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Abstract

We explore the relationship between input-output accounts and the
national revenue function. The generalized inverse of an
economy’s technology matrix carries information relating changes
in endowments with changes in outputs; its transpose relates output
prices and factor prices. Our primary theoretical contribution is to
derive an economy’s revenue function for an arbitrary Leontief
technology. Our main empirical contribution is to compute the
national revenue function for the American economy in 2003 and
to describe its properties. We implement our ideas using two
different models: one where all factors are mobile and another with
capital specific to each sector in the economy.
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1. Introduction

Presenting a completely novel approach to analyzing the supply side of an economy,
we show that an input-output table contains all the information needed to describe an
economy’s Rybczynski matrix. These effects relate marginal increases in an economy’s
resources with marginal changes in its vector of net outputs, when goods prices and thus
factor uses are fixed. The same information can be interpreted as Stolper-Samuelson
effects: the link between output prices and factor rewards, when endowments are in fixed
net supply. We develop the theory, present leading examples, and implement our ideas
using data from the American economy in 2003.

There is no immediate antecedent to our work. Still, we stand on the shoulders of
three giants. First, we would not have begun this work if Leontief (1951) had not devised
input-output accounting; indeed the title of our paper pays blunt homage to his influence.
Second, we bring the powerful mathematical tools that Moore (1920) and Penrose (1955)
developed to applied general equilibrium theory. These authors created a technique to
characterize all the solutions to a system of linear equations, even when the set of
equations is underdetermined or only “approximately” correct. Their generalized inverse
is readily available in most modern statistical software, and we use it to implement our
ideas. Third, we characterize the supply side of an economy using the national revenue
function. For a fixed technology, the national revenue function maps an economy’s
endowments and an output price vector into the maximum revenue attainable by the
economy. Its Hessian—the matrix of cross-partial derivatives of revenue with respect to
output prices and net factor supplies—is an economy’s Rybczynski matrix. The national

revenue function and the dual approach to general equilibrium theory had a profound
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influence on a generation of international economists. Dixit and Norman (1980) give its
most elegant exposition.

Our work grows out of the mainstream of international trade theory, but it falls
squarely within the bailiwick of modern macroeconomics. Although we construct a
theoretical foundation that has general applications, we are really interested in the details
of the American economy. The theoretical framework we develop is designed to answer
this kind of question: What effect does an increase in the price of refined petroleum have
on the wage of unskilled labor? We are also able to analyze how immigration of
unskilled labor or the accumulation of capital will influence the vector of net outputs of
the American economy when one controls for the output prices. We hope our techniques
will have wide applications in international economics and in macroeconomics.

Our main theoretical contribution is to derive the revenue function for an arbitrary
Leontief production structure. This function is smooth with respect to its two arguments,
endowments and output prices. Hence, it is very well behaved, its properties are easy to
describe and to compute, and one can compute the exact Rybczynski derivatives for any
economy that reports an input-output table and conformable data on factor uses. Our
approach fills in a gap in the literature: when there are more goods than factors, the
Rybczynski effect is indeterminate because the revenue function is not differentiable with
respect to prices. Our approach allows one to compute completely the sub-gradient
characterizing the supply correspondence.

We make two broad empirical contributions. First, we look at the United States
economy in 2003 disaggregated into 63 sectors and six factors, capital and five broad

types of labor, that are mobile across all sectors. We show for example that capital has



its strongest positive Rybczynski affect on real estate and its strongest negative such
effect on “Computer systems design and related services.” We are also able to estimate
the shadow value for each of the six factors, and we demonstrate that capital’s gross rate
of return in the American economy was 13.6% in 2003. Our second application is based
upon a Ricardo-Viner model in which capital is specific to each sector and the mobile
factors are five broad types of labor. Here are three desultory examples that might whet
the reader’s appetite for the empirical analysis to come. The sector whose price has the
strongest positive effect on the reward to professional occupations is “Computer systems
design and related services,” and the sector whose price has the strongest negative effect
on the reward to professional occupations is “Legal services.” A million dollar increase
in the price of refined petroleum has its strongest negative effect on the specific factor
used in “Truck transportation.” Such an oil price shock lowers the reward to a stock of $1
million of capital specific to the Truck and Transportation sector by $128 thousand.

Our real empirical contribution is to show how easy it is to implement our theory and
to derive plausible empirical effects that describe the details of the American economy.
Since our theory is based upon an arbitrary Leontief structure, it can handle any degree of
aggregation and any model that the researcher might find appealing. Our theory is
simple, so its applications are broad.

The rest of this paper is structured as follows. The second section is a brief review of
the literature; we recognize that we are trying to revive a field of research that has fallen
into desuetude, so we will emphasize the novelty of our work is and how it brings
together branches of international economics and macroeconomics. The third section

develops the theory that is the foundation for our empirical work. It has five subsections:



(1) a summary of the revenue function; (2) a review of the factor pricing equations; (3) a
statement of the properties of the Moore-Penrose generalized inverse; (4) a statement of
our main theorem showing that the transpose of this generalized inverse is indeed the
Rybczynski matrix for an economy with a Leontief technology; and (5) a discussion of
how our analysis extends to more general technologies. The fourth section explores in
depth three leading examples: (1) the Solow model, the simplest case with more factors
than goods; (2) the Ricardian model, the simplest case where there are more goods than
factors; and (3) the classic two-sector model in trade theory where there are an equal
number of goods and factors. The fifth section applies our ideas to the American
economy in 2003. We implement empirical analyses of two different models: (1) one
where all six factors are mobile; and (2) a second where each sector has sector-specific
capital and there are five types of mobile labor. This section shows that our theoretical
analysis is quite plausible, and it serves as an illustration of how powerful and simple our
theory is to implement in realistic empirical applications. It also examines the model’s fit
for the case where there are six mobile factors. The sixth section summarizes our

contributions and gives suggestions for future research.

2. Brief Review of the Literature

Input-output accounting was invented to calculate the necessary resources for a
marginal increase in an economy’s output. Trade theory explores how a marginal
increase in resources affects an economy’s outputs. Hence input-output accounting and
international trade look at similar phenomena from opposite ends, and it is not surprising
that the same data shed light on both lines of inquiry. The (rectangular) matrix of direct

and indirect factor requirements has been the central tool of input-output analysis for half



a century, but no one has ever noticed that its generalized inverse is the Hessian of the
revenue function for an economy with a Leontief technology.

There is a large literature in empirical trade that explores the relationship between
endowments and outputs. Using flexible forms, Kohli (1991) and Harrigan (1997)
estimate national revenue functions; both tie theory and empiricism together carefully.
These estimates are an important step in describing the sources of comparative
advantage. Fitzgerald and Hallak (2004) and Schaur, Xiang, and Savikhin (forthcoming)
estimate reduced form Rybczynski equations. Fitzgerald and Hallak claim that failure to
control for productivity differences produces biased estimates, and Schaur, Xiang, and
Savikhin state that the average effects across all local industries are positive. Our work
renders all this statistical analysis moot; we show how to compute—not estimate--exact
Rybczynski derivatives for any country that has an input-output table and conformable
uses of factors. We find much richer patterns than those in the literature and reap an
overlooked bonus: our exact effects are also Stolper-Samuelson (directional) derivatives.

The notion that shocks to the sectors of an economy may be a central cause of
business cycles may be as old as Quesnay (1758). Black (1982) breathed new life into
this idea, and Long and Plosser (1983) give an elegant exposition of a model where
sectoral shocks cause aggregate economic fluctuations. The example that forms the crux
of Long and Plosser’s article shows that positive co-movements arise because of the
income effects inherent in a shock to any one sector. It is striking that business cycles
occur even when labor is the only factor of production. Still, a model of real business
cycles without capital is quite limited, and when there is more than one factor, there is no

simple relationship between shocks to one sector and positive co-movements in all



sectors. The Rybczynski effects for capital that we identify have a ready interpretation as
the supply side effects of wealth accumulation when output prices are held fixed.

The best reason for resuscitating an older literature is to show that inconsistencies in
measuring the factor content of trade may well plague much of the research on the factor
content of trade in the last two decades. It is not well known that input-output accounts
can be also be used to derive relationships between factor prices and goods prices. We
exploit this relationship to a much greater extent than has ever been done before. A large
body of work in international economics uses data on intermediate inputs from one
source and direct factor requirements from other sources to compute the factor content of
trade. We have shown (2008a and 2008b) that measurement error afflicts much of this
research. Our theory and the statistical tests substantiate that improper measurement—
most likely in the direct uses of capital—is a serious concern for anyone using input-
output analysis to compute factor content. The whole literature ought to use consistent

data if it wants to give Heckscher-Ohlin-Vanek theory a fair chance.

