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1. INTRODUCTION 

A major obstacle in regional economic analysis and empirical economic geography is the 

lack of consistent, reliable regional data, especially data on interregional trade and inter-industrial 

transactions. Despite decades of efforts by regional economists, data analogous to national input-

output accounts and international trade accounts, which have become increasingly available to the 

public today, still are generally not available even for well defined sub-national regions in many 

developed countries. Therefore, economists have had to develop various non-survey and semi-

survey methods to estimate such data. In the earlier years, quotient based and regional purchase 

coefficient based non-survey methods were popular but lacked logical and theoretical structures, 

and so have been deemed as ‘deficiency methods’ (Jensen, 1990).  

Since the 1980’s, various constrained matrix-balancing procedures have become 

increasingly popular for estimating unknown data based on limited initial information subject to a 

set of linear constraints. Attempts have been made to estimate regional and interregional 

transactions in a unified national accounting system of economic regions. Batten (1982) extended 

earlier work by Wilson (1970) and laid out an optimization model based on information theory 

and linkages between national and regional input-output accounts to simultaneously estimate 

interregional deliveries in both intermediate and final goods.1 Batten and Martellato (1985) 

established a simple hierarchical relationship among five classical models associate with authors 

such as Isard, Chenery and Leontief that address interregional trade within an input-output 

system. They found those models could be reduced to a statistical estimation problem based on 

varying degrees of available interregional trade data and demonstrated that the net effect of 

additional data or additional theoretical assumptions is similar in reducing the number of 

unknown variables in the underdetermined estimation problems. They also demonstrated such 

estimation problems are best undertaken with a closed system, i.e. when all the geographic 

components of the national or state data are estimated simultaneously. Following this philosophy, 

Byron et al (1993), Boosma and Oosterhaven (1992) and Trendle (1999) have found evidence 
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that the additional accounting constraints imposed by such a closed system are useful as a 

checking device on individual cell values and so improve estimation accuracy.  Golan, Judge and 

Robinson (1994) further generalize such an estimation problem to an ill-posed, underdetermined, 

pure inverse problem that can be formulated in an optimization context that involves a nonlinear 

criterion function and certain adding up and consistency constraints.  They also show that under 

such a framework, it is easy to take account of whatever initial information and data that exist 

through the specification of additional constraints. However, they did not pay attention to how 

such procedures could be used in a multi-regional context and thus the potential gain from 

implementing the procedure in a complete national system of economic regions. 

Methods for matrix balancing can be classified into two broad classes -- bi-proportional 

scaling and mathematical programming. The scaling methods are based on the adjustments of the 

initial matrix to multiplying its row and column by positive constants until the matrix is balanced. 

It was developed by Stone and other members of the Cambridge Growth Project (Stone et al., 

1963) and is usually known as RAS. The basic method was originally applied to known row and 

column totals but had been extended to cases where the totals themselves are not known with 

certainty (Senesen and Bates, 1988; Lahr, 2001). Mathematical programming methods are 

explicitly based on a constrained optimization framework, usually minimizing a penalty function, 

which measures the deviation of the balanced matrix from the initial matrix subject to a set of 

balance conditions.    

The scaling methods such as RAS have been one of the most widely applied 

computational algorithms for the solution of constrained matrix balancing problems. They are 

simple, iterative, and require minimal programming effort to implement. However, as pointed out 

by Ploeg (1982), they are not straightforward to use when including more general linear 

restrictions and when allowing for different degrees of uncertainty in the initial estimates and 

restraints. They also lack a theoretical interpretation of the adjustment process.2 Those aspects are 

crucial for an adjustment procedure to improve the information content of the balanced estimates 
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rather than only adjusting the initial estimates mechanically. Mohr, Crown and Polenske (1987) 

discussed the problems encountered when the RAS procedure is used to adjust trade flow data. 

They pointed out that the special properties of interregional trade data increase the likelihood of 

non-convergence of the RAS procedure and proposed a linear programming approach that 

incorporates exogenous information to override the unfeasibility of the RAS problem. 

In recent years, more and more researchers have tended to formulate constrained matrix 

balancing problems as mathematical programming problems (Ploeg, 1988, Nagurney and 

Robinson, 1989, Bartholdy, 1991, Byron et al., 1993), with an objective function that forces 

"conservatism" on the process of rationalizing X from the initial estimate X . The theoretical 

foundation for the approach can be viewed from both the perspectives of mathematical statistics 

and information theory and the solution of RAS is equivalent to constrained entropy minimization 

with fixed row and column totals, as shown by Bregman (1967) and McDougall (1999), thus can 

been seen as a special case of the optimization methods.3   

  Another important advantage of mathematical programming models over scaling 

methods is in its flexibility. It allows a wide range of initial information to be used efficiently in 

the data adjustment process. Additional constraints can be easily imposed, such as allowing 

precise upper and lower bounds to be placed on unknown elements, inequality conditions, or 

incorporating an associated term in the objective function to penalize solution deviations from the 

initial row or column total estimates when they are not known with certainty. Therefore, it 

provides more flexibility to the matrix balancing procedure. This flexibility is very important in 

terms of improving the information content of the balanced estimates as shown by Robinson, 

Cattaneo and El-said (2001).  

A Mathematical programming approach also permits one to routinely introduce relative 

degrees of reliability for initial estimates. The idea of including data reliability in matrix 

balancing can be traced back over half a century to Richard Stone and his colleagues (1942) when 
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they explored procedures for compiling national income accounts. Their ideas were formalized 

into a mathematical procedure to balance the system of accounts after assigning reliability 

weights to each entry in the system. The minimization of the sum of squares of the adjustments 

between initial and balanced entries in the system, weighted by the reliabilities or the reciprocal 

of the variances of the entries is carried out subject to linear (accounting) constraints. This 

approach had first been operationlized by Byron (1978) and applied to the System of National 

Accounts of the UK by Ploeg (1982, 1984). Zenios and his collaborators (1989) further extended 

this approach to balance a large social accounting matrix in a nonlinear network-programming 

framework. Robinson and his colleagues (2001) provided a way to handle measurement error in 

cross entropy minimization via an error-in-variables formulation. Although computational burden 

is no longer a problem today, the difficulty of estimating the error variances in a large data set by 

such approaches still remains unsolved. 

