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Abstract

Armington Assumption in the context of multi-regional CGE models is commonly
interpreted that the same commodity with different origins is an imperfect substitute of
each other. A static spatial CGE model that is compatible with this assumption and
explicitly considers the transport sector and regional price differentials is formulated. It
is shown that the trade coefficients, which are derived endogenously from the optimization
behaviors of firms and households, take the form of a potential function. To investigate
how the elasticity of substitutions affects the equilibrium solutions, a simpler version of
the model, which incorporates 3-regions and 2-commodities besides the transport sector, is
introduced. It is found that (1) if the commodities produced in different regions are perfect
substitutes, the regional economies will either be autarkic or completely symmetric, and
(2) if they are imperfect substitutes, the impacts of the elasticity on trade coefficients as
well as the closure errors of model solutions are not necessarily monotonic and sometimes
very sensitive.
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1 Introduction

According to the traditional trade theory (e.g. Samuelson (1953)), the phenomenon known as
”cross-hauling” or ”two-way trade” may not arise under perfect competition. On the contrary,
it is quite common that a pair of countries trade the same commodities with each other.
Brander (1981) explains existence of cross-hauling through introducing imperfect competition
(strategic interaction among firms) into traditional trade theory. In addition to the theoretical
explanations, cross-hauling can also be interpreted from the following statistical viewpoints; 1)
every practical classification of a commodity involves great diversity in quality, 2) a country
often represents a highly aggregated area, and 3) trade statistics captures transactions in a finite
period, during which a country would seek supply of a commodity to various countries due to
seasonality and other reasons. It must be noted that the first point explains ”intra-industry
trade” of half-products that belongs to the same category as the final products.

In many multi-regional models, the potential type interregional trade coefficients are for-
mulated to accommodate the observation of cross-hauling. For example, the most popular
formulation is to assume that the quantities of interregional trade are positively related to
production (supply) capacities and negatively related to CIF prices. This kind of formulation
can be derived from Wilson’s entropy model (see Wilson (1970)). However, the problem is that
such kind of formulations is based upon analogies in physics or on statistical principles, they
do not provide a theoretical explanation from the view of a firm’s or individual’s rational and
deterministic decision making. Therefore, when such formulation is used in economic models,
some kind of inconsistency may take place.1 On the other hand, in the CGE literatures, the
widely used method to justify the phenomenon of cross-hauling under perfect competition as-
sumption is to employ the Armington assumption, which assumes that the same commodity
produced in different origins is an imperfect substitute of each other. The assumption of per-
fect competition, to some extent, is out of touch of economic reality we observed in the real
world. In this regard, an imperfect competition approach would be more preferable in CGE
model to justify the existing of cross-hauling. However, this requires additional information on
industry agglomeration (number of firms) as well as scale economies (data about fixed cost) for
the model calibration, which is generally, sometimes extremely difficult to be obtained. This is
particularly true when developing economies or relatively small regions are studied. In addi-
tion, the statistical reasons of cross-hauling described above seem difficult to be explained by
imperfect competition. Therefore, in so many spatial CGE (SCGE) models, perfect competi-
tion and Armington assumption are still the most popular and standard assumptions for CGE
modelers.

The Armington assumption is easy to use and also can justify the existing of cross-hauling
under perfect competition. However, it seems that the relationships among the Armington
elasticity, trade coefficient, spatial price equilibrium (SPE) and model solutions have not been
carefully clarified yet in the existing SCGE literatures. One of the considerable reasons is that
the existing studies tend to regard the transport sector as an ordinary service sector or imaginary
transport agency that requires no resource for producing transport services (see Miyagi and

1Meng and Ando (2005) shows that very similar potential type interregional trade coefficients can be logically
derived from the economic principle of firms’ (individuals’) deterministic decision making under the framework
of multiregional input-output framework, rather than from the vague and irrelevant concepts of social physics.
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Hongbu (1993) and GTAP 2 (1997)). However, the problem is that transport conditions, fares
in particular, are a source of regional price differentials, and should be consistent with the SPE
system. Therefore, without an explicit consideration on the unique characteristics of transport
sector, it is difficult to explain how transport conditions affect trade pattern and SPE system
under given Armington elasticity, also can not show how Armington elasticity affect trade
pattern and SPE system under given transport conditions. For the justification of considering
the behavior of transport firm explicitly in SCGE model, one can refer to Harker (1987)3,
Haddad and Hewings (2001), and Macann (2005) .

