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Modern input output statistics as well as some itbigeal models of growth and
distribution distinguish between input (use) andpoti (make) matrices, both of
dimension commodity by activity (industry). Inpulitput analysts, on the
contrary, aim at the construction of commodity bynenodity input-output tables.
Amongst the several methods which have been deeeldpe “commodity
technology model” appear as the only one whichilfulimportant axioms. It is
shown, that the “commodity technology assumptianbased on the proposition
that all processes are single production procesaed, hence, defines joint
production away. A joint production approach is posed, which formally yields
the same results as the “commodity technology nidulél does not rely on its
restrictive assumptions. Furthermore, it is a wéhown but nevertheless
cumbersome feature of the “commodity-technologySuasption that the matrix
of input coefficients as well as the Leontief-ideermay contain negative
elements. The main purpose of this paper is to meliie economic reason for
the occurrence of these negatives and to providenmgful conditions for the
existence of nonnegative solutions in joint proguctsystems. Theoretical
concepts such as “separately producible commodities “all-productive
systems of production” developed by Sraffian satsodgpear as useful tools and

devices.

Joint production is — in actual fact — an importastie (Steedman, 1984). Most statistical
offices publish frequently input output statistielich are based on make and use tables.
There exist also some theoretical models of gramith distribution, in particular models built
on the works of John von Neumann and Piero Sraffigch are based on input and output
tables and therefore are able to account for mioduction. Nevertheless joint production is
widely neglected. One will hardly find a textboakhich do not treat joint production as an
unimportant complication rather than an interestasgie. The basic concepts of I0-analysis
are also limited to single production. Input outpaeéfficients are defined as inputs of
commodityi per unit of output of a single prodycin the case of joint production inputs
refer to bundles of outputs and can, by no meansgjlbcated to a single product. But exactly
this is the aim of so called technology assumptaort other methods.



There are two basic technology assumptions, theramity technology model (CTM) and

the industry technology model, several mixed orrldyhssumptions and other methods. Kop
Jansen and ten Raa (1990) and ten Raa and Ruetizcia(2003) postulate some desirable
and reasonable properties and test how well sontleath® to construct commaodity by
commodity coefficients perform. It appears thatyaghle CTM exhibit all the desired

properties.

In this paper it is argued (on pure theoreticalgas), that “technology assumptions” define
joint production away and are, therefore, not fliétdor that case. If there are some activities
which produce jointly more than one homogenous pebd is — in general — not possible to
derive 10-coefficients which refer to an outputoofe unit of a homogenous product. The
validity of the concepts of 10-coefficients andaofeontief-Inverse is limited to single

production systems and cannot easily be carriedtovgeneral joint production.

The characteristics of joint production are studied the very reason of negative intensities

and negative quantities is detected.

It is demonstrated that a joint production systeay mot always adjust completely to given
final demand and, therefore, excess productiomssiple. Following the track of von
Neumann and applying the rule of free goods (fispa$al) the solutions for quantities and

for prices can be determined by a linear Programme.

Finally, a class of joint production systems isigiedl which have all important characteristics
of single production systems. Useful concepts libpesl by Neo-Ricardian scholars such as

“adjustability” or “all-productiveness” are presedtand are utilised.

Let A,BOR™ be semi-positive square matrices of inputs angduistof dimension

commodity by activity. Note that it is assumed tthet number of commodities equals the

number of activities.

Assumeconstant returnsto scale, i.e. if (a", bk) is a feasible process characterised by the
k-th column of the input and of the output matrhen, for all intensitiex, >0,
(a"xk, bkxk) is also a feasible process. In other words, agtamal change in the inputs of

an activity results into a proportional changehia butputs of that activity without changing

the proportions of the outputs.



It is assumed, that the composition of outputsdpod mix) is constant for each activity.

However, this assumption does not postulate comiyoetthnology.

The CTM assumes a single production process fdr eammodityj, characterised by a

vectorc! whose elements are the quantities of inputs ofnsodityi required to produce one
unit of produci. The inputs used by an activitydepend on the output structure of that

activity. Hence each elemendg of the input matriXA, which refer to inputs of an activiky
reflects a weighted average of the underlying coutitydoy commodity coefficients,

where the weights are determined by the outpupsafessk.