The objectives of this paper are threefold: first to develop and implement a formal model 

to estimate inter-regional, inter-industry transaction flows in a national system of economic 

regions based on incomplete statistical information at the regional level. Second to evaluate the 

model’s performance against data from the real world. And finally to discuss the issues when 

applying this modeling framework to estimate a multi-regional IO account containing well-

defined sub-regions.   

The paper is organized as follows. Section two specifies the modeling framework and 

discusses its theoretical and empirical properties. Section three tests the model by using a four-

region, ten-sector data set compiled from a global database documented in McDougall, Elbehri, 

and Trong (1998). Test results from seven experiments are evaluated against eight Mean Absolute 

Percentage Error indexes. Section four discusses some empirical issues involved in applying such 

a framework to data from a national statistical system. The paper ends with conclusions and 

direction for future research.  
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2. MATHEMATICAL PROGRAMING MODELS FOR ESTIMATING INTERRGIONAL 
TRADE AND INTER-INDUSTRIAL TRANSACTION FLOWS 
 

Our model builds upon earlier work by Wilson (1970) and Batten (1982) with two 

important departures. First, it explicitly incorporates interregional trade flow information into 

both the accounting framework and initial estimates of an Inter-Regional Input-Output (IRIO) 

account. We find this greatly enhances the accuracy of estimation results. Second, the IRIO 

account is simplified to a Multi-Regional Input-Output (MRIO) account and estimated first, 

which substantially reduces the possibility of introducing spurious information in lieu of survey 

data and also diminishes the "dimension explosion" problem in real world applications. 

General Assumptions and Mathematical Notations 

Consider a national economy consisting of N sectors that are distributed over G 

geographic regions. The sectors use each other’s products as inputs for their own production, 

which is in turn used up either in further production or by final users. Each region exports some 

of its products to other regions and some to other nations. They also import products from other 

regions and nations to meet their intermediate and final demand. Assuming a predetermined 

location of production that defines the structure of the national economic system of regions, the 

deliveries of goods and services between regions are determined by imbalances between supply 

and demand inside the different regions.  

In this economy, a comprehensive account of annual product and payment flows within 

and between regions is summarized by an IRIO table. The notation used to describe the elements 

of a commodity based IRIO table and its relationship to both a national I-O table and to a MRIO 

table are as follows (expressed in annual values): 

Regional gross output, final demands, value added, and international trade: 

r
ix = Gross output of commodity ‘i’ in region ‘r’ 

r
iv  = Value added by production of commodity ‘i’ in region ‘r’ 
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r
iy = Final demand (excluding exports) of commodity ‘i’ in region ‘r’ 

r
ie  = Exports of commodity ‘i’ from region ‘r’ to international market 

r
im  = Imports of commodity ‘i’ to region ‘r’ from international market 

Interregional and international deliveries: 

sr
ijz  = Deliveries of domestic commodity ‘i’ produced in region ‘s’ for use by sector ‘j’ in 

region ‘r’ 

sr
iky = Deliveries of domestic commodity ‘i’ produced in region ‘s’ for type ‘k’ final use 

in region ‘r’ 

r
ijm  = International imports of commodity ‘i’ for use by sector ‘j’ in region ‘r’ 

r
ikm = International imports of commodity ‘i’ for type ‘k’ final use in region ‘r’ 

National Input-Output table (IO): 

ix  = Gross domestic output of commodity ‘i’ 

iy  = Final domestic demand (excluding exports) of commodity ‘i’ 

ie  = International exports of commodity ‘i’ from domestic origins of movement 

iv  = Value added by domestic production of commodity ‘i’ 

ijz  = Intermediate demand of commodity ‘i’ by sector ‘j’ 

im  = Imports of commodity ‘i’ from international origins of movement 

Aggregation variables for linkage to a MRIO table: 

sr
id = Deliveries of domestic commodity ‘i’ from region ‘s’ to region ‘r’   

r
ijz • = Intermediate demand of commodity ‘i’ by sector ‘j’ in region ‘r’  

IRIO Account and Estimation Model 
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 Using notations defined above, the following two accounting identities describe the 

relationship among elements of each row (i,r) and column (j,s) of the IRIO table for a static 

national system of economic regions:  
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At each given year equations (1) and (2) must hold for all i,j ∈ N, k ∈ H and s,r ∈ G. In addition, 

this IRIO account has to be consistent with a national IO account and related regional economic 

statistics, which requires the following accounting identities also to be satisfied each year:   
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national system of regions. The economic meanings for each of the 10 equations are 

straightforward. Equation (1) shows that total gross output of commodity “i” in region “r” is 

delivered to domestic intermediate and final users in all regions (including itself) within the 

nation and what is not delivered to domestic users is exported to international market. Equation 

(2) defines the value of gross output for commodity “j” in region “s” as the sum of value from all 

of its intermediate (domestic plus imported) and primary factor inputs. Equation (3) indicates that 

each regions’ total final demand for commodity “i” must be met by final goods and services 

delivered from all regions within the nation plus imports from other nations, while Equation (4) 

states each regions’ foreign imports of intermediate and final goods and services have to equal the 

region’s total imports from international markets. Equations (5) to (10) are simply the facts that in 

a national system of regions, sums of all the region’s economic activities must equal the totals 

from the national account. 

Assume a national input-output table always exists. There also exists superior statistical 

data for each regional sector on gross outputs and associated value added, total final demands, 

and international exports and imports ( , , , , ). Then all variables on the right side of 

equations (1) to (10) listed above can be treated as parameters. With this information, we seek to 

estimate an IRIO table containing G

r
ix r

iv r
iy r

ie r
im

×G different intermediate transaction tables (Zrs, r,s∈G), 

2×G different international transaction tables (MIr, MYr,r∈G), and G×G different final demand 

tables (Yrs, r,s∈G). 