In addition, using the Armington assumption requires information about elasticity of substi-
tution between goods from different regions, which is normally difficult to estimate when the
numbers of regions and sectors are large. In many existing SCGE models, such information is
always based on some other existing literatures or exogenously given by the modelers without
enough verification on its accuracy. Without significant information on the elasticity of substi-
tution, the use of Armington assumption may make the model simulation results very arbitrary.
This is another reason why the detailed estimation on the property of Armington assumption
in SCGE model is important.4

This paper proceeds as follows: In Section 2, based on the Armington assumption and the
assumption of perfect competitive market, a three-region, three-sector SCGE model is formu-
lated. The main feature of the model is that behaviors of transport sector and transportation
networks are explicitly considered. In Section 3, the computation algorithm of our SCGE model
is first discussed, and then the detailed evaluation on the impacts of the Armington assumption
is summarized according to the simulation results which are based on three different benchmark
calibrations. Section 4 gives the conclusion remarks.

2 The SCGE Model

In this section, we first introduce the basic assumptions of the model followed by detailed
description on the behavior of individual economic agents (general industries, households, and
transport sector). Then we show that (1) trade coefficient can be endogenously derived from
the deterministic decision making of firms or households under the Armington assumption; (2)
the spatial price equilibrium condition can be obtained from the cost-minimization behavior of
transport firm. Finally, the general equilibrium conditions of the entire system are summarized.
Definitions of all notations used in the formulations are given in Appendix B.

2Developed by the World Trade Analysis Center in 1992. See http://www.gtap.agecon.purdue.edu/ for
details.

3Harker (1987) introduces transport firms and networks into Takayama and Judge’s (1971) framework. This
made the SPE model a specific antecedent to development of the SCGE model.

4Due to the similar reason, Lofgren and Robinson (2002), Florenz (2005) and Ando and Meng (2009) use
perfect substitution assumption to avoid using the Armington assumption in their CGE models. This paper
will also discuss the validity of using perfect substitution assumption in SCGE model under perfect competition
assumption.
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2.1 Basic Assumptions

(1) Numbers of sectors and regions: Three industrial sectors, and three regions.

(2) Two factors of production: Two production factors of labor and physical capital are
considered, and both of them are immobile across regions and sectors5.

(3) Three types of economic agents: General industrial sectors (non-transport firms), trans-
port firms and households.

(4) Transport demand: We assume that the demand for the transport services consists solely
of derived demand that accompanies purchases of other commodities6, transport services
are supplied by the region of origin, and all transport costs are paid at origin.

(5) One final demand item: The final demand is only from households’ expenditure, and
households’ disposable income is equal to their consumption expenditure.

(6) Imperfect substitutes: Commodities produced in different regions are imperfect substi-
tutes of each other (Armington assumption).

2.2 Behavior of Economic Agents

2.2.1 General Industries (Non-transport Firms)

The (aggregate) production function of sector j in region s combines the two factor inputs, labor
Lsj and capital stock Ks

j of sector j in region s, with the intermediate inputs xrsij of commodity
i produced in region r.

Xs
j = Asj

∏

i6=3

(
∑
r

(xrsij )−ρ
s
ij )

α s
ij
−ρ s
ij (Lsj)

α s
Lj(Ks

j )
α s
Kj (1)

The upper level of the production function uses a Cobb-Douglas type technology, and the lower
level for intermediate inputs employs a CES type technology. Xs

j denotes the amount of output
produced by industry j in region i, ρ s

ij is the substitution parameter7, Asj is the scale parameter.
Notation 3 represents the transport sector. For the parameters α s

ij , α s
Kj and α s

Lj, the following
is assumed:

Assumption 1 The production function is linearly homogeneous for each region, i.e.,
∑
i6=3 α

s
ij +

α s
Lj + α s

Kj = 18.

5This assumption can easily be modified to facilitate mobile capital and (or) labor.
6For the sake of simplicity, transport services are just considered as freight transport, passenger transport is

combined with other services sector.
7The elasticity of substitution: σ s

ij = 1
1+ρ s

ij
, where ρsij ≥ −1.

8According to the Basic Assumption (4), transport services (i = 3) are not considered as one of the inter-
mediate inputs.
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As a whole, non-transport firms face the problem of choosing a combination of {xrsij , Ks
j , L

s
j} to

maximize their profits described as follows:

πsj = psjX
s
j −

∑

i6=3

∑
r

(pri + crsi )xrsij − ωsjLsj − γsjKs
j (2)

where, psj is the producer’s (FOB) price of commodity j in region s, and crsi is the transport
cost of a unit commodity i from region r to s, pri + crsi is the purchasing (CIF) price of region
s for the intermediate commodity i produced in region r. γsj and ωsj are the capital rent and
wage rate respectively.