3. Theory

A. The Revenue Function
Let v be the f x 1 vector of aggregate inputs of primary factors that are in fixed
supply and y be the £x 1 vector of outputs. Technological considerations are
summarized by a set of feasible combinations of outputs and inputs
F c R/,
It is convenient to assume that this set is compact for fixed inputs v. Producers take the

£ x 1 vector of output prices p as given. The revenue function is

r(p,v) = max {p"yl(y,v) € F}
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The main theoretical advantage of the national revenue function is that it allows one to
summarize the relationship between endogenous and exogenous variables succinctly.
For example, the output vector is the gradient of the national revenue function:*
y' =1,(p,v).
The revenue function is appealing because it is so general. It is homogeneous of degree
one in prices; thus 7,(p,v) is homogenous of degree zero in prices. It follows that
r(p,v) = 1,(p,v)p and 1,,(p, v)p = 0. Alsor,(p,v) gives the derived inverse demand
for factors of production. If factors are in fixed supply, their prices are:
wl =1,(p,v).
The function r,(p, v) is also homogeneous of degree one in p.
The Rybczynski matrix
d%r/0p,0v, -+ 0%r/0p,0vf
(P, V) = 3 s
0%r/0p,0vy -+ 0°r/0p;,0vf
is the focus of this paper. Its canonical element azr/apiavj shows how the output of
good i changes with respect to a marginal increment in the endowment of factor j, if one
holds factor prices and thus factor requirements constant.

The transpose of the Rybczynski matrix shows the Stolper-Samuelson effects:

Top (0, ) = 1 (p, V)T

L In this paper, all gradients are row vectors. We use the notation r,(p,v) = [0r/dp, -+ 0Or/dp,]. In
this sub-section for ease of exposition, we are quite blithe in assuming that all functions are differentiable.
They typically are not, and that is why this elegant theoretical approach has had limited practical appeal for
empiricists. We will show below how to compute the sub-gradient that is the supply correspondence when
there are more goods than factors and also how to compute the complete set of factor prices consistent with
perfect competition when there are more factors than goods.
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Each element of this matrix describes the marginal effect of a change in the price of good
j on the reward to factor i. Since factor rewards are homogenous of degree one in prices,
the Stolper-Samuelson effects satisfy an important restriction:

w = Ty (P, V)P
This equation states that the sums of the Stolper-Samuleson effects, weighted by the price
of output in each sector, are the shadow values of the factors in the economy, a fact that
we will use in our empirical analysis. If there are constant returns to scale, then outputs
are homogenous of degree one in v. In this case, the Rybczynski matrix also satisfies:

y = 1w(p,v)v
This equation states that the sums of the Rybczynski effects, weighted by the quantities
of the economy’s fixed endowments, are the elements of economy’s output vector.
Again, we will use this fact that in our empirical work below.
B. The Factor Pricing Equations and the Resource Constraints

The usual relationship between factor prices and goods prices is given by:
Aw = p,y = 0,with complementary slackness

where a;; is the unit input requirement of factor j in the output of good i. Because we
will be interested in marginal changes in our empirical work, we will restrict our attention
to strict equalities without loss of generality. If the i — th good’s unit cost exceeds its

price, then it will not be produced. Then we will set a;; =0 for j =1,...,f and also

write p; = 0. In this case, the following equality is true:
Aw =p
Any factor rewards w that solve this modified system will also satisfy the original

equations, and any solution of the original system will give factor prices that also solve



the modified system. Also, since y; = 0 in the original system, the modified technology
matrix will automatically satisfy the resource constraints in the original system.

The full employment equations are:

ATy < v,w = 0,with complementary slackness.
If the j — th factor is in excess supply, then its reward w; = 0. Now we set a;; = 0 for
i=1,..,¢ andalso write v; = 0. Then
ATy = v,

and each solution to this modified system corresponds to a solution in the original one.
Likewise, every vector of outputs in the original system will solve the modified one.

The national revenue function can also be defined as the minimum value of
payments to factors of production that is consistent with the zero-profit conditions:

r(p,v) = min{wTv|Aw > p}
w

This approach is helpful if one is interested in using Shephard’s Lemma to derive
aggregate factor demands. For example, it predicts that factor prices are given by the
gradient of the unit isoquant evaluated at the endowment vector in a model with one good
and several factors. In our empirical work, we use the fact that fixed factor prices entail a
restriction on admissible endowment changes if there are more factors than goods.
C. The Moore-Penrose Pseudoinverse

Let Abe an ¢ x f matrix. Then its Moore-Penrose pseudoinverse is the unique
f x £ matrix A* that satisfies these four properties:
(P1) AA*A = A;
(P2) ATAA* = A*;

(P3) AtA = (A*A)T; and



(P4) AA* = (AAH)T;
If A is square and has full rank, then A* = A1, If ATA has full rank, then AT =
(ATA)~1AT can be computed easily. Every matrix has such a pseudoinverse.?

The primary advantage of the Moore-Penrose pseudoinverse is that it gives the
complete set of solutions to the system of equations Ax = b. This set is:

x=A*B + (I — A*A)z

where z is an arbitrary f x 1 vector. In fact, this pseudoinverse even gives a solution to
an over-determined and inconsistent system Ax ~ b. Then x = A*b is the vector of
coefficients of the least squares estimates from the regression of b on the columns of A.

If a row of a non-null matrix A consists of zeros, then the corresponding column
of A* does also. This fact justifies our restrictions that Aw = p and ATv = y hold with
equality, as long as one works with a modified matrix that replaces the appropriate row or
column of the original technology matrix with zeros whenever a constraint is slack.
D. A* is the Stolper-Samuelson Matrix and A*" is the Rybczynski Matrix

The production function for a fixed coefficients technology is:

yi = min {v;;/a;, ..., Vig/air},
where v;; is the input of factor j into sector i. Let A be the £ X f matrix of (direct and
indirect) factor requirements that are observed in the data. Assume that the £ X 1 vector
of output prices p is given. Then the complete solution for factor prices is:
w=A'p+ (I —-ATA)z

where z is an arbitrary f x 1 vector. The matrix I — A A projects z onto the null space

of A. This expression gives all factor prices consistent with perfect competition.

2 Albert (1972) gives a very good exposition of the properties of the Moore-Penrose generalized inverse.
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Since factor payments exhaust revenues,

r(p,v) =vTw =vTATp + vT(I — ATA)z.

The full employment conditions imply that the endowment vector is in the row
space of the technology matrix. Since this space is the orthogonal complement of its null
space, vT(I — A*A)z = 0 forany z.® Then factor prices are:

w=r(pv)=Atp+ (U —-A*A)z.

where z is arbitrary. This expression gives the set of all factor prices that are consistent
with the zero-profit conditions. It is typical in the literature to explain that factor prices
are not tied down when there are more factors than goods and that they are derived from
other extraneous considerations--such as the full employment conditions--that have
nothing to do with unit costs. Of course, that argument does not work for the case of a
fixed coefficients technology or for any other where each output is not differentiable with
respect to every input.

It is constructive to derive the national revenue function in an analogous manner
from the economy’s resource constraint:

ATy =v.
The complete solution for the output correspondence is:
y=AD v+ A - (AT)TAT)z
where z is now an arbitrary £ X 1 vector. Since the value of output is national revenue,

r(p,v) =p"y =p" AN v+ p" (U - (A")*A")z

® A simple way to see this fact is to note that vTA = yT and A(I — A*A) =0 .
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Since I — (AT)* AT projects onto the null space of AT and prices p lie in the column space
of A, we conclude that p”(I — (AT)*AT) = 0. Since (A7)t = (A1)7, this formula is
simply the transpose of the one derived using the income approach.

These results are significant enough to state formally.
Theorem: Consider an economy with a Leontief technology. Assume that all resources
are fully employment and that all good are produced. Let p be the #x 1  vector of
goods prices, v be the f x 1 vector of factor endowments, and A be the £ X f matrix of

unit input requirements. Then the revenue function is the quadratic form (1).

r(p,v) =vTAYp +vT(I — A*A)zs+2," (1 — AAY)p (1)

where z; € R/ and z, € R? are arbitrary.

Proof: The full employment condition implies that v7(I — AtA) = 0, and the zero-
profit condition implies that (I — AA™)p = 0. Hence the particular solution in (1) is the
value of national revenue since each quadratic form involving a homogenous term has
value zero. By construction, the gradient of (1) with respect to p gives the gives the
supply correspondence, and its gradient with respect to v gives the set of factor prices
consistent with the zero-profit conditions. Further, (1) satisfies all the requisite
homogeneity restrictions with respect to its two arguments. Q.E.D.