To formulate a mathematical programming model to this problem, one can construct 

either informed (e.g., survey based) or uninformed (e.g., data pooling) initial estimates for each 

endogenous element of the IRIO table— sr
ijz , sr

iky , r
ijm , and r

ikm —along with reliability measures 

to weight each initial estimate — , , , and , and specify a cross-entropy 

(Harrigan & Buchanan, 1984, Golan et al., 1994) or a quadratic objective penalty function subject 

to equations (1) to (5) as constraints.

sr
ijwz sr

ikwy r
ijwm r

ikwm

 4 In this context, “uninformed” initial estimates are derived 
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in the absence of information about variations in row or column structures in the target account. 

In such cases, one typically adopts proportional allocation methods and assigns weights in these 

same proportions. Applying “informed” initial estimates requires the development of a maximum 

concordance among data sources that support initial estimates. Another words, an informed 

mathematical programming calibration of an IRIO account requires a classification of sectors and 

regions that allows using the greatest amount of primary information from multiple sources that 

collectively provide consistent descriptions of all row or column structures in the target account. 

Ideally, the primary information sources include statistical measures of reliability that can be used 

to weight these initial estimates.   

For example, the quadratic objective penalty function for this mathematical programming 

model is as follows:  
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A solution to this quadratic programming model provides a complete set of estimates for 

a full-fledged IRIO table with imports endogenous (Miller and Blair, 1985, Isard, et al. 1998). It 

is similar in many aspects with the interregional accounting framework proposed by Batten 

(1982) two decades ago, who used a entropy formulation based on an uninformed data pooling 

approach for initial estimates where all weights are equal to one. As we will show later in this 

paper, this type of model becomes operational and provides better empirical estimation results on 

interregional shipments only when interregional trade flow information is explicitly incorporated 

into both the initial estimates and the underlying accounting framework. 

In practice, calibration of such an account directly is hampered by two limitations. First, 

as combinations of sectors and regions increase, the dimension of this model becomes very large 
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even for a moderate account size. One quickly encounters the problem know as dimension 

explosion. Related to this, the data requirements of an IRIO account are daunting. The account 

requires not only knowing the origin and destination of all product flows, but also every 

intermediate and/or final use must be specified for all such flows. Few national statistical systems 

can provide such detailed statistics to support the development of informed initial estimates. 

Therefore, it is not surprising that uninformed initial estimates were used in Battan’s approach. 

MRIO Account and Estimation Model 

The IRIO account described in the previous section can be easily reduced to a MRIO 

account by forming aggregations of ,  and  as follows:sr
ijz sr

iky r
ijm 5   
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Inserting Equation (13) into Equation (2) results in Equation (15): 
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It is easy to show that sum Equation (13) by j over N plus Equation (3) equals sum of 

Equation (12) by s over G plus Equation (4). This linear combination of Equations (3), (4), (12) 

and (13) produces Equation (16)  
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Equation (14) indicates that total gross output of commodity “i” in region “r” is delivered to 

domestic regions (including its own) and whats left over is exported to other nations. No 

indication about the type of use is given. Equation (15) indicates the value of gross output of 

commodity “i” in region “r” is attributed to the value of all sector ‘i’ intermediate purchases 

(regardless of origin) and to the value of services from sector ‘i’ primary factor inputs. Equation 

(16) indicates total intermediate and final requirements for commodity ‘i’ in region ‘r’ must be 

met by deliveries from all regions (including from its own) within the nation plus imports from 

other nations. Thus, equations (14) – (17) plus equations (6) – (10) together also consistently 

defines an accounting framework for the national system of economic regions, conventionally 

called a MRIO table in the literature (Miller and Blair, 1985, Isard, et al. 1998). Such an account 

stops short of assigning specific intermediate or final uses for inter/intra regional product flows, 

but guarantees that these flows exactly meet all regional demands. Further, because this 

alternative formulation (Equations (14) to (17)) is mathematically equivalent to equations (1) to 

(5), a solution to the MRIO account will also be consistent with the IRIO account, so that can be 

seen as an important intermediate step towards estimating a full-fledged IRIO account. Needless 

to say, the MRIO account has a much smaller dimension thus significantly reduces the data 

required and computational difficulties to empirically estimate interregional trade flows and inter-

industrial transactions.6 The smaller information requirements make it more plausible to develop 

an objective function with informed initial estimates and reliability weights.  The use of informed 

initial estimates is another major motivation underlying this alternative formulation.   

To demonstrate, suppose, as before, that statistics exist for each regional sector on the 

gross outputs and value added ( and ), the origin of exports and destination of imports r
ix r

iv
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( and ), and the final regional demands ( ).  The above MRIO estimation problem can be 

formally stated as follows: 

r
ie r

im r
iy

Given a n × g × g non-negative array D  = { sr
id } and a n × n × g non-negative array Z = { r

ijz • }, 

determine a non-negative array D ={ } and a non-negative array Z = { } that is close to sr
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D and Z such that equations (14) to (17) are satisfied 

, where s ∈ G denotes the shipping regions, r ∈ G denotes the receiving regions, and i, j ∈ N 

denotes the make and use sectors respectively. 

In plain English, the estimation problem is to modify a given set of initial inter-regional 

and inter-industrial transaction estimates to satisfy the above four known accounting constraints. 