One of the first-order conditions for equation (2) can be written as:

∂πsj
∂xrsij

=
psjα

s
ijX

s
j (x

rs
ij )−ρ

s
ij

xrsij
∑
r(x

rs
ij )−ρ

s
ij
− (pri + crsi ) = 0 (3)

According to the Chenery-Moses’s assumption, the intermediate input in physical term is
given as follows:

xrsij = arsijX
s
j = trsi a

s
ijX

s
j (4)

where arsij is the interregional input coefficient in physical term. trsi and a s
ij are respectively

the regional trade coefficient and the regional input coefficient. Based on the above equation,
equation (3) can be then simplified as the following form:

α s
ij =

∑
r(t

rs
i )−ρ

s
ij

psj
· t

rs
i (pri + crsi )

(trsi )−ρ
s
ij
· a s

ij (5)

The above solution for xrsij is available to any region r′. Thus a similar result for xr
′s
ij is

obtained:

α s
ij =

∑
r(t

rs
i )−ρ

s
ij

psj
· t

r′s
i (pr

′
i + cr

′s
i )

(tr
′s
i )−ρ

s
ij
· a s

ij (6)

Dividing (5) by (6),

trsi
tr
′s
i

=
( pri + crsi
pr
′
i + cr

′s
i

) −1
1+ρ s

ij . (7)

Summarizing both sides with r′, and using the condition
∑
r′ t

r′s
i = 1, then trade coefficients

can be derived as follows:

trsi =
(pri + crsi )

−1
1+ρ s

ij

∑
r(p

r
i + crsi )

−1
1+ρ s

ij

. (8)

The above form implies that trade coefficients depend on producer’s prices pri and transport
costs crsi .

Here, defining the composite price (market price) qsi as the weighted average CIF prices of
commodity i supplied from various regions (see Appendix A), namely,

qsi =

∑
r(p

r
i + crsi )

ρ s
ij

1+ρ s
ij

∑
r(p

r
i + crsi )

−1
1+ρ s

ij

=
∑
r

(pri + crsi )trsi (9)
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then, the profit function (2) can be rewritten as follows:

πsj = psjX
s
j −

∑

i6=3

qsi
∑
r

xrsij − ωsjLsj − γsjKs
j (10)

First-order conditions to the profit-maximization problem of equation (10), can be written
as follows:

α s
ij =

qsi
∑
r x

rs
ij

psjX
s
j

, α s
Lj =

ωsjL
s
j

psjX
s
j

, and α s
Kj =

γsjK
s
j

psjX
s
j

(11)

The above parameters are nothing but the regional input coefficients measured in monetary
terms. Since the regional input coefficients in physical terms can be given as:

a s
ij =

∑
r x

rs
ij

Xs
j

, a s
Lj =

Lsj
Xs
j

, and , a s
Kj =

Ks
j

Xs
j

, (12)

then the relationship between the monetary and the physical regional input coefficients can be
written as follows:

a s
ij =

psj
qsi
α s
ij , a s

Lj =
psj
ωsj
α s
Lj , and , a s

Kj =
psj
γsj
α s
Kj. (13)

2.2.2 Households

The source of income for households is the gross regional domestic product V s comprising rent
and wage payments:

V s =
∑

j

ωsjL
s
j +

∑

j

γsjK
s
j , (14)

where regions are assumed to be closed in terms of factor income. For simplicity, we consider
that firms and their capital are owned by the households of the region where they are located.
In addition, since tax and income transfer are ignored, the household disposable income W s

should equal V s in our model.
The aggregate utility function of households in region s is considered to depend only on yrsi ,

the amount of commodity i produced in region r consumed in region s. Then the problem of
households is to choose {yrsi } that maximize their utility

Max
yrsi

U s =
∏

i 6=3

(
∑
r

(yrsi )−δ
s
i )

βs
i
−δs
i , (15)

under the budget constraint

s . t.
∑

i6=3

∑
r

(pri + crsi )yrsi = W s, (16)

where, W sis the disposable income of households, δsi ≥ −1 is the substitution parameter, and
βsi is final demand parameter.

Parallel to the production function, linear homogeneity of the utility function is assumed:
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Assumption 2 The utility function is linearly homogeneous, viz. ,
∑
i 6=3 β

s
i = 1 .

