesting feature concerns 
sectors for which the lower and upper bounds are identical to each other. In some cases, these 
extremely narrow confidence intervals yield identical contributions for the lower and upper 
bound values. Examples are sectors 14 (“construction”) and 21 (“other services”). In other cases, 
such as sectors 5 (“chemicals”) and 6 (“metallic products”), the results deviate significantly. The 
differences between these two sets of cases are due to the matricial nature of the decomposition 
at hand. The contributions depend on all θ parameters and changes in the determinants of all 
sectors. In most empirical input-output studies, most sectoral effects are mainly caused by 
intrasectoral changes, unless the sector considered is relatively small. Hence, it is not very 
surprising that equality of parameters for the two largest sectors in terms of the change in labor 
costs  (sectors 14 and 21) implies equality of the contributions for these sectors, while stability of 
parameters for much smaller sectors like (5) and (6) does not preclude substantial differences in 
the relative sizes of the contributions for these sectors. 

It should be kept in mind that we only present results for the sets of parameters that contain 
lower bounds for all sectors and upper bounds for all sectors. Of course, nothing prevents true 
parameter values to be close to the lower bounds for some sectors and close to the upper bounds 
for others. It might well be that some contributions would not be bounded by the levels implied 
by the results presented in Table 2. More advanced statistical analysis is required to study this 
issue in depth. 

In this section, we analyzed empirically how the incorporation of two specific kinds of 
additional information into the PB approach affect results for a sectoral labor costs SDA for 
Spain in the period 1980-1994. We would like to stress that we could also have opted for 
incorporation of the two types of information simultaneously. This would not involve a more 
complex decomposition methodology. The only reason we did not embark on such an endeavor 
relates to limited space.          
 
 
7. Conclusions 
 
Traditional SDA suffers from the “non-uniqueness” problem. Since many decomposition 
formulae are equally valid from a theoretical point of view, the empirically often substantial 
differences in outcomes noted by Dietzenbacher & Los (1998) pose a serious problem. Most 
often, the problem of choosing a specific formulae is avoided by computing averages over (a 
subset of) formulae. This paper does not challenge the theoretical equivalence of decomposition 
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formulae but proposes a methodology using Maximum Entropy econometrics to select the 
decomposition formula that provides an optimal ‘fit’ to additional empirical information. 

The point of departure is a class of monotonic time paths for variables, which led us to label 
our method the “path based” (PB) method. It was shown that taking the average over all 
traditional decomposition formulae is equivalent to one specific member of this class, i.e. the 
linear path. Next, we showed how the parameters that characterize the paths can be estimated, 
even if the available data is very limited. If information about the values of the determinants 
contained in the SDA is completely absent, the estimation procedure yields the linear path. If 
some information is available for a period between the initial period and the final period of the 
analysis, the selected path is a different one. In some cases, the selected path corresponds to 
paths that are implicitly assumed by specific traditional decomposition formulae. Together, the 
estimated parameters define a decomposition formula. From an empirical point of view, this 
formula is to be preferred over other decomposition formulae that can be constructed by means 
of the monotonic times paths considered. 

We applied the methodology to quantify the contributions of three determinants of changes 
in sectoral labor costs in Spain between 1980 and 1994, i.e. labor costs per unit of gross output, 
input coefficients and final demand levels. Two types of additional information were considered. 
First, the actual levels of final demand for one or two intermediate years, and second, the levels 
of sectoral wage costs per unit of output in an intermediate period. These wage costs are used as 
a variable that correlates with one of the determinants, the labor costs per unit of gross output. 
The results indicate that the use of additional information in the PB approach can well yield 
results that differ substantially from the mean over all traditional decomposition formulae, or 
equivalently, the linear path. For some sectors and determinants, the differences amount to more 
than 10%. Differences of this size lead us to believe that the PB method provides an interesting 
alternative to computing averages over decomposition formulae.  

A couple of challenges remain to be solved, however. In a considerable number of cases, the 
additional information did not fit the class of monotonic paths we defined. We opted for a rather 
pragmatic solution if the value of a determinant in an intermediate period exceeded the values in 
both the initial and the final period (or if it was lower than both), which implies non-
monotonicity. We would of course prefer an approach in which non-monotone paths could be 
estimated. More research should be done in this respect, because a more general class of time 
paths would complicate the construction of the constrained maximization problems characteristic 
of maximum entropy estimation procedures. It could also be interesting to see whether 
estimation results would change if we would estimate the parameters in a way that takes the 
continuous time character of the temporal paths explicitly into account. In this paper, we do 
implicitly assume that final demand levels are constant over a year, which is not really in line with 
the continuous nature of the temporal paths considered. This seems to be a very ambitious task, 
however.    
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Another challenge is the application of the PB principle to another type of structural 
decomposition analyses. In this paper, we only considered additive decomposition forms, which 
quantify contributions of changes in determinants to differences in values between final and initial 
periods. Recently, multiplicative decomposition forms have become increasingly popular. They 
quantify contributions of changes in determinants to ratios in values between final and initial 
periods. Despite the difference between the two types of decomposition, they both suffer from 
the non-uniqueness problem. Hence, it could be worthwhile to pursue a PB alternative to the 
(geometric) averages over multiplicative decomposition formulae that are mostly used to 
circumvent the problem.          
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Appendix A: Construction of Data for Empirical Illustration 
 