With the account structure know and with predefined parameter values, what remains is the 

formulation of a criteria for changing the initial estimates in the account to conform to the know 

linear accounting constraints. As introduced in equation (11), many have proposed using a 

mathematical programming approach that employs an objective function which penalizes the 

deviations of the estimated array D and Z from the initial array D  and Z . Two types of 

alternative functional forms are often used. One is the Quadratic function similar to equation (11): 
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Properties of the Estimation Model   

There are desirable theoretical properties of the estimation model outlined above. Firstly, 

it is a separable nonlinear programming problem subject to linear constraints. The entropy 

function is motivated from information theory and is the objective function underlying the well-

known RAS procedure with row and column totals known with certainty (Senesen and Bates, 
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1988). It measures the information surprise contained in D and Z given the initial estimates D  

and Z . The quadratic penalty function is motivated by statistical arguments. There are different 

statistical interpretations underlying the model by choices of different reliability weights 

and . When the weights are all equal to one, solution of this model gives a constrained 

least square estimator. When the initial estimates are taken as the weights, solution of the model 

gives a weighted constrained least square estimator, which is identical to the Friedlander-solution, 

and a good approximation of the RAS solution. When those weights are proportional to the 

variances of the initial estimates and the initial estimates are statistically independent (the 

variance and covariance matrix of 

sr
iwd r

ijwz •

D  and Z are diagonal), the solution of the model yields best 

linear unbiased estimates of the true unknown matrix (Byron, 1978), which is identical to the 

Generalized Least Squares estimator if the weights are equal to the variance of initial estimates 

(Stone, 1984, Ploeg, 1984). Furthermore, as noted by Stone et al. (1942) and proven by Weale 

(1985), in cases where the error distributions of the initial estimates are normal, the solution also 

satisfies the maximum likelihood criteria.   

Secondly, the quadratic and entropy objective functions are equivalent in the 

neighborhood of initial estimates, under a properly selected weighing scheme.  By taking second 

order Taylor expansion of equation (18) at point ( sr
id , r

ijz • ) we have 
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This is the quadratic function (18) plus a remainder term R.  As long as the posterior estimates 

and the initial estimates are close and the initial estimates are used as reliability weights, the term 

R will be small and the two objective functions can be regarded as approximating one another. 7  

 14



 Thirdly, as proven by Harrigan (1990), in all but the trivial case, posterior estimates 

derived from entropy or quadratic loss minimand will always better approximate the unknown, 

true values than do the associated initial estimates. In this framework, information gain is 

interpreted as the imposition of additional valid constraints or the narrowing of bounds on 

existing constraints as long as the true but unknown values belong to the feasible solution set.  

This is because adding valid constraints or further restricting the feasible set through the 

narrowing of interval constraints cannot move the posterior estimates away from the true values, 

unless the additional constraints are non-binding (have no information value). Although the 

posterior estimates may not always be regarded as providing a "reasonable" approximation to the 

true value, they are always better than the initial estimates in the sense the former is closer to the 

true value than the later, so long as the imposed constraints are true.8 In other words, the 

optimization process has the effect of reducing, or at least not increasing, the variance of the 

estimates. This property is simple to show by using matrix notation. Define W as the variance 

matrix of initial estimates D , A as the coefficient matrix of all linear constraints. The least 

squares solution (equivalent to the quadratic minimand as noted above) to the problem of 

adjusting D  to D that satisfies the linear constraint, A•D = 0 can be written as: 

(21)    D = (I - WAT(AWAT)-1A) D         

Thus, 

(22)   var(D) = (I - WAT(AWAT)-1A)W = W - WAT(AWAT)-1A)W    

Since WAT(AWAT)-1A)W is a positive semi-definite matrix, the variance of posterior estimates 

will always be less, or at least not greater than the variance of the initial estimates as long as 

A•Dtrue = 0 holds. This is the fundamental reason why such an estimating framework will provide 

better posterior estimates. Imposing accounting relationship’s (6) to (10) and (14) to (17) will 

definitely improve, or at least not worsen the initial estimates, since we are sure from economics 

that those constraints are identities and must be true for any national system of economic regions. 
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Finally, the choice of weights in the objective function has very important impacts on the 

estimation results. For instance, using the initial estimates as weights has the nice property that 

each entry of the array is adjusted in proportion to its magnitude in order to satisfy the accounting 

identities, and that large variables are adjusted more than small variables. However, the 

adjustment relates directly to the size of the initial estimates sr
id and r

ijz •
, and does not force the 

unreliable initial estimates to absorb the bulk of the required adjustment. Furthermore, this 

commonly used weighting scheme (under RAS) can obtain best unbiased estimates provided two 

assumptions are met.  One is that the initial estimates for different elements in the array are 

statistically independent, and the other that each error variance is proportional to the 

corresponding initial estimates. However, those assumptions may not hold in many cases. 

Fortunately, the model is not restricted to use only a diagonal-weighing matrix such as the initial 

estimates. When a variance-covariance matrix of the initial estimates is available, it can be 

incorporate into the model by modifying the objective function as follows: 

(23) )  ( )  - ( + ) - (  ) -  ( =  S          T-1T Z - ZWZZZDDWDDD -1Min     

The efficiency of the resulting posterior estimator will be further improved if the error structure 

of the initial estimates is available, because such a weighting scheme makes the adjustment 

independent of the size of the initial estimates. The larger the variance, the smaller its 

contribution to the objective function, and hence the lesser the penalty for and to move 

away from their initial estimates (only the relative, not the absolute size of the variance affects the 

solution). A small variance of the initial estimates indicates, other things equal, they are very 

reliable data and thus should not change by much, whilst a large variance of the initial estimates 

indicates unreliable data and will be adjusted considerably in the solution process. Therefore, this 

weighing scheme gives the best-unbiased estimates of the true, unknown inter-regional and inter-

industrial transaction value under the assumption that initial estimates for different elements in 

the array are statistically independent. Although there is no difficulty in solving such a nonlinear 

sr
id r

ijz •
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programming problem like this today, the major problem is lack of data to estimate the variance-

covariance matrix associate with the initial estimates. 

Stone (1984) proposed to estimate the variance of r
ijz • as var( r

ijz • ) = ( r
ij

r
ij z •*θ )2, where 

 is a subjectively determined reliability rating, expressing the percentage ratio of the standard 

error to 

r
ij
*θ

r
ijz • . Weale (1989) had used time series information on accounting discrepancies to infer 

data reliability. The similar methods can be used to derive variances associated with those initial 

estimates in our model. 