From the first-order condition of the above problem, we can get the final demand parameter
for yrsi as follows:

βsi =
λs(pri + crsi )

∑
r(y

rs
i )−δ

s
i

U s(yrsi )−δ
s
i−1

, (17)

and the same parameter for yr
′s
i can be given as:

βsi =
λs(pr

′
i + cr

′s
i )

∑
r(y

rs
i )−δ

s
i

U s(yr
′s
i )−δ

s
i−1

. (18)

Dividing (17) by (18), the trade coefficient of final demand goods can obtained as follows:

trsi =
(pri + crsi )

−1
1+δs

i

∑
r(p

r
i + crsi )

−1
1+δs

i

(19)

The form of the above trade coefficient is very similar to the form in equation (8). For the
sake of simplicity, the following Assumption 3 is used in the model.

Assumption 3 Substitution parameters of general industries and households are dependent
only on its destination and commodity, and both of them are equal to each other. i.e.
ρ s
ij = ρsi , and δsi = ρsi .

Under the above assumption, we can get a general form of trade coefficient which includes
both intermediate inputs and final demands:

trsi ≡
T rsi∑
r T

rs
i

=

∑
j x

rs
ij + yrsi∑

r(
∑
j x

rs
ij + yrsi )

=
(pri + crsi )−σ

s
i

∑
r(p

r
i + crsi )−σ

s
i
. (20)

Defining qsi as the composite price of composite consumption
∑
r y

rs
i , equation (16) can be

rewritten as follows:

∑

i6=3

∑
r

(pri + crsi )trsi
∑
r

yrsi =
∑

i6=3

qsi
∑
r

yrsi , (21)

then the composite price can be given as the following form:

qsi =
∑
r

(pri + crsi )trsi . (22)

This is consistent with the similar equation shown in Appendix A. In addition, from the above
equation and the first-order condition, the composite consumption of commodity i by households
in region s (ysi =

∑
r y

rs
i ) can be then written as follows:

ysi =
βsiW

s

qsi
(23)
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2.2.3 Transport Sector

Under Basic Assumption (4), all demands of this sector are derived from purchases of other
commodities. Non-transport firms can determine output levels to maximize their profits, but
transport firms are required to provide transport services that are needed to fulfill demands of
other commodities and services. Thus they seek to minimize costs given the level of services.

For convenience, the following assumption concerning transport cost payments is introduced:

Assumption 4 The transport costs are paid at the origin. This scheme also applies to the
purchases by the transport sector itself. However, they do not recognize the imputed costs
that accompany their own purchases from the regions they are located9.

The total transport demands originating in region s, in monetary terms, would be given by
the LHS of the following formula:

csri (
∑

j

xsrij + ysri ) = ps3X
s
3 (24)

Under Assumption 4, these demands would be fulfilled by transport firms in region s, whose
monetary output ps3X

s
3 must exceed these demands. The cost to provide services required may

then be written as follows:

Cs
3 =

∑

i6=3

∑

r 6=s
(pri + crsi )xrsi3 +

∑

i6=3

psix
ss
i3 + ωs3L

s
3 + γs3K

s
3 (25)

The production function of transport firms is also given by equation (1). The problem is to
choose {xrsi3 , Ks

3 , L
s
3} that minimize the total cost (25) while satisfying the transport demands

(24).
The first-order condition of intermediate inputs can be written with the Lagrange multiplier

µs associated with (24) as follows:

a s
i3 =

µsps3
qsi

αsi3 =
µsps3

psi + µscssi
αsi3. (26)

The first expression is for the purchases from other regions, xrsi3 (r 6= s), and the second one is
for the intra-regional purchases. From the above equation, the relation between FOB and CIF
prices is given as follows:

qsi = psi + µscssi . (27)

Finally, conditions for factor inputs can be written as follows:

a s
K3 =

µsps3
γs3

α s
K3 and a s

L3 =
µsps3
ωs3

α s
L3 (28)

9The transport costs that accompany the intra-regional purchases of transport sectors are to be paid to the
transport sectors themselves. Thus they can be deducted from the total cost of producing the transport services
required.
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2.3 Equilibrium Conditions

In this section, equilibrium conditions will be summarized for the model. Many of them are
obtained by incorporating the first-order conditions of individual agents into the price and
output equations of the interregional input-output system.