Hence the CTM is defined by
(1)  XGh=a = CB=A.
j=1

If B is regular the coefficients of the unobservabhgls production processes can be

determined by
(2) C=AB™

The CTM assumes that there is — in principle -hglsiproduction system which is not
directly observable. Observable are “industriestahlproduce some quantities of more than
one commodity by combining more than one singlelpetion process. Joint production is
thus considered as a statistical problem causedjgsegation. This assumption may have
some justification if aggregate industries are eoned, which produce one characteristic
primary product and, in addition, one or more seleoy products which themselves are
characteristic products of other industries. Iis tase, it is straightforward to calculate non-
negative matrices via a systematic search of plessdurces of inaccuracy in the basic make
and use tabléslf, on the other hand, joint production propecascerned, the CTA misses

the point, is unacceptable and, after all, is restded.

A straightforward approach which can be appliepbiiot production without any “technology

assumption” is described above.

! This route has been proposed by Steenge, 1990.



Given input and output matrice&,andB, and a vector of required net products (final
demand), denoted ko The problem is to find a vector of intensitiewhich support the
bundled such that

() (B-A)x=d

The straightforward solution of (3) is

@) x=(B-A)"d.

Furthermore, we may calculate the vector of grasdyrcts by

(5) q=Bx=B(B-A)"d.

Note that the inverse matrices in (4) and (5) mawbtten as

-1

6 (B-A) =B*(1-AB"

and

-1

(7)  B(B-A) =(1-AB")

Note that the latter inverse may be consideredgenaralisation of the Leontief-inverse.

It is clear that the results for these solutioresstae same as one would obtain by using the
CTM. However, no “technology assumptions” are reggiinor any matrix of commodity by
commodity input coefficients have been calculatadthermore, meaningful solutions may

be obtained even if the output matrix is singulaif AB™ contains negative elements.

Though we have avoided the problem of a singulgsudunatrix and negative commodity by
commodity input coefficients, there still remaihg possibility of negative intensities and
negative quantities.



The following examples may be useful to detectvidigy reason for this problem of negative

results.

Assume that there are two processes by which tworeadities (wool and mutton) are jointly

produced by means of wool, mutton and some prirfaantprs.

6 4 8 3
Let A =(4 2] andB = ( ) 6} are input and output matrices of dimension protyct

process. Neglecting the primary factors and comsidgationary economy, we may

2 -1

characterise the two processes also by the “netpatfix (B —A) :( ) 4) , Where the

first row refers to process 1 and the second rderseo process 2.

2 -1
The set of producible net outputs is given by #te & = 0O; (B —A)x = (—2} X +[ 4) X,

and is depicted in figure 1
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Note that any nonnegative net product bundle ofl@ad mutton can be produced because

the feasible set of net bundles contains the wpositive orthant.
This observation is crucial for the non negatiafythe solutions:

() For all non negative bundles of net produttbere exist a non negative vector of

intensitiesx such that{B-A)x =d.

(i) TheinversgB-A)" = (f f) >0,

_ 1 Y/
(i) The generalized Leontief-inverfé—AB‘l) = ( % /3] >0

% 7

(iv) Therefore, the bundle of gross outpats (I —AB‘l)_ld is non negative for altl > 0.

These nice features disappear, if we change tha mptrix slightly such that instead of 4

units of wool just 2 units of wool are required the second process. While the output matrix

: : . . 6 2 ,
remains unchanged, the input matrix is now glverAbay(4 2}. The new “netput” matrix

, 2 1 . : L

isB-A =( 4} and the cone of producible net outputs is depictddure 2.

In contrast to example 1 that set does not conkesrwhole positive orthant. Hence some
proportions of net outputs are not producible. trenthan four times more quantities of
mutton than quantities of wool are demanded, tharetexist no positive intensities by which
the two processes can produce the required bundle.

% '%o

v j exist but contain negative elements. Hence saiatior
5 5

any demanded bundle of net products can be cadcljlatit negative intensities for the first

The inverse{B - A)_l = (

activity will result if the bundle of net produalemanded is not an element of the producible

set.

2 Note that also some negative amounts of wool dtaniare “producible”. That means that the systemiso
capable to dispose off some existing quantitiesad! or mutton.
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Assume, for instance, that 10 units of wool andj6antities of mutton are demanded. These
proportions are not supported by the system. Eivenly process 2, which specialises in the
production of mutton, will be activated there is tauch wool or to less mutton. A solution
for (4) can be obtained but will result in a negatintensity for process 1 such that some
wool will be “absorbed” and additional mutton wik “produced” by that process. Hence the

2 1 10
linear combinatior( 2}(1 +(4j X, = [50} has the solutiorx, = -1 and x, =12.

Negative intensities are not acceptable. Hencengttod proposed by (4) will work for the
case that the demanded bundle is producible butotdre applied in general.



Another route is suggested by von Neumann: Allomefacess production, i.e. substitute the
equation (3) by the inequalityB - A)x =d, and, if necessary, invoke the rule of free goods

(free disposal).