The theorem has two immediate implications. If there are at least as many goods
as factors and the technology matrix has full (column) rank, then I — A*A = 0 and factor
prices are completely determinate. If there are at least as many factors as goods and the

technology matrix has full (row) rank, then I — AA* =0 and the output vector is
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determinate. There are interesting cases—of significant empirical relevance—where the
technology matrix does not have full rank. For example, there are many models in
macroeconomics with more (differentiated) goods than factors, but all sectors have
identical factor intensities. Then the first homogeneous term in (1) is not null, and the
gradients of the national revenue function show all factor prices that satisfy the zero-
profit conditions, and it also gives the entire supply correspondence. Likewise, there are
some models with at least as many factors as goods where the technology matrix does not
have full rank; this situation arises when at least two sectors have identical factor
intensities. In this case, the gradients of (1) again give the supply and factor-price
correspondences.

The theorem shows that the national revenue function is (infinitely) differentiable
with respect to both of its arguments, output prices and endowments. From our

perspective, the most important of its implication is the following corollary.

Corollary: Under the Theorem’s assumptions, the economy’s Stolper-Samuelson matrix

is A* and its Rybczynski matrix is A*” .

This result is controversial at first blush. Assume there are strictly more goods
than factors. Trade theorists allege that the Rybczynski effect is not defined in this case.
But it is obvious that the only part of the supply correspondence that depends upon
endowments is the particular solution in (1). Fix output prices and thus factor uses and
consider a marginal change in endowments. We will show in Section 4 that any resultant

change in outputs can be decomposed into two parts: (1) a change that is orthogonal to
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the economy’s production possibility frontier; and (2) a movement along one of its flats.
Only the former has any effect on national revenue, and that is why it is properly defined
as the Rybczynski effect. Indeed, the beauty of (1) is that it solves the indeterminacy that
has plagued the empirical literature.

The typical regression that estimates a “Rybczynski effect” actually captures the
demand-side effects of wealth changes. Some of the more careful researchers note that
the Rybczynski effect is indeterminate in the usual case where there are many goods and
few factors. Some assume an (infinitely differentiable) translog approximation to the
national revenue function and estimate its parameters, imposing symmetry and
homogeneity restrictions. In essence, one notes the problem in theory and then assumes
it away blithely in empirical work.  Not only are such regressions based upon a
potentially misleading approximation; they are not even identified in theory.

There is an even better reason to identify A*T as the Rybczynski matrix. Its
transpose gives the unique solution for factor prices w = A*p, where we have used that
I —A*A =0 when ¢ > f and the technology matrix has full rank. Since all goods are
produced, Aw = p. In this case, w = A*p = A*Aw is an identity. It is obvious that A*
is the only candidate for a Stolper-Samuelson matrix when input requirements are such
that several sectors are active. (This is exactly what one would expect in the long run
when local techniques adjust so that several sectors are competitive at prevailing world
prices.) Hence, defining A*T as the Rybczynski matrix maintains the duality between

Rybczynski and Stolper-Samuelson effects at the heart of classical trade theory!
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E. Marginal Changes in Output Prices and Factor Endowments

Consider a more general technology where the unit input requirements depend
upon factor prices. This technology is described by an € x f matrix A(w). Let dp a
vector of marginal changes in goods prices and dw be the corresponding vector of
changes in factor rewards. Then the following system of equations is true:

A(w)dw = dp. (2)
Equation (2) uses the envelope theorem: cost minimization entails that marginal changes
in factor uses evaluated at the original factor prices incur no incremental cost. Thus the
logic of the Stolper-Samuelson theorem entails that every technology acts locally like one
with fixed coefficients." There is one important qualification that must be stated
explicitly: marginal changes in prices must lie in the column space of the matrix A(w). If
there are more goods than factors, or if A(w) is not of full rank, then there are explicit
restrictions on how goods prices can change.

If there are more factors than goods and the technology matrix has full rank, then
output prices are free to move in any direction. In this case, A(w)* is the Stolper-
Samuelson matrix for fixed endowments that maintain full employment. If there are
fewer factors than goods or the technology matrix does not have full rank, then the
Stolper-Samuelson matrix gives the components of a directional derivative that map price
changes--restricted to the column space of A(w)--onto changes in factor rewards.

Now fix output prices and thus factor prices and unit input requirements. Then

the logic of the Rybczynski theorem entails:

* Jones (1965) reminded us that the underlying Leontief production functions stands in for every possible
neo-classical production structure if one is only considering local changes in goods prices.
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Aw)Tdy = dv. (3)
Equation (3) imposes two conditions: first, factor prices are fixed; and second, changes in
endowments must lie in the row space of A(w).

If there are more factors than goods and the technology matrix has full (column
and thus row) rank, then endowments changes are restricted to lie in the row space of the
technology matrix. Then the elements of the Rybczynski matrix are components of a
directional derivative that show how the restricted endowment changes map onto output
changes when factor prices are fixed. If there are fewer factors than goods or the
technology matrix does not have full rank, then A(w)*T is the economy’s unfettered
Rybczynski matrix.

One of these two restrictions is usually moot. For example, if there are more
goods than factors and the technology matrix has full rank, then endowments are free to
move in any direction, and we prefer to interpret 7,,,,(p, v) = At asa Rybczynski matrix
for fixed goods prices that lie in the column space of A. If there are more factors than
goods and the technology matrix has full rank, then output prices are free to move in any
direction, and we prefer to interpret r,,(p, v) = A™ as a Stolper-Samuelson matrix for

fixed endowments that maintain full employment.

4. Three Leading Examples

We sketch out the three simplest examples that illustrate the underlying theory.
Example 1: The Solow model is the simplest case where the number of factors exceeds
the number of commodities. The vector of endowments is v=[K L]7, and
technology is described by an aggregate production function Y = F(K, L) that exhibits
constant returns to scale. The unit input requirements depend upon factor prices:

16



Aw, 1) = [agw, 1) a,(w, ],
where w is the wage rate and r is the rentals rate. Of course, factor prices are not even

locally independent of endowments. The Stolper-Samuelson matrix is:

At = ax/(ag + af)
a,/(ag +af)|

where we have suppressed the dependence on factor prices for notational convenience.
Three points are in order. First, for fixed endowments, this matrix allows any change in
output prices (in the trivial one-dimensional space in which they lie). Second, the Stolper
Samuelson matrix does not consist of the marginal products of capital and labor; it is
instead collinear with the average products of these factors. Third, within the strict
framework of a Leontief technology where aggregate output F(K,L) = min {K/ag, L/
a;}, the Stolper-Samuelson matrix can be construed as a theory of factor prices. Among
all strictly positive factor rewards that satisfy the zero-profit conditions
{(w,7) € RZ|p = axr + a,w}, it picks the wage-rentals ratio a,/a, that corresponds
with the economy’s aggregate capital-labor ratio.

Figure 1 shows the Stolper-Samuelson effects in this case. The horizontal axis
measures the first factor price and the vertical axis measures the second one. Let the
price of aggregate output change by an arbitrary amount Ap. Then any observed change
in factor prices Aw = A*Ap + u can be decomposed into two orthogonal parts. The first
part A*Ap is orthogonal to the unit cost functions, and it the only direction that affects
national income. The second part u (not drawn) has no effect on aggregate factor costs
and thus no impact on national income. The first part comes from the particular solution
in (1), and u lies in the linear space defined by the first homogenous term in that

equation. In the empirical analysis in Section 4, we use the properties of the Stolper-
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Samuelson derivatives to compute the shadow values of factors in the national economy
w = 1,(p,v)T = A*p in a model where there are more goods than factors. We are able

to compute these shadow values even though output prices are not observable in our data.

Figure 1: Stolper-Samuelson Effects

Aw

A"Ap
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The interpretation of the Rybczynski matrix A*" in this case is subtle.
Endowments are constrained to lie in the linear subspace generated by the economy’s
capital-labor ratio. Only marginal changes [dK/K dL/L]" of equal proportions can
maintain full employment at the factor prices that are assumed fixed. Then the elements
of the Rybczynski matrix are components of a directional derivative that explain the
change in aggregate output by attributing weights K?/(K? + L?) and L?/(K? + L?) to the
changes in capital and labor respectively.
Example 2: The Ricardian model is the simplest case where the number of goods

exceeds the number of factors. The vector of endowments is simply v = L. Technology
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is summarized by the production possibility frontier {(y,,y,) € RZ|a,y, + a,y, = L},
where a; is a sector’s labor coefficient.

Let A = [a1 a;]T be unit labor requirements observed in the data. The Stolper-
Samuelson matrix is:

AT =lay/(af +a) ay/(af+ad)]".