This appendix briefly depicts the main sources of information consulted for the empirical study 
in Section 6, as well as the manipulations we had to carry out before we could apply the 
decomposition analysis to changes in sectoral labor costs in Spain. The original tables for 1980 
and 1994 were inconvenient in that they were not directly comparable in several respects, such as 
their sectoral classification, the prices they were expressed in and the methodology used for their 
construction. These features will be explained in more detail below. 

The first source of the lack of homogeneity in these two tables is due to the fact that the 
original 1980 table does not include Value Added Tax (VAT), while the table for 1994 does. The 
Spanish Statistical Institute (INE) published a series of harmonized input-output tables for 1964 
to 1991 (INE, 1999) that were homogenized in such a way that they all include VAT. We used 
the input-output table of 1980 as well as the final demands of 1986 and 1990 (as additional 
information in Section 6) from this source. 

The second problem concerned the different sectoral classifications of the input-output 
tables. The 1980 table specified 30 sectors, whereas in the 1994 table as many as 57 sectors were 
distinguished. Aggregation led to a common classification that discerns 21 sectors (see Table 
A.1), for which price deflators were available (see below). Especially with respect to services 
sectors, we had to aggregate rather rigorously.24 

                                                 
24  Details can be found in Fernández (2004, pp. 54-60).  
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Table A.1: Sector classification and aggregation scheme 
 

Sector Name 
Sectors in original  
table for 1980 

Sectors in original table for 
1994 

1 Agriculture 01 1 
2 Energy 06 2+3+4+5+6+7+8+9+10+11
3 Minerals and mining products 13 12+13 
4 Non-metallic products 15 14+15+16+17 
5 Chemical products 17 18 

6 Metallic products excepting 
transport equipment  

19 19 

7 Machinery for agriculture and 
industry 

21 20 

8 Office equipment, measuring 
equipment and others 

22+25 21+22 

9 Transport equipment 28 23+24 
10 Food, drinks and tobacco 36 25+26+27+28+29 
11 Textiles, leather and clothing 42 30+31 
12 Paper and derived products 47 33+34 
13 Industries not elsewhere classified 48+49 32+35+36 

14 Building materials and 
construction 

53 37 

15 Commerce an repairing services 56 38+39 
16 Restaurants, hotels and cafes 59 40 
17 Transport services 611+613+63+67 41+42+43+44+45 
18 Communications 69 46 
19 Finance and insurance 71 47+48 

20 Real estate and services to 
companies 

73+75 49+50 

21 Other services 77+79+86 51+52+53+54+55+56+57 
 
The final source of incomparability is related to prices. As a matter of fact, the tables were 
expressed in current prices. Since a good intertemporal comparison required us to remove any 
distortions caused by changes in relative price levels rather than changes in quantities of required 
inputs, we had to apply a deflation procedure. A series of implicit deflators has been computed 
employing data from the information of sectoral Gross Values Added at market prices, available 
for several years (INE, 1999). The series were published expressed in current prices (gvacump) as 
well as in constant prices of 1986 (gvacomp). This information was used to obtain a deflator for 
every sector, although it is an admittedly crude procedure. The mathematical expression for these 
implicit deflators (for sector i) is 
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Therefore, the variables of the input-output tables could be expressed in 1986 prices employing 
i
td 86,  as deflator from the expression 

 

i
t

t
ijd

ij d
q

q
86,

=  (A.2)

 
where d

ijq can denote intermediate deliveries, labor costs or final demand in 1986 prices and t
ijq  is 

this same flow in current prices. This procedure is applied to the values in the 1994 input-output 
table (INE, 1998), as well as to the 1990 final demands (INE, 1991) used as a source of additional 
information in Section 6. We did not need to apply the same to the 1980 input-output tables, 
since the Spanish national statistical agency published this table already in 1986 prices (INE, 
1999). Taking as reference an intermediate period like 1986 implies that the adjustments in the 
prices are smoother than if 1980 or 1994 had been taken as the base instead. 
 
 