In example 2 this approach will result p=0 and x, =12,5. The demand for mutton is

exactly met but wool is produced in excess anddé&e disposed off by an (free) disposal
process. For a more careful and general discussiomNeumann systems with free or costly
disposal see Lager (2001).

In order to obtain some more rigorous and more igMiadings we may utilize the following
definitions and concepts developed by scholars ingria the Sraffian tradition:

Definition 1: A system of production itrictly viable if it is possible to produce a positive

net output.
k=2, (B-A)x>0

Note, that in this case it is possible to prodacg net output or more than that. Hence it is
possible to match any vector of finished produkctaere is free disposal.

Definition 2: A producti is said to beeparately producibleif it is possible to produce a

net output consisting of one unit of that product tothing else, i.e.

X 20, (B-A)x =e, whereg is a vector whoskth element is equal to 1

and all other elements are equal to zero.

Definition 3: A system of production iall-productive if all products are separately

producible®

% The concept of an all-productive system has beenduced by Schefold (1971, 1989). A
similar concept, “the adjustment property”, hasrbpeesented by Bidard and Erreygers
(1998).



All-productive systems have the following nice pedjes:

All-productive systems can produary semi-positive net output, i.e.

Od=0, x=0, (B-A)x=d.

If and only if the system is all-productive, thémﬁnverse(B -A)_l is semi-positive.

Note that that the vector in definition 2 is the-th column of the inverse(B-A)_1 .
Therefore, an all-productive system has a semitipesnet-output inverse by definition

and if (B -A)_1 >0, then all products are separately producible

If — but not only if — the system is all productitke generalised Leontief inverse is non-
negative, i.e(B —A)_l >0 = B(B —A)_1 = (I —AB‘l)_l > 0. The proof for the “if

statement” follows from the fact that the produtctveo semi-positive matrices is non-
negative. The evidence for the “not only if’ statrhis provided by the example in the

annex.
All-productive systems have always (semi-)posigetutions for intensities.

(B-A)"d=x20

All-productive systems have always (semi-)posigsetutions for gross outputs.

Bx=B(B-A) d=q=20

All-productive systems have always (semi-)posisetutions for total capital

requirementsAx =A(B-A)"d=k >0

All-productive systems have always (semi-)posigeéutions for labour values.

I'(B-A)"=v=0

We may also explore the relation between semi-pe@stiommodity by commaodity input

coefficients and all-productive systems

If — but not only if — the commodity by commoditgefficients are semi-positive it

follows that the generalised Leontief inverse imispositive, i.e.



AB'>0 = B(B-A)'= (I —AB‘l)_l. The proof for the “if statement” follows from

the fact that the generalised Leontief inversejisaéto the sum of a Neumann series of
. . . . -1 -1 d -1 t .
convergent semi-positive matrices, |.@.—AB ) = Z(AB ) . The evidence for the
t=0

“not only if” statement is provided by the exampldhe annex.

» It follows that semi-positive commodity by commagdaoefficients guarantee semi-

positive gross outputs, i.AB*20 = Od20; =0: q=(I ‘AB_l)_ld

» But semi-positive commodity by commodity coeffidiedo not guarantee semi-positive

intensity vectors

Summary and conclusion:

In this paper it is argued on pure theoretical gosuthat a “technology assumption” or any
other method to estimate commodity by commodityiridustry by industry) input output
matrices neglects the very nature of joint prodarctin particular, the commodity technology
model, defines joint production away by assumirag there are only single production
processes and observed joint production is a resalggregation of single production
processes to industries. A straightforward joirttdarction model is proposed which avoids
calculating commodity by commaodity input-output ni@ds. The very reason of the still
remaining problem of negative solutions is detect€de common feature of systems which
may have negative solutions is that those systemmotisupport any bundle of net products.
A class of joint production systems is identifietigh rules negative solutions out and exhibit
some other nice features of single production syste



Annex

1 2 9 3
Let A = andB = .
51 3 4

The netput matri(B - A) :( 8

1
3} shows clearly, that not all net bundles in theitpas

orthant are producible, i.e. the system is noprdtuctive.

- 0,12 -0,0
Consequently(B—A)" =(0 . sz/o.

_ - 1,27 0,5
Nevertheless the generalised Leontief-inveBs(3 -A) ™" = (I —AB‘l) e >0,
0,65 112

is positive.

Hence it is possible that there is a solution widyative intensities but gross outputs will be

positive.

Though there is a positive generalised Leontieeisg, the commodity by commaodity input

-0,07 0,56;

matrix calculated by the CTA contains negative fioieits: C = AB™ =( 0 63 0.2
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