Now its interpretation is subtle since output prices are constrained to lie in the linear
subspace generated by A. Only marginal changes of equal proportions
[dp./p1  dp2/p2]T can assure positive outputs of both goods. Then the elements of the
Stolper-Samuelson matrix are components of a directional derivative that explain the
change in the wage rate by giving weights p//(p?+ p7) and p’/(p/ + p?) to the
changes in the prices of the first and second good respectively.

Endowments are free to move in any (trivial) direction, but the Rybczynski AT

matrix chooses one element of the supply correspondence. Indeed, only movements in

the direction A*" affect national revenue. In any other direction, a feasible change in
outputs trades off one good against another according to the fixed marginal rate of
transformation inherent in this economy. This tradeoff has no effect on revenue.

Figure 2 shows the Rybczynski effects in this case. Now the horizontal axis
measures output of the first good and the vertical axis measures that of the second one.

Let the endowment of labor change by an arbitrary amount Av. Then any observed
change in output Ay = A*TAv 4 u can be decomposed into two orthogonal components.
The first part At Avis orthogonal to the economy’s production possibility frontier, and it
is the only direction that affects national revenue. The second part u (again not drawn)

has no effect on the value of output and thus no impact on GDP; it lies in the linear space
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defined by the second homogenous term in (1). In Section 4, we use the properties of the

Rybczynski derivatives to predict the output effects of an arbitrary endowment vector
y=n,(p,v)" = A*"v in an economy where there are more goods than factors. We
show that the model predicts remarkably well, both in and out of sample.

Figure 2: Rybczynski Effects

Y2

(AT Av

Ay

Y1

Example 3: The Leontief model with two goods and two factors is the simplest example
of the classic “even” case in trade theory. The vector of endowments is again v =
[K L]T and technology is described by the production possibility set:

{1, y2) € Rilaygy, + axgy, < K and ayy; + azy, < L},
where we are following the usual notation. We assume that{a;x/a,, < K/L <
a,x/a.}; thus the economy can produce both goods under full employment. Now

A= [au{ alL]'

g Ay
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Let m = min{a,x/a,;, azx/a,} and M = max{a,x/a,., azx/az.}. Assume that
m < p;/p, < M and thus both factors have strictly positive rewards. If A has full rank,
then changes in endowments are not restricted. Also, AT will have full rank, and thus
changes in goods prices are not restricted. In this case, AT = A~ and the properties of
this Stolper-Samuelson matrix are well understood. For example, it has a negative
element in each column.

If A does not have full rank, then either it is trivial (A = 0) or it has rank one. If

it is not trivial, then A* = AT /||A||2, where ||A]| = fZiZj aj;. In this case the column

spaces of A and AT both have rank one, and m = M since the two rows of A are collinear.
Hence the economy’s production possibility frontier is linear and output prices are tied
down by the marginal rate of technical substitution, just as in the Ricardian model. Since
each sector uses factors in identical proportions, the full employment conditions
determine the admissible direction for endowment changes, just as in the Solow model.

These facts imply that A can be interpreted as a Stolper-Samuelson matrix only
for price changes that maintain the fixed ratio m = p,/p, = M. In fact, this price ratio
is the one at which there is a factor intensity reversal for an economy with a general
technology matrix A(w,r). Likewise, the capital-labor ratios in each sector are identical,
and only changes in the economy’s endowments keep the capital-labor ratio in the one-
dimensional subspace spanned by a,x/a,, = K/L = a,x/a,; Again, for an economy
with a more general technology matrix A(w,r), this is the unique capital labor ratio that
characterizes both sectors.

Hence the Stolper-Samuelson matrix is an array that maps the components of the
directional derivative of price changes onto factor price changes. Now the weights of
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these four components depend upon the relative prices of the two goods and the
economy’s aggregate capital-labor ratio. Its transpose the Rybczynski gives the

components of the directional derivative of endowment changes onto output changes.
5. Empirical Analyses

We begin this section with some simple comments about what we can and cannot
observe. The input-output data consist of values denominated in current dollars. Hence
we cannot observe prices and quantities independently. We follow the convention
established by Leontief (1951, p. 72) himself, who noted, “In order to obtain the
corresponding physical amounts of all commodities and services, we simply define the
unit of physical measurement of every particular type of product so as to make it equal to
that amount of the commodity which can be purchased for one dollar at prevailing
prices.” The direct factor uses in each sector are measured in person-years for different
categories of labor and in current dollars for the stocks of capital. Hence we observe
physical quantities of labor, but we do not observe factor prices. We measure capital as
the stock of fixed assets in each sector, measured in current dollars; hence this measure is
fundamentally different from that for labor since it depends upon current prices. Again,
we observe stocks of capital but not rates of return.

The input-output data are published by the Department of Commerce’s Bureau of
Economic Analysis (BEA). We use data that are disaggregated into 63 sectors.> The
sum of each column of the input-output matrix is the gross industry output in each
industry measured in millions of current dollars. The data on direct factor uses for capital

are from the BEA and those for labor are from the Department of Labor’s Bureau of

® The data are available at this URL http://www.bea.gov/industry/io_annual.htm
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Labor Statistics (BLS).® We normalize these data by dividing every element in a column
by gross industry output. Hence we measure the direct and indirect factor requirements
needed for one million dollars of industry output. In essence, we have set the price of
each unit of output to $1 million or the corresponding physical quantity to the amount
that can be purchased for $1 million. The distinction between price and quantity is
important since we consider separately the impact of endowment changes on the quantity
of outputs, and the impact of price changes on factor payments.

Let B be the f x £ matrix of direct factor inputs per unit of gross output, and
C be the corresponding the ¢ x £ be matrix of intermediate inputs. A = [B(I — C)™1]T
is the £ x f matrix of direct and indirect factor inputs used in our empirical analysis.

The zero-profit condition implies that factor payments w satisfy:

There is an interesting interpretation of this condition in when € > f. In this case, the
unit vector will almost surely not lie in the column space of A. In fact, this is exactly the
situation of an econometrician trying to find the best fit for a left-hand variable (our unit
vector of assumed output prices) onto the column space of the explanatory variables (the
direct and indirect factor uses in every sector). We will use this intuition in the next sub-
section to describe how the model with six mobile factors fits the data.

Since factor prices satisfy w = A“‘{)l1 + (I — A*A)z, we may write
X

A — AAt
P=AAT

® The data on labor inputs are available at this URL http://www.bls.gov/oes/current/oessrci.htm  The
Appendix describes exactly how we construct these aggregates.
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This vector is the best estimate of the prices that are consistent with the zero-profit
conditions that underpin our analysis. The projection matrix AA* maps any ¢ x 1 vector
into the closest vector in the column space of the direct and indirect factor requirements.
Hence, if £ > f, then our best estimate of the national revenue function is

r(p,v) = pTA* v (4)

and the shadow of the factors is 7, (p, v)T = A™p = A’fbl<1 since AYAAT = A*.

A. All Factors are Mobile
We first analyze a model where all factors are mobile and the number of

sectors £ = 63 exceeds the number of factors f = 6 . Since changes in endowments are

unrestricted in this case, we prefer to interpret the elements of A*T as the Rybczynski
derivatives.  Each column of this matrix reports the impact of an increase in an
endowment on the economy’s vector of outputs under the assumption that goods prices
and thus factor rewards are constant. Each column sum (of this transposed matrix) gives
the shadow value of the factor in question.

For example, consider adding one additional Management and Technical person
year to the economy’s fixed resources. The column sum of the Rybczynski matrix shows
that the shadow value of this worker is $0.145 x 106, and the logic inherent in (4)
indicates that this sum is an estimated annual salary. The services of our hypothetical
new worker will be distributed throughout the economy, and other factors will be
reallocated to maintain constant factor proportions within sectors. The reported change
in output in each sector then reflects this complete re-allocation of resources. In
Heckscher-Ohlin theory, these effects are an indication of revealed comparative

advantage. If domestic absorption is a fixed share of world production, those sectors
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whose outputs increase most will also contribute most to net exports. Rybczynski effects
thus capture the impact of changes in endowments on the pattern of trade.

There is no easy way to report a table of 378 = £ X f = 63 X 6 numbers. In fact,
no one has ever calculated an actual Rybczynski matrix before. Table 1 follows the

tradition in trade theory and reports the strongest positive effect for each factor.

Table 1: Strongest Positive Rybczynski Effects

An increase in one unit of this factor: Increases output most in: Change
Capital Real estate 39
Management and Technical Occupations ~ Computer systems design 75

and related services

Education and Health Care Occupations Educational services 21
Food Service and Maintenance Food services and drinking 31
Occupations places

Sales and Clerical Occupations Retail trade 37
Production and Transportation Transit and ground passenger 20
Occupations transportation

Note: Capital is measured in millions of dollars. All other factors are measured in
person years. Output effects are in thousands of dollars per year.