Despite the difficulties in obtaining data for the best weighting scheme, advantages of 

such a model in estimating inter-regional trade flows and inter-industrial transactions are still 

obvious from an empirical perspective. Firstly, it is very flexible regarding the required known 

information. For example, it allows for the possibility that the region total of output, value-added, 

exports, imports and final demands are not known with certainty. In the real world, these regional 

statistics typically have substantial gaps and inconstancies with the national total. Incorporating 

associated terms similar to D  and Z  in the objective function to penalize solution deviations 

from the initial estimates from statistical sources allows the estimation of those regional totals, 

together with entries in the inter-regional delivery and inter-industrial transaction array. With the 

use of upper and lower bounds, this fact can also be modeled by specifying ranges rather than 

precise values for the linear constraints (14) - (17). In addition, the estimation of D or Z will be a 

special case of the framework when only one set of additional data is available. 

Secondly, it permits a wider variety and volume of information to be brought into the 

estimation process. For example, the ability of introducing upper and/or lower bounds on those 

regional totals is one of the flexibilities not offered by commonly used scaling procedures such as 

RAS. The gradient of the entropy function tends to infinity as and  → 0, and hence sr
id r

ijz •
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restricts the value of the posterior estimates to nonnegative. This is a desirable property of 

estimating inter-regional trade data.9  

Thirdly, the weights in the objective function reflect the relative reliability of a given set 

of initial estimates. The interpretation of the reliability weights is straightforward. Other things 

equal, entries with higher reliability should be changed less than entries with a lower reliability. 

The choice of those weights is also very flexible. They will use the best available information to 

insure that reliable data in the initial estimates are not being modified by the optimization model 

as much as unreliable data. In practice, such reliability weights can be put into a second array that 

has the same dimension and structure as the initial estimates. The inverted variance-covariance 

matrix of the initial estimates is statistically interpreted as the best index of the reliability for the 

initial data. 

Finally, solution of this estimation problem exactly provides the data needed to construct 

a so-called MRIO model. This model was pioneered by Professor Polenske and her associates at 

MIT in the 1970’s (Polenske, 1980), and is still widely used in regional economic impact analysis 

today.  

 

3. EMPIRICAL TEST OF THE MODEL AND EVALUATION MEASURES 

The Testing Data Set 

How does the model specified above perform when applied to data from the real world? 

In order to evaluate the models’ performance, a benchmark data set from the real world is needed. 

Because good interregional trade data is quite rare and very difficulty to obtain in any countries of 

the world, a natural place to find such data sets are existing global production and trade databases 

such as the GTAP (Global Trade Analysis Project) database. For instance, version 4 GTAP 

database contains detailed bilateral trade, transportation, and individual country’s input-output 

data covering 45 countries and 50 sectors (McDougall, Elbehri, and Trong, 1998). For our 

particular purpose, version 4 GTAP database was first aggregated into a 4-region, 10-sector data 
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set. Then three of the four regions (the United States, European Union and Japan) were further 

aggregated into a single open economy which engages in both interregional trade among its 3 

internal regions and international trade with the rest of the world.  We will use this partitioned 

data set as the benchmark for a hypothetical national economy, and attempt to use our model to 

replicate the underlying inter-continental trade flows among Japan, EU and the United Sates as 

well as the individual country’s input-output accounts.  

Experiment Design  

In the first experiment, we do this without use of the region-specific input-output 

coefficients as the situation encountered in the real world, where only the national IO table is 

available to economists (it is the three regions’ weighted average in our experiment and are 

defined as ( ) ( )r
j

r
jjjij

r
ij vxvxzz −×−=• )/(  to make full use of the known information).  Initial 

estimates of interregional commodity flows are from the ‘true’ interregional trade data in the 

GTAP database but was distorted by a normally distributed random error term with zero mean 

and the size of standard deviation as large as 5 times the “true” trade data. The solution from the 

model is compared with the benchmark data set for both the inter-regional shipment and inter-

sector transaction flows. 

 In the second experiment, we use the region-specific input-output coefficients as constant 

in the model. We re-estimate the interregional shipment data as the first experiment, and compare 

the model solution with the benchmark data set for the inter-regional trade data only. 

 In the third experiment, we assume the interregional shipment pattern is known with 

certainty and we use the three region’s weighted average IO coefficients as initial estimates to 

estimate the region-specific input-output accounts. 

 In the fourth experiment, Batten’s model was used to estimate the interregional shipment 

and individual region’s IO flows. In the fifth to the seventh experiments, experiments 1-3 were 

repeated by using the detailed model. Solutions from both models are compared with the “true” 
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interregional trade and inter-sector IO flow data in the aggregated GTAP data set. The 

assumptions, initial estimates and expected model solution are summarized in table 1.   

(Insert Table 1 here) 
 
Measures to Evaluate Test Results 

Each experiment produces a different set of estimates, and it is desirable to know how much each 

set of estimates differs from the true, known data. However, it is difficult to use a single measure 

to compare the estimated results. Since there are so many dimensions in the model solution sets, a 

particular set of estimates may score well on one region or commodity but badly on others. It is 

meaningful to use several measures to gain more insight on the model performance in different 

experiments. Generally speaking, it is the proportionate errors and not the absolute errors that 

matter; therefore, the "Mean Absolute Percentage Error" with respect to the true data will be 

calculated for different commodity and regional aggregations. Consider the following aggregate 

index measure for intra/inter-regional trade flows: 

(24)   
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Alternating the removal of summations over i, s, and r in equation (24) produces MAPE estimates 

on shipments by commodities, shipping regions, and receiving regions respectively. For regional 

intermediate transactions, the aggregate MAPE index is defined as:  
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Alternating the removal of summations over i, j, and r in equation (25) produces MAPE estimates 

on intermediate transactions by inputs, using sectors, and regions respectively. The model and all 
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test experiments are implemented in GAMS and the complete GAMS program and related data 

set are available from the authors upon request.  

Test Results  

 Table 2 summarizes all the eight measurement indexes from the seven experiments listed 

in Table 1. The accuracy of the estimates is judged by their closeness to the true interregional 

trade and individual region’s input–output flows aggregated from the GTAP database. 