A million dollar increase in capital will increase output in real estate by $39 thousand, its
strongest effect in any sector. Indeed, the capital intensity of real estate is the highest

across all sectors in the economy; it employs $9 of capital per dollar of output.
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Table 2: Strongest Negative Rybczynski Effects

An increase in one unit of this factor: Decreases output most in: Change

Capital Computer systems design -13
and related services

Management and Technical Occupations  Retail trade -30

Education and Health Care Occupations Computer systems design -7

and related services

Food Service and Maintenance Retail trade -6
Occupations

Sales and Clerical Occupations Food services and drinking -10
places
Production and Transportation Retail trade -12

Occupations

Note: Capital is measured in millions of dollars. All other factors are measured in
person years. Output effects are in thousands of dollars per year.

Table 2 reports the strongest negative effect for each factor. For example, an
increase in one Management and Technical person-year will decrease output most in
Retail Trade. These detailed effects show a much richer and more varied picture than is
typical in the literature. Hence our work stands in stark contrast to the usual approach
that reports econometric estimates of output effects; good examples of this kind of work
are Leamer (1984) and Harrigan (1995).

Such studies face serious data limitations; hence they focus on a more narrow
range of sectors, usually only manufacturing outputs. Providing an apt comparison, we
present further detail on the Rybczynski effects within the nineteen manufacturing
industries in our data. Both Harrigan and Leamer conclude that capital has a positive
effect on all manufacturing sectors, and this it is a source of comparative advantage in all
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manufacturing sectors. Table 3 presents our findings, and it identifies eight out of
nineteen sectors whose output actually decreases. For example, an extra millions dollars

of capital decreases the output of furniture and related products by $4 thousand.

Table 3: Capital’s Rybczynski Effects on the

Manufacturing Sectors
Sector Increase

Food and beverage and tobacco products
Textile mills and textile product mills
Apparel and leather and allied product
Wood products

Paper products

Printing and related support activities
Petroleum and coal products

Chemical products

Plastics and rubber products

Nonmetallic mineral products

Primary metals

Fabricated metal products

Machinery

Computer and electronic products

Electrical equipment, appliances, and components
Motor vehicles, bodies and trailers, and parts
Other transportation equipment

Furniture and related products
Miscellaneous manufacturing

BN LA O W
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Note: Capital is measured in millions of dollars. Output effects are
in thousands of dollars per year.

It is also interesting to examine the impact of an increase of one person-year of
highly skilled labor (Professional Occupations) and unskilled labor (Production and
Transportation Occupations) on manufacturing output. These effects are described in
Table 4. In contrast to the limited impact of skilled labor on only two of ten industries
reported by Harrigan (1995), we find a positive impact on fourteen industries. Indeed,

most of the industries in which capital had a negative or neutral impact, such as computer
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and electronic products, and other transportation equipment, show a very strong positive
impact from an increase in this kind of labor. This empirical finding is reassuring, since
it suggests that the United States has a revealed comparative advantage in these sectors if
indeed it is relatively abundantly endowed with highly skilled labor. Notice that many
manufacturing industries—such as apparel and furniture--actually are more strongly
affected by unskilled labor than skilled labor. Again, these rich Rybczynski effects show

the importance of human capital even in traditional manufacturing sectors.

Table 4: Labor’s Rybczynski Effects on the
Manufacturing Sectors

Manufacturing Sectors Skilled Unskilled
Labor Labor
Food and beverage and tobacco products 0 3
Textile mills and textile product mills 1 10
Apparel and leather and allied product -1 16
Wood products -2 9
Paper products 1 5
Printing and related support activities 1 8
Petroleum and coal products 1 -2
Chemical products 8 1
Plastics and rubber products 5 7
Nonmetallic mineral products 0 7
Primary metals 0 6
Fabricated metal products S 9
Machinery 11 6
Computer and electronic products 28 1
Electrical equipment, appliances, and components 9 6
Motor vehicles, bodies and trailers, and parts 6 5
Other transportation equipment 22 3
Furniture and related products 1 12
6 6

Miscellaneous manufacturing

Note: Factors are measured in person years. Output effects are in thousands
of dollars per year.
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B. The Model’s ““Statistical” Fit

We now draw our attention to the model’s overall fit. As we have emphasized,
there are important theoretical and empirical implications from assuming that that £ > f.
Since the Stolper-Samuelson matrix is the transpose of the Rybczynski matrix, the values
in Tables 1 and 2 also represent the sector which is the best friend and worst enemy of a
given factor.” They actually report the impacts on the factor payment of a change in the
price of that sector’s output. However, if we consider an arbitrary price change in a
single sector, we need to map it into the column space of the technology matrix using the
idempotent (projection) matrix AA*. Again, price changes are restricted to be directional
derivatives that lie in the column space of A. This is exactly the situation that an
econometrician faces who is trying to fit an arbitrary vector of data onto the column

space of some explanatory variables. Our “data” are the assumed price vector p = {’11
X

and our explanatory variables are the factor uses in every sector, without a constant term.
Our estimated coefficients are the shadow values of the factors we are analyzing.

Table 5 presents the results of this simple “estimation.” Capital is measured in
millions of dollars, so the “estimated reward” of $136,408 represents an economy-wide
gross rate of return of 13.6%. All other factors are measured as person years, so the

estimated coefficients are annual salaries. We find all six shadow values are significantly

" The best friend of a factor is the good whose marginal price effect on that factor’s reward is maximal. In

our theory, it is the index corresponding to maximal element of a row of A". The worst enemy of a factor
is analogously the good whose marginal price effect on a factor’s reward is minimal (and usually negative).
A classic reference is Ethier (1984).
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different from zero for a test of size 5%.2 However, Education and Health Care
Occupations has an estimated wage that is negative.

This negative shadow value is the best indication that something is amiss in
reconciling the direct factor requirements for the different sectors with the input-output
data on intermediate inputs. Table 5 gives the factor prices that best fit output process
under the assumption that payments to capital and the five types of labor exhaust value
added. If we had not tried to use an exhaustive list of factors, then the zero-profit
conditions that are at the heart of the estimation would not be germane. We could not
predict any factor price because the unobserved vector of costs imposes no discipline on a
model that is based on the definition of unit-value isoquants. Much of the literature on

trade theory that measures factor content makes this mistake.

Table 5: OLS Estimates of Factor Rewards

Factor Reward Newey-West
Standard Errors

Capital $136,408** $25,939
Professional Occupations $145,019* $56,833
Education and Health Care Occupations -$28,744%* $6,315
Food Service and Maintenance Occupations $21,458* $8,908
Sales and Clerical Occupations $64,733* $21,540
Production and Transportation Occupations $46,829* $9,696

Note: Capital is measured in millions of dollars. All other factors are measured in person years.
The regression R? = 0.935 and the number of observations n = 63.

* denotes significance for a test of size 5%

** denotes significance for a test of size 1%

& All the standard errors reported in this paper have been adjusted for heteroscedasticity using the Newey-
West correction with k = 3.
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A theoretical purist might assert stubbornly that there is nothing wrong with a
model that predicts a negative shadow value for some factor. The value added in each
sector includes information about indirect business taxes. It is easy to show in a simple
model where all producer prices are positive that some factor rewards may be negative
because the Stolper-Samuelson affects magnify tax wedges. The importance of our
analysis is to show that the negative shadow value for education and healthcare
occupations is no statistical fluke.

In fact, our technique of deriving the national revenue function and then
estimating the shadow value of a factor is a way of confirming the validity of an
important aspect of national income accounting. It is a commonplace that one cannot use
the product approach to measure the services produced by many public sector employees.
We tell our students in introductory courses in macroeconomics that the “output” of a
policeman or a public school teacher corresponds exactly to what that worker earns. This
accounting fiction maintains the identity between the income and the product approaches
in national accounts. But it is quite a different exercise to ask the question, “What is the
value of another public service employee, taking all factor prices including the pattern of
indirect taxation as given?” The ruthless logic of the Rybczynski theorem reminds us
that every extra employee must draw off resources from other sectors. Given how direct
factor requirements have been measured, there is no guarantee that the overall effect of
the reallocation of resources in the economy will be positive too.

Table Al in the appendix shows the five types of labor that are aggregated into
the rubric “Education and Health Care Occupations.” To understand the seeming

anomaly of a negative shadow value, we examined a more detailed model in which all
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twenty-two types of labor and also capital were mobile between sectors. In that case, the
shadow values of only two types of labor in the rubric “Education and Health Care
Occupations” are quite negative: a person-year of “Community and Social Services
Occupations” is worth —$0.894 x 10°; and a person-year of “Healthcare Practitioners
and Technical Occupations” has value —$1.546 x 10°. In the final subsection, we will
show some evidence that indicates that the negative shadow value of Community and
Social Services Occupations may have to do with a highly negative return on sector-
specific capital used in “Social Assistance.” In essence, a worker in social services
actually uses a lot of sector-specific subsidies.

Again using the detailed taxonomy, we see that that the shadow value of a
“Healthcare Support Occupations” (grouped with “Food Service and Maintenance
Occupations™) is $3.081 x 108, much higher than the salary of all the other occupations
in that broad rubric. The correlation between the direct and indirect factor uses of
“Healthcare Practitioners and Technical Occupations” and “Healthcare Support
Occupation” across the 63 sectors in the American economy is an extraordinarily high
0.97. Itis the highest among all 231 = 22 x 21/2 factor pairs. (By way of comparison,
the analogous correlation between Capital and Management is -0.12, and the average of
all such correlations in the American economy is 0.08.) This is a strong indication that
these two types of labor are complementary within all the sectors in the economy, and it
implies that either factor exhibits a very strong magnification effect. Perhaps it is
reasonable to state that an increase in a matched pair of the detailed occupations
“Healthcare Practitioners and Technical Occupations” and “Healthcare Support

Occupations” has a shadow value of $3.081 x 10® — $1.546 x 10° = $1.535 x 10°.
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Consider the 63 “predicted” output prices p = AA*1. Imposing the assumption
that they are independently distributed, we performed a likelihood ratio test based on the
null hypothesis that all the prices were unity.® When there are only five mobile factors,
we reject this hypothesis for a test of size 5%; the marginal significance level is 0.037.
Following Leontief (1951), almost every scholar working with input-output accounts has
imposed the (often implicit) normalization that the price of each sector’s output is unity.
To the best of our knowledge, no one has ever actually tested whether a model with
several mobile factors is logically consistent. This test is perhaps one of our more
important empirical contributions.*

Consider a given vector of endowments v measured without error. Since output
prices must lie in the column space of the technology matrix, the model gives a “best
estimate” for national revenue as described in (4). Our calculations show:

r(p,v) = $10.86 x 1012,
Actual GDP in 2003 was $11.11 x 1012, Thus aggregation bias when we decided to use
five broad types of labor for expositional simplicity has caused us to underestimate GDP
by 2.3%." The reader who is uncomfortable with pseudoinverses might prefer to think
of our having estimated the entire national revenue function up to six parameters: the six
shadow values for factors reported in Table 5 are coefficients from a regression of goods
prices on factor uses without a constant term. Although our estimate “misses” actual

national revenue slightly, it still describes 378 Rybczynski effects that are quite plausible.

® Qur test statistic was (1/62) [¥;(p; — 1)? — X:(p — 1)?], where 62 is the maximum likelihood estimate
of the population variance of the prices and p is the sample mean.

191n the case with 22 types of labor, the test statistic had a p-value of 0.25, and aggregation at that level
does not seem to cause undue statistical mischief.

1 When we redo the calculations with 22 types of labor, we underestimate GDP in 2003 by only 0.8%.
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The categories for value added that actually appear in the input-output table itself
are compensation for employees, gross operating surplus, and taxes. Fisher and Marshall
(2008a) use these data to define factor usages for each of forty-eight sectors for thirty-
three different OECD countries. Every such technology matrix is row stochastic because
it reports simply cost shares for each industry. That model fits perfectly because then
Aw = p has an exact solution for p = 1 in which w = 1 too. In that case, there is no
difference between estimated and actual GDP. We found this rarefied version of the
model less than satisfactory for our work here for three reasons. First, we wanted to
follow the mainstream of the literature by reporting effects having to do with several
different kinds of labor measured in physical units of person-years. This is the “natural”
approach, and it is much more illuminating than focusing on only one type of aggregate
labor. Second, it is not very interesting to report that the shadow value for a dollar’s
worth of any input is automatically one dollar; hence our current approach allows us to
“estimate’ the shadow values of factors in an interesting way. Third, we wanted to
remind the profession that the usual practice of incorporating data on factor usages from
different sources than the input-output table itself imposes some cost in terms of the
model’s own logical consistency. We are happy to report that the model with
disaggregated labor performs well enough from the perspective of national income
accounting in the closed economy.

We can also use the estimated national revenue function to predict the economy’s
output vector. This is analogous to the typical in-sample predictions that an

econometrician might perform. We are interested in

y=r,@Gv)" =4ty
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There is nothing in the construction of the Rybczynski matrix that guarantees that the
actual outputs by sector will be the vector of minimum norm that satisfies the full
employment conditions. The logic inherent in Fig. 2 shows that any actual output vector
can be decomposed into two parts: one that matters for national revenue and another that
moves along the economy’s production possibility frontier. One can think of these two
components as a variance decomposition of disaggregated outputs for the economy. It is
natural to ask, “What fraction of the variance in actual output is predicted by the model?”

The mathematical formulation of this question is, “What is the ratio ||9]|/]ly]|?”
Since the unexplained part of output uin Fig. 2 is orthogonal to y, this is exactly
analogous to a traditional measure of goodness of fit in a regression where the data have
mean zero. The variance decomposition for the actual vectors of disaggregated output in
2003 shows that our model explains a fraction 0.47 of the variability in the data. This
goodness of fit is quite solid for a “regression” using cross-sectional data.

Fig. 3 gives the scatter plot of our predictions against the in-sample values. It is

obvious the model fits well enough and that there may be heteroskedasticity in our data.
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Fig. 3: Output by Sector in 2003
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The (usual and prosaic) regression line shown in this figure is represented by

y; = 10431+ 0.963x;, R? = 0.2,n = 63
(40726) (0.314)

where the asymptotic standard errors in parentheses are adjusted for heteroscedasticity
using the Newey-West corrections. The natural F-test imposes the two restrictions that
the constant is zero and the slope is unity. Its statistic has a value of 0.035, with an
asymptotic p-value of 0.982. Hence, the model predicts well in sample.

We also present an out of sample prediction for 2004, using the pseudoinverse of
the 2003 technology matrix and the endowment vector for 2004. We hold prices constant
by deflating each sector’s output in 2004 by an industry level price index. Figure 4

depicts the results of this exercise.
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Fig. 4: Output by Sector in 2004
Billions of 2003 Dollars
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The line in this figure is represented by

y; = 12041+ 0.978x;, R? = 0.2,n = 63
(41548)  (0.318)

The natural F-statistic has a value of 0.056, with an asymptotic p-value of 0.978. Hence,
the model predicts very well out of sample too.

The main point of this sub-section is that we have a very good mapping from the
endowment vector to outputs by sector. It is not a magic bullet because the model fit is
far from perfect. But the logic inherent in the Rybczynski effects depicted in Figure 2 are
borne out by our analysis of data from the American economy, both in sample in 2003
and out of sample in 2004. This is the first time anyone has ever computed an entire
Rybczynski matrix. In essence, we are bringing life to an older literature in trade theory

that died from a lack of empirical relevance.
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C. Sector-Specific Capital

This subsection allows us to show the empirical power of our general theoretical
approach. The specific factors model—also called the Ricardo-Viner Model--has an
important place in trade theory and in applied general equilibrium studies. It is
particularly apt for doing comparative statics because the national revenue function is
well behaved. It is also used in the study of the political economy of taxation since the
effects of distorting taxes on specific factors are simple to model.

Now the transpose of the technology matrix has this form:

_bK(l),l O O
0 0
AT = 0 0 bK(f),f’ [l — C]—l
b%l XX b.l‘g
b51 wen bsf

Where by, is the direct unit input requirement of specific factor K (i) in the i —
thsector for i € {1,...,63} and b;; is the direct unit input requirement of mobile factor
i insector j. C is again the economy’s input-output matrix. The five mobile factors are
the different kinds of labor that we are analyzing, and the 63 specific factors are the
measured uses of capital in each sector. Thus we are assuming that capital is not mobile,
and there is no such thing as an economy-wide rate of return on capital. Notice that this
model has more factors than goods since f =68 >63 =+¢. Now our preferred
interpretation of A% is as a Stolper-Samuelson matrix. It has f X £ = 68 X 63 =
4284 elements. Each measures the effect of increasing the price of some good on a

factor’s reward. Of course, there is no simple way to summarize all these numbers
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The properties of the pure Ricardo-Viner model are well known.** For example,
an increase in the price of the i — th good will raise the return of the specific factor in
that sector. But there is an important subtlety in empirical work. The technology matrix
actually incorporates the direct and indirect uses of all factors. So every sector requires
the use of every factor—mobile and specific—because of the effect that intermediate
inputs have on factor content. Hence, it is not the case that an increase in the price of a
sector will automatically lower the return to the specific factors used in all the other
sectors. In fact, it is not even true that an increase in the price of one sector will have its
strongest impact on that sector’s specific factor. In our data, an increase in the price of
real estate actually has its strongest effect on the reward for specific factor called “capital

used in educational services.”*

In every other case, the strongest effect of a price
increase is on the specific factor used in that sector.