(Insert Table 2 here) 

Generally speaking, the model has remarkable capacity to rediscover the true 

interregional trade flows from the highly distorted data.  The estimated shipment data are very 

close to the true data, as judged by the eight MAPE measurements, in all testing experiments 

except the Batten model. Most of the mean absolute percentage errors are about 4-7 percent of the 

true data value, which implies the model has great potential in the application of estimating 

interregional trade flows. In contrast, recovering the individual region’s input-output flows from 

weighted average national values only obtained limited success, indicating national IO 

coefficients in detailed sectors may be the best place to start in building regional IO accounts if 

there is no additional prior information on regional technology or cost structure available.10      

  Comparing estimates from different test experiments, there are several interesting 

observations. First, when there is no additional information that can be incorporated into the 

estimation framework, a more detailed model may not perform better than a simpler model. 

Comparing results from Exp-1 and Exp-5, the more sophisticated model actually brings less 

accurate estimates overall because of additional numbers of unknown variables without additional 

known data. However, as results in Experiments 2-3 and 6-7 show, the estimation accuracy does 

improve by a more detailed model when more useful data become available.  Second, the 

marginal accuracy gained from actual individual regional IO flows is significant in estimating 

interregional trade flows using the detailed model, but very small in the aggregate version. In 

contrast, the marginal value of accurate interregional shipment data is rather small in estimating 
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individual regional IO coefficients under both versions of the model. Finally, Batten’s model 

performed poorly in interregional shipment estimation, but obtained similar estimates on 

individual regional IO flows as our model, providing further evidence that there may be no high 

dependency between individual regional IO coefficients and interregional trade flows. However, 

this is not a firm conclusion because the particular data set used to test the model in this paper 

may be part of the problem. Since the United States, EU and Japan are all large economies, their 

intermediate demands are largely meet by their own production. Therefore, the correlation 

between individual inter-industrial flow and inter-regional shipments may be particularly low.   

    The detailed model only provides better estimates of interregional shipments when 

regional IO data are available, so the aggregate version of the model specified in this paper may 

be the best practitioner’s tool in estimating interregional trade flows because of the lack of sub-

national IO data in the real world. It demands less statistical information and has a smaller model 

dimension, which facilitates the implementation and computation process. 

 

4. IMPLICATIONS FOR APPLYING THE MODEL 

Results in the previous section offer some guidance for applying the framework outlined 

in this paper to real world statistics. It was found that initial estimates of regional commodity 

trade flows based on survey data with very high statistical variability are highly preferable (in the 

experiments) to a widely used non-survey approach for producing initial estimates.11 This finding 

holds promise for opportunities to use other survey data to recover unobserved regional economic 

accounts. It was also found that solving an aggregate account (e.g., a MRIO or MR-SAM) as an 

intermediate step is at least as accurate (in the experiments) as producing a direct solution to a 

detailed account (e.g., IRIO or IR-SAM) when superior data unique to the latter are not widely 

available. This finding is useful when working with regional economic accounts of considerable 

sector and region details. Results also support the product mix approach, whereby the most 
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feasible sector detail for regional gross output estimates are used to derive weighted average 

national technical coefficients for more aggregated regional sectors. 

Statistical systems vary by nation and no one-size fits all rules exist that tell us how to 

seamlessly employ every data-system to best advantage.12 However, there are general guidelines 

for implementing the optimization framework presented in this paper to a large dimension multi- 

regional account. To facilitate discussions of implementation, we assume that a detailed national 

account always exists and regional sector statistics are also available in a variety of details.  Then 

the implementation process may be classified into three broad phases as discussed below. 

Develop Independent Estimates for Major Components of a Multi-regional Account 

It has been stressed as far back as Wilson (1970) that information used to produce 

parameters and initial estimates of a regional economic system should be estimated 

independently. While this produces unbalanced initial accounts, it avoids introducing spurious 

information that can lead to biased estimates (McDougall, 1999). A useful approach is to partition 

the multi-regional account into components that coincide or are related to known statistical 

survey series published regularly in the nation under study. 

For the MRIO account outlined in equations (6) to (10) and (14) to (17), the major 

components are gross regional output ( ), final demand ( ), primary factor payments ( ), 

international trade (  and ), inter-industry transactions ( ) and inter/intra-regional trade 

flows ( ). In many cases, data for several of these components are available from a single 

major statistical survey series—for example, in the United States  and  are available from 

an Economic Census conducted every five years.  Other components, for example , may 

themselves require multiple disparate data sources to compile. While the strategic groupings may 

differ by country, it is likely that for large dimension (N 
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data for individual regional sectors become sparse.   
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When the best available data are not consistent to the model structure, it may be 

necessary to restructure the adding up requirements in the model to accommodate the data. For 

example, in equations (14) and (16) of our model, the accounting identities require data for 

international exports ( ) and imports ( ) on an origin of movement and destination of use 

basis respectively. However, in many countries such as the United Sates, port of entry/exit data 

are far more reliable. Therefore, different formulation of the corresponding accounting identities 

should be used.  

r
ie r

im

For certain elements of the multi-regional account, very often only a purely theoretical 

inference is available to produce informed guesses about the initial estimates. A common 

example is the information about service trade flows within and between regions. In using a 

theory-based alternative to data, a case must be made for a prevailing empirical model that 

calibrates the unobserved activities to some other statistics or available survey data.   

Determine Model Dimensions based on Maximum Concordance Among Different Components    

In compiling different components of the multi-regional account, the volume and nature 

of data available for each component can greatly vary. Detailed and survey based data may be 

obtained on, for example, gross regional output and incomes, but survey data on the inter/intra-

regional trade flows of this output may be far less detailed. Inter-industry transactions may only 

be available at the national level, and international trade data may be very detailed, but based on a 

different product classification system. The notion of conservatism, both in the information 

theoretic sense and in terms of computational burden, should be the primary guiding principal in 

reconciling this information. 

 Robinson et al. (2001) interpret conservatism by the rule of using ‘only, and all’ 

information in the estimation problem. Considering this rule in the present context, the fact that a 

component such as gross regional outputs are available from highly detailed and reliable statistics 

suggests all this information should be used. However, if the associated intra/inter-regional trade 
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flow account has more general product aggregations than the output account, it appears that one is 

faced with an ‘only or all’ decision. Although the specific situation often guides the approach one 

takes, it is worth noting that there are usually many opportunities to introduce all information 

available into the estimation process. 

 In practice, conserving on computational burden may also become an issue. When 

employing a more general estimation framework such as the model presented in this paper, the 

use of iterative techniques that diminish computational burden may not be readily available.13 

Both computer hardware and software available to the researchers may become binding in many 

such instances. For example, access to special solvers or greater programming finesse becomes a 

more prominent issue when computational burdens grow tremendously as model dimension 

increase. In addition, while conventional personal computers have improved dramatically, limits 

on current 32-bit operating systems to manage sufficient memory on PC’s may become a binding 

constraint for very large models. Solutions to these issues can become expensive.   

Adding Additional Constraints to Use All Available Information   

The greatest opportunities to use all relevant information are in the form of additional 

binding linear constraints, beyond the adding up and consistency requirements, on any selected 

groups of variables in the aggregate or detailed model. Information deemed ‘superior’ and that is 

related to any group of elements in either the aggregate or detailed accounts is a candidate for a 

linear constraint. Since both interregional and multi-regional economic accounts are 

comprehensive and detailed, there are many opportunities to introduce such constraints. A few 

general guidelines are notable. 

 Both the detailed and aggregate accounts describe flows of payments and products in the 

form of a matrix with known adding-up and consistency requirements. Any information used to 

formulate new constraints—either equality or inequality linear constraints—can greatly diminish 

the feasible solution set of the calibration procedure. However, new constraints that are non-

binding add no information to the problem, but do increase the computational burdens.   
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 Where and how information is used to formulate constraints depends on many factors. 

For example, the U.S. Government has published state measures of farm productivity that include 

estimates of purchased farm inputs by state for broad input categories. A pro-rated version of this 

data could form the basis for additional linear constraints for agricultural sector I-O flows in the 

model. Other restrictions could be designed to replicate certain highly reliable economic statistics 

that can be formed by special groupings of certain flow statistics contained in the account being 

estimated. Although such information must be carefully compiled, their incorporation in the form 

of constraints will improve the estimation accuracy greatly.    

 
5. CONCLUSIONS AND DIRECTION FOR FUTURE RESEARCH 

 This study constructed a mathematical programming model to estimate interregional 

trade patterns and input-output accounts based on an interregional accounting framework and 

initial estimates of interregional shipments in a national system of economic regions. The model 

is quite flexible in its data requirement and has desirable theoretical and empirical properties. An 

empirical test of the model using a 4-region, 10-sector example aggregated from a global trade 

database shows that the model performed remarkably well in discovering the true patterns of 

interregional trade from highly distorted initial estimates on interregional shipments. It shows the 

model may have great potential in the estimation and reconciliation of interregional trade flow 

data, which often is the most elusive data to assemble. In addition, solutions from the aggregated 

model exactly provide the data needed for a MRIO model and solution from the detailed model 

exactly provide the data needed for an IRIO model. This will greatly reduce the data processing 

burden in such analysis. Therefore, application of the model will further facilitate quantitative 

economic analysis in regional sciences.  

 Lessons from the experiments in this study shaped our view on approaches for applying 

the model to real data from a particular nation’s statistics. A logical conclusion is that widely 

available and disparate survey data on the economy, including commodity flows data and 
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incomplete geographic data, can effectively be used to substantially narrow the margins for error 

in obtaining feasible solutions to inter-regional input-output systems. It is also evident that data 

on region-to-region commodity flows represent a limiting factor in determining the optimal sector 

dimensions to be solved in the modeling framework.   

 However, there are important questions not yet answered by the current study.  First, test 

results from the data set aggregated from GTAP also show that our model’s ability to improve the 

IO transaction estimates of individual regions from national averages may be limited. Continuing 

research on the real underlying causes and means of improvement are needed to further enhance 

the model’s capacity as an estimating and reconciliation tool in building interregional production 

and trade accounts.  Second, the relative importance of regional sector output, value-added, 

exports, imports and final demand as model input in the accuracy of a model solution is also not 

analyzed, and could be addressed with minor changes of the current model. Third, the approach 

employed in this study draws primarily from regional science and constrained matrix balancing 

literatures. How insights from economic geography theory can help define a bounded solution 

needs to be explored. Finally, the robustness of the model performance should be further tested 

by using other data sets. 

 

Footnotes: 

1. Wilson (1970) had suggested an entropy maximizing solution for a model which integrated 

gravity models and multi-regional input-output equations as constraints to estimate inter-regional 

commodity flows. However, his work did not clearly incorporate a complete system of national 

and regional input-output accounts as did in Batten (1982). 

2. In a recently published special issue of Economic System Research (vol. 16, no.2 June 2004) on 

bi-proportional scaling techniques and its recent extensions, Lahr and Mesnard (2004) and many 

others demonstrate that while some researchers have been developing alternative approaches such 

as mathematical programming to overcome one or more of RAS’s apparent shortcomings, others 
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have been extending RAS to including those new properties, such as incorporating the reliability 

of initial data and other known information into RAS. 

3. Using Monte Carlo simulation, Robinson, Cattaneo and El-said (2001) shows that when 

updating column coefficients of a Social Accounting Matrix (SAM) is the major concern, the 

cross entropy method appears superior, while if the focus is on the flows in the SAM, then the 

two methods are very close with the RAS performing slightly better. 

4. When , , ,  and  are known, they have to be consistent with the national IO 

account. This implies equations (6) to (10) have to be pre-satisfied so that the initial data set for 

the model is internally consistent. This can be achieved by solving a similar quadratic 

programming model with , , , ,  and their reliability weights in the objective 

function and equations (6) to (10) as constraints. In such cases, the IRIO estimation problem will 

be solved in two steps and only equations (1) to (5) remain as constraints with equation (11) as 

the objective function in the second step.  
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5. The variables  and have no counterparts in Batten’s framework, reflecting important 

departures in the present approach. 
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6. The aggregate model only has N(NG+G2+5G) variables and N(3G+N+5) constraints, while the 

full detailed model has (N2G  + NHG)(G+1) variables and N(G2+NG+N+5) constraints. It is a 

much smaller model, having NG2(N-1) + NG(HG-5) less variables and NG(G+N-3) less 

constraints. 