We would like to reiterate an important theoretical observation that arose in the
discussion of the Solow model as the leading example of the case where there are more
factors than goods. The Stolper-Samuelson effects we report are not the derivatives of
the national revenue function of a model with mobile factors and a smooth neo-classical
production function in each sector; hence, they do not correspond to the textbook
treatment of the comparative statics of this model. We have been very explicit about
holding factor uses constant when output prices change; that is why we derived the
national revenue function for a Leontief technology and then appealed to the envelope

theorem to assert that our results were germane the effects of price changes in a more

general setting. In the usual treatment of the Ricardo-Viner model, the mobile factor

12 Feenstra (2003) has a very nice exposition.
3 A plausible conjecture is that local school districts capture the effects that pricier real estate has on the
tax base for local expenditures.
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flows into the sector whose price has increased. If output in that sector changes at all,
then the unit input requirements of the fixed factor must change too. Hence the textbook
model really captures two effects: (1) that of a price change; and (2) that of an ancillary
reallocation of resources between sectors. Only the first one is a true Stolper Samuelson
effect, and that is what we report here. Also, only the first effect has a natural
interpretation as the dual of a Rybczynski derivative. We feel that our analysis is in
keeping with the spirit of traditional trade theory.

Tables 6 and 7 present the Stolper-Samuelson effects on the five mobile factors.
The table lists five labor aggregates, with the first row corresponding to most skilled
category and the last row to the least skilled. Now a factor’s best friend is the sector
whose price increase has the greatest positive effect on its reward, and its worst enemy is
the sector with the greatest negative such impact. Table 6 shows that skilled labor’s best
friend is the sector called “Computer Systems Design and Related Services,” and Table 7
shows that skilled labor’s worst enemy is “Legal Services.” The best friend of the least
skilled labor (Production and Transportation Occupations) is “Furniture and Related

Products,” and its worst enemy is Construction.
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Table 6: Positive Stolper-Samuelson Effects
on the Mobile Factors

The best friend of this factor: Is this sector Reward

Professional Occupations Computer systems design 114
and related services

Education and Health Care Legal services 95
Occupations

Food Service and Maintenance  Food services and drinking 41
Occupations places
Sales, Clerical, and Legal services 89

Construction Occupations

Production and Transportation  Furniture and related 50
Occupations products

Note: Output prices are measured in millions of dollars. Factor rewards
are measured in thousands of dollars per year.

Table 7: Negative Stolper-Samuelson Effects
on the Mobile Factors

The worst enemy of this factor: Is this sector Reward
Professional Occupations Legal services -88
Education and Health Care Construction -31

Occupations

Food Service and Maintenance Legal services -43
Occupations

Sales, Clerical, and Construction Social assistance -20
Occupations

Production and Transportation Construction -31
Occupations

Note: Output prices are measured in millions of dollars. Factor rewards
are measured in thousands of dollars per year.
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The interpretation of the magnitudes of the numbers reported in these tables is
straightforward. Imagine a million dollar increase in the price of some sector’s output.
Then the Stolper-Samuelson effect is an increase to the reward for a person-year of the
factor in question. Thus a million dollar increase in net output of Computer Systems
Design and Related Services increases the reward to professional occupations by $114
thousand per year. Likewise, a million dollar increase in the price of legal services
decreases the reward to professional occupations by $88 thousand per year.

We conclude the empirical analysis in this subsection with an examination of the
effects that changes in output prices have on some specific factors. We examine the four
largest sectors in our data and also the sector called Petroleum and Coal Products because
the effect of an oil price shock is topical. Table 8 reports our results. It is typical that a
price increase raises the rate of reward of the specific factor used in that sector, and some
sectors exhibit a magnification effect for their own specific factors. It is also interesting
to note that there are moderately strong negative effects of output price increases to the
rewards of some specific factors used in other sectors of the economy. For example, a
million dollar increase in the price of retail trade lowers the reward to sector-specific

capital in Construction by $489 thousand.
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Table 8: Selected Stolper-Samuelson Effects
on Some Specific Factors

This Sector Maximal Effect on Reward Minimal Effect Reward
(GDP Share) Capital Specific to on Capital
this Sector Specific to this
Sector
Real estate (11%) Educational services 205 Legal services -293
State and local State and local 304 Miscellaneous -4
general general government professional,
government scientific, and
(10%) technical services
Retail trade (8%)  Retail trade 1340 Construction -489
Food and Food and beverage 2743 Furniture and -208
beverage and and tobacco related products
tobacco products  products
(3%)
Petroleum and Petroleum and coal 2299 Truck -128
coal products products transportation
(1%)

Note: Output prices are measured in millions of dollars. Factor rewards are measured
in thousands of dollars per year.

In this case, it is not possible to describe how the model of the specific factors
actually fits the data because it fits them perfectly. In the Ricardo-Viner model, we have
sufficiently many free parameters--the shadow values of all the economy’s 68 factors--to
fit the hypothesized prices perfectly. The predicted outputs by sector are exactly equal to
the actual outputs, output prices are identically p = 1, and predicted national revenue is
exactly equal to actual national revenue in 2003. Hence, Leontief’s system of input-

output accounting is completely consistent if one is willing to define at least one factor
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that is specific to each sector. In essence, this assumption allows one to calculate sector-
specific rates of return for each type of measured capital, and one can fit the factor cost
equations identically. The consequence of all this mathematical purity is that factor
prices are not uniquely determined. The Stolper-Samuelson matrix picks out the unique
vector of factor prices that are orthogonal to the unit cost functions for all active sectors.
Then Shephard’s Lemma guarantees that factor demands will be consistent with actual
endowments and thus full employment. Still, the technology matrix is not independent of
endowments in general. We think this is a small price for using the power of general
equilibrium in characterizing the economy’s supply side.
D. The Shadow Values of the Mobile Factors in the Model of Specific Factors

We have used the Ricardo-Viner model to describe the Stolper-Samuelson effects
in the national economy. These effects are exact; they are not estimates. The particular
solution w = A*p = A*1 is the vector of minimum norm in the space of factor prices
that is consistent with the zero-profit conditions. All possible factor prices are:

w=At1+({U—-A%A)z

where zis arbitrary. Since vT(I — ATA)z = 0, we can interpret Aw = (I — A*A)z as
the set of all possible changes in factor prices such that vTAw . Since each element of the
endowment vector is positive, it is not possible for every element of Aw to be strictly
positive. Hence these factor price changes cannot be Pareto ranked; any movement away
from the particular solution w benefits some factor only at the expense of another.

Still, the particular solution for factor prices corresponds with aggregate factor
demands that maintain full employment. Hence the shadow values of the five mobile

factors in the Ricardo-Viner model have economic significance, and they beg comparison
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with the model where all factors are mobile. Table 9 makes this contrast. (The
corresponding rates of return to the 63 kinds of sector-specific capital are presented in
Table A2 in the Appendix.) Since the shadow values in the Ricardo-Viner model are one
of many possible solutions, we would not expect them to correspond with the estimates in
our first model. In that case, some of the payments attributed to labor almost surely
represented returns to sector-specific capital.