7. The quadratic functional form has a numerical advantage in implementing the model. It is 

easier to solve than the entropy function in very large models because they can use software 

specifically designed for quadratic programming.   

8. The minimand objective function reflects the principle that the 'distance' between the posterior 

and initial estimates should be minimized. What we would like is to minimize the 'distance' 
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between the posterior estimates and the unknown true values. This 'distance' cannot be measured, 

but a good estimation procedure should have a desirable influence on it. 

9. Zeros can become non-zeros and vice versa under a quadratic penalty function. However, a 

side effect for the cross entropy function is that if there are too many zeros in the initial estimates, 

the whole problem may become infeasible. 

10. Following the product mix method outlined in Miller & Blair (1985), initial estimates of IO 

coefficients for each of the 10 aggregated industries are unique for each region. They are 

weighted averages of the 3-region detailed (50-industry) IO coefficients where the weights are the 

gross regional outputs of the relevant detailed industries. Experiment results show that a “product 

mix” approach improves the accuracy of the true regional IO flow estimates compared to an 

approach that directly uses the 3-region average IO coefficients, although the differences are 

small in our particular model aggregation. 

11. A random normal distortion of the ‘true’ trade data by an average of 400-percent was 

produced in the previous section to simulate a well designed but poorly sampled transportation 

survey of annual commodity flows. 

12. Comprehensive studies by West (1990) and Lahr (2001) consider how to identify and use 

superior data in a regional accounting system context. 

13. For example, by allowing both regional technical coefficients and intra/inter-regional flows to 

adjust, the optimal solution to the cross-entropy or quadratic formulations in section 2 must be 

jointly solved. 
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TABLE 1: Experiment Design 

Experiment 
number 

Data Know with 
Certainty  a

Initial Estimates What is estimated 
by the model 

1 None sr
id  is distorted from the “true” data sr
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[Eqs. (16) and (17) in Batten (1982)] 
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6 ZZ =  [ ] ∑∑ −=+×= ••
j
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D only

   

7 DD =  [ ] ∑∑ −=+×= ••
j

sr
ij

sr
i

sr
i

r
ij

r
ij

r
ij

sr
i

sr
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Z only

Notes: 

a. In all experiments, national totals: zij, xi, yi, vi, ei, and mi are known with certainty, i.e. they 

enter the model as constant. It is not necessary for the state totals-- --be know 

with certainty in the model, however, in all experiments reported in this paper, they enter the 

model as constant.       

r
i

r
i

r
i

r
i

r
i mevyx ,,,,

b. In experiments 5-7, we did not distinguish different final demand types in the detailed model. 
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TABLE 2: Mean Absolute Percentage Error from the True Data  
 
Experiment # Distorted priors Exp-1 Exp-2 Exp-3 Exp-4 Batten model Exp-5 Exp-6 Exp-7 
Indexes srdi i i ij i i i ij Ave. IO srd  r

ijz•  srd  rz•  srd r ijz•  srd  r
ijz•  srd  rz•  

Total MAPE             
             399.75 21.72 5.92 18.22 5.69 17.40 126.13 18.54 7.02 19.54 2.05 15.65
Receiving region MA     PE        
United States 265.83            17.28 8.75 19.03 8.68 15.41 129.88 16.49 10.46 24.12 3.90 13.82
European Union 447.06 20.94 3.97 15.31 3.61        15.72 111.73 16.51 4.93 14.74 0.74 14.22
Japan 494.73            28.51 5.57 22.47 5.34 22.83 145.59 24.68 6.12 22.60 1.86 20.43
Sector MAPE I    Inputs           
Primary agriculture 304.53 25.48 5.37 25.61 5.19        24.61 125.51 34.92 7.51 27.43 1.67 23.16
Processed agriculture 319.40 14.18 9.99 15.73 10.67        11.82 129.42 13.06 9.74 18.23 2.97 10.81
Resource based sectors 392.24 53.70 3.16 20.06 5.52        21.76 135.00 13.28 4.10 15.17 2.15 16.90
Non-durable goods 312.28 15.85 4.46 9.03 3.85        10.04 127.87 11.44 5.82 10.72 3.36 9.38
Durable goods 413.91 13.69 4.81 12.74 4.36        12.02 121.60 14.06 5.24 12.91 3.38 10.43
Utility         774.76 22.36 5.29 22.56 1.40 22.62 121.86 24.73 5.93 23.30 0.95 24.08
Construction         484.64 44.19 3.34 21.58 2.61 21.16 133.12 22.53 3.63 23.87 0.01 18.45
Trade and Transport 406.12 21.53 12.24 22.47 12.68        22.11 130.52 20.83 13.04 26.37 3.08 23.83
Private services 245.15 20.86 4.47 20.56 5.07        19.35 126.71 20.30 5.83 21.55 1.17 17.31
Public services 539.32 30.69 2.48 29.30 1.30        27.49 118.65 29.77 6.01 30.08 0.62 16.12
Shipping region MAPE             
United States 264.78  9.17  9.08     130.65 9.92 2.90 
European Union           445.56 3.83 3.64 111.83 5.30 1.57
Japan 495.24         5.28 4.80 144.28 6.22 1.75 
Sector MAPE II          Use     
Primary agriculture           13.54 12.98 11.04 12.03 13.22 9.31
Processed agriculture           15.42 20.90 15.61 18.90 27.60 16.17
Resource based sectors          42.54 18.91 18.45 21.81 17.67 17.24
Non-durable goods  14.22  9.83  10.65      12.32 11.35 11.68
Durable goods           19.07 11.37 11.73 12.40 11.25 11.31
Utility           33.77 25.90 27.60 29.16 24.46 22.75
Construction           42.75 43.54 41.74 46.29 43.43 41.60
Trade and Transport  21.89  22.42  20.04      20.88 29.75 18.02
Private services           16.81 17.75 16.61 16.68 18.19 15.88
Public services           51.25 46.73 46.64 50.94 40.98 16.26
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