Indeed, Table 9 allows us to reconsider the most anomalous finding in that earlier
exercise. For example, the shadow value of “Education and Health Care Occupations” in
the Ricardo-Viner model is $54,595; this is quite different from the statistically
significant negative value -$28,744 reported in Table 5. Table A2 in the Appendix shows
large negative returns to capital specific to the two sectors Educational Services and
Social Assistance, which together employ 46% of the 18.3 million workers in the broad
rubric “Education and Health Care Occupations.” The most negative rate of return on
capital specific to any sector is that in “Educational Services”, which costs the national
economy $2.08 million annually for every $1 million increase in its stock. Likewise the
rate of return on capital specific to Social Assistance is -46%. Perhaps the negative wage
estimate in the first model confounded a negative return on sector-specific capital with
the shadow value of a mobile factor. This finding may be reassuring to proponents of the
view that teachers—not bricks and mortar—matter for educational reform that will have a

positive effect on national income.
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Table 9: The Shadow Values of Types of Labor in the Two
Different Models

Factor Ricardo-Viner Mobile Factors
Management and Technical Occupations $36,987 $145,019
Education and Health Care Occupations $54,595 -$28,744
Food Service and Maintenance Occupations -$2,799 $21,458
Sales and Clerical Occupations $120,499 $64,733
Production and Transportation Occupations $43,539 $46,829

6. Conclusion

This paper has made two main contributions. The first was theoretical, and the
second was empirical. Our theoretical contribution was to show that the input-output
accounts contain all the information necessary to describe the relationship between factor
endowments and output supplies. Since the Rybczynski effects have to do with quantities
and assume fixed output prices and factor rewards, this result is not so much of a surprise
when it is stated at this level of generality. But it is quite startling that input-output
accounts also contain complete information about the relationship between output prices
and factor rewards. The duality between the Rybczynski and Stolper-Samuelson matrices
is well understood. But no one has ever shown an explicit form for the national revenue
function before. This applied theoretical contribution has important theoretical and
empirical implications.

Our empirical contributions were to adumbrate some of the details of the supply
side of the American economy in 2003. It is not much of a surprise that capital’s gross

rate of return was 13.6% in that year or that an million dollar increase in the costs of
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refined petroleum products has its strongest negative effect (-12.8%) on the reward to
capital specific to Truck transportation. But the very plausibility of these results shows
that our theory has the ring of truth behind it. No one has ever used the Moore-Penrose
generalized inverse in applied general equilibrium theory before. Most pieces of
mathematical software have an easy function that readily computes the unique Moore
Penrose pseudoinverse of any non-null matrix. Now economists can use that function in
many different applications.

Our work has advanced input-output accounting significantly by showing the
exact relationship between these accounts and the national revenue function. Thus any
scholar in macroeconomics interested in the wealth effects of supply-side shocks will find
ready use for the techniques that we have developed here. For example, a neutral
technology shock in a small open economy can be modeled as a parametric change in
endowments. Then the national revenue function will show the exact output effects for a
fixed vector of prices. Also, trade economists and development economists, who
regularly work with input-output accounts, can now evaluate whether the levels of
aggregation for factor inputs used in their work are innocuous. Indeed, economists might
well treat disaggregated models with only two factors of production with some caution
until they examine the exact properties of the corresponding national revenue function
with greater care.

In sum, our work and the empirical tools we have created will have broad appeal
to trade theorists, to macroeconomists, to development economists, to labor economists,

and to public finance economists. Any field in our discipline that needs to explore the
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relationship between factor prices and factor rewards or that between resources and

output supplies can build on our methods.
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Appendix

This Appendix serves two purposes. First, it supports some of the empirical
observations in the text. Second, it gives the complete lists of factors and also of sectors
that characterize our data. We urge the reader to glance at the rubrics in Tables Al and
A2 to get a sense of the level of aggregation that we have used.

The Bureau of Economic Analysis publishes annual input-output tables for the
U.S. economy disaggregated into 65 sectors by the North American Industrial
Classification System. Data on factor uses are published in a consistent manner with a
few exceptions. The input output data describe four government sectors, including
government enterprises for federal and for state and local government. To match
endowment data, these four sectors were merged into two by combining the general
government and government enterprises at the federal level and at the state and local
level. Hence our study is based on 63 sectors, including two government sectors.

Data on labor factor inputs by sector are taken from the Bureau of Labor Statistics
November 2003 Occupational Employment and Wage Estimates at URL
http://www.bls.gov/oes/oes 2003 _n.htm. These data are categorized by 2, 3 and 4 digit
NAICS industry, but do not include the self-employed. The source of this data, the
Occupational Employment Statistics survey, categorizes workers into about 770
categories which are aggregated into 22 broad classifications. In order to make these
extensive data more manageable we have further aggregated the data into five categories

that correspond to each of the two-digit rubrics summarized in Table Al. The labor data

50



were easily matched to the input-output data since both follow the NAICS. However, the
OES data did not include employment in the three digit NAICS classification 111 Farms,
for which we substituted OES data for the three-digit NAICS 115 Support Activities for
Agriculture and Forestry.

Data on capital inputs by sector are taken from the Bureau of Economic Analysis
Table 3.1ES. Current Cost Net Stock of Private Fixed Assets by Industry for the private
sector and from Table 7.1 B Current Cost Net Stock of Government Fixed Assets for the
government sector. The out-of-sample prediction presented in Figure 4 computes the
2004 endowment vector based on the BLS labor input data described above in 2004. The
capital stock for 2004 is computed by increasing each sector’s capital in 2003 by the
quantity index published in the Bureau of Economic Analysis, published in Table 3.2ES
for the private sector and Table 7.2B for the government sector. Industry output for 2004
is taken from the BEA input output data for 2004, deflated by the industry level price

indexes also published by the BEA.
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Classification

Aggregate 1

11-0000
13-0000
15-0000
17-0000
19-0000

Aggregate 2

21-0000
23-0000
25-0000
27-0000

29-0000

Aggregate 3

31-0000
33-0000
35-0000
37-0000

39-0000

Aggregate 4

41-0000
43-0000
45-0000
47-0000
49-0000

Aggregate 5

51-0000
53-0000

Table Al: The Labor Aggregates

Description

Professional Occupations

Management occupations

Business and financial operations occupations
Computer and mathematical occupations
Architecture and engineering occupations
Life, physical, and social science occupations

Education and Health Care Occupations

Community and social services occupations
Legal occupations
Education, training, and library occupations

Arts, design, entertainment, sports, and media
occupations
Healthcare practitioners and technical occupations

Food Service and Maintenance Occupations

Healthcare support occupations
Protective service occupations
Food preparation and serving related occupations

Building and grounds cleaning and maintenance
occupations
Personal care and service occupations

Sales, Clerical, and Construction Occupations

Sales and related occupations

Office and administrative support occupations
Farming, fishing, and forestry occupations
Construction and extraction occupations
Installation, maintenance, and repair occupations

Production and Transportation Occupations

Production occupations
Transportation and material moving occupations

Total Employment (person years in 2003)

Employment
Share

13.9%

5.1%
4.0%
2.2%
1.8%
0.9%

14.4%

1.3%
0.7%
6.2%
1.2%

4.9%

18.7%

2.5%
2.3%
8.1%
3.4%

2.3%
37.6%

10.6%
17.8%
0.4%
4.8%
4.1%

15.3%

8.0%
7.4%

127,174,490
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Table A2: Rates of Return
on Sector-Specific Capital

Sector Return
Farms 14%
Forestry, fishing, and related activities 70%
Oil and gas extraction 16%
Mining, except oil and gas 11%
Support activities for mining 11%
Utilities 13%
Construction -103%
Food and beverage and tobacco products 41%
Textile mills and textile product mills -T%
Apparel and leather and allied product -15%
Wood products -2%
Paper products 23%
Printing and related support activities 3%
Petroleum and coal products 34%
Chemical products 56%
Plastics and rubber products 26%
Nonmetallic mineral products 24%
Primary metals 19%
Fabricated metal products 18%
Machinery 18%
Computer and electronic products 21%
Electrical equipment, appliances, and components 51%
Motor vehicles, bodies and trailers, and parts 65%
Other transportation equipment 30%
Furniture and related products 3%
Miscellaneous manufacturing 49%
Wholesale trade 46%
Retail trade -107%
Air transportation 12%
Railroad transportation 4%
Water transportation 19%
Truck transportation 32%
Transit and ground passenger transportation -14%
Pipeline transportation 11%
Other transportation and support activites -87%
Warehousing and storage -27%
Publishing industries (includes software) 98%
Motion picture and sound recording industries 60%
Broadcasting and telecommunications 19%
Information and data processing services 67%
Federal Reserve banks and credit intermediation 32%
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Securities, commaodity contracts, and investments
Insurance carriers and related activities

Funds, trusts, and other financial vehicles

Real estate

Rental and leasing services and lessors of intangible assets

Legal services

Miscellaneous professional, scientific, and technical
services

Computer systems design and related services
Management of companies and enterprises
Administrative and support services

Waste management and remediation services
Educational services

Ambulatory health care services

Hospitals and nursing and residential care facilities
Social assistance

Performing arts, spectator sports, museums, and related
activities

Amusements, gambling, and recreation industries
Accommodation

Food services and drinking places

Other services, except government

Federal government

State and local government

92%
36%
12%
8%
27%
264%
185%

-716%
23%
-114%
8%
-208%
45%
-6%
-46%
35%

31%

3%
95%
27%
25%
11%

Note: Each return is the shadow value for national income of a stock

of one million dollars of sector-specific capital.
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