2.3.1 Price Equations

Price equations correspond to column sums of the input-output table. Three different patterns
of equations must be prepared for non-transport and transport sectors as well as for final
demands. The equation for non-transport sectors may be written as follows:

psjX
s
j =

∑

i6=3

∑
r

pri t
rs
i a

s
ijX

s
j +

∑

i6=3

∑
r

crsi t
rs
i a

s
ijX

s
j + ωsja

s
LjX

s
j + γsja

s
KjX

s
j . (29)

Using (13) to eliminated a s
ij , and dividing both sides by psjX

s
j ,

1 =
∑

i6=3

α s
ij

qsi

∑
r

(pri + crsi )trsi + α s
Lj + α s

Kj. (30)

According to the definition of market price qsi , it is easy to see that the above equation is
nothing but Assumption 1 of linear homogeneity in general sectors.

A similar argument can be applied to the final demand:

W s =
∑

i6=3

βsiW
s

qsi

∑
r

(pri + crsi )trsi . (31)

It is easy to see that the above equation is consistent with the Assumption 2 , namely
∑
i6=3 βi =

1. In the similar way the price equation of transport sectors can be written as follows:

1

µs
=
∑

i6=3

∑
r

(pri + crsi )trsi
qsi

· α s
i3 + α s

L3 + α s
K3, (32)

where costs accompanying the intra-regional purchases of its own are taken into account. Under
Assumption 1, µs = 1 must hold in order to comply with equation (22). Then equation (27)
can be rewritten as follows:

qsi =
∑
r

(pri + crsi )trsi = psi + cssi . (33)

This is the only one meaningful condition derived from the price equations.

2.3.2 Output Equations

Output equations correspond to the row sums of the input-output table. Output levels for
non-transport sectors can be measured in physical units. Hence,

Xr
i =

∑
s

trsi
psi + cssi

(
∑

j

α s
ij p

s
jX

s
j + βsiW

s). (34)

For the special property of transport sectors defined in the Basic Assumption 4, output level
in transport sector can only be written in monetary terms:

pr3X
r
3 =

∑

i6=3

∑
s

crsi t
rs
i

psi + cssi
(
∑

j

α s
ij p

s
jX

s
j + βsiW

s). (35)
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2.3.3 Factor Market and Final Demand

According to Basic Assumption 2 the capital rent and the wage rate are determined as the
following forms:

ωsj = α s
Ljp

s
j

Xs
j

Lsj
(36)

and

γsj = α s
Kjp

s
j

Xs
j

Ks
j

. (37)

Meanwhile the formula for the expenditure item can be summarized as follows:

W s =
∑

j

ωsjL
s
j +

∑

j

γsjK
s
j . (38)

3 Simulation Analysis

In this section, we first summarize the equilibrium conditions and variables used in the model,
and then explain the computational procedure applied for the calculation of benchmark equi-
libriums. Finally, the benchmark equilibrium solutions will be used to evaluate the relationship
among the Armington elasticity, transport conditions and endogenous solutions of the model
in details.

3.1 Equations, Variables and Calculation Procedure

Equations describing the equilibrium are summarized in table 1. Since price in transport sectors
cannot be distinguished from their quantities, their product, pr3X

r
3 is considered independent

variable. Variables and parameters of the system are summarized in table 2. The number of
endogenous variables is 54, which is equal to the number of equilibrium conditions.

The model composes a system of nonlinear simultaneous equations. However, each equation is
not uniformly interconnected with other equations. Several blocks of equations can be identified
that are relatively independent from other blocks. Considering this structural features of the
equation system, we divide the entire system into three blocks (see Table 1). These include trade
coefficient block (T), price block (P) and the block (X,W, ω, γ) for other endogenous variables.
Each block takes the form of nonlinear programming to minimize the sum of squared errors
from relevant equilibrium conditions. The system solution constitutes a series of convergence
calculations by using iterative procedure based on quasi-Newton algorithm.

It should be noted that interregional transport costs are considered exogenous to the model.
Actual transport costs crsi , which are different among sectors, can be assumed to be proportional
to interregional time-distances drs: crsi = ξid

rs. drs can be given based on the shortest time
paths between pairs of regional geographical centers or capitals.
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Table 1: Equilibrium conditions

Equations Numbers Blocks

general sectors: 3× 2

Xr
i =

∑
s

trsi
psi+c

ss
i

(
∑
j α

s
ij p

s
jX

s
j + βsiW

s) eq.(3.43)

transport sectors: 3

pr3X
r
3 =

∑
i6=3

∑
s
crsi t

rs
i

psi+c
ss
i

(
∑
j α

s
ij p

s
jX

s
j + βsiW

s) eq.(3.44) X

wage rate: 3× 2 + 3 W
ωsj = α s

Ljp
s
jX

s
j /L

s
j eq.(3.45) ω

capital rent: 3× 2 + 3 γ
γsj = α s

Kjp
s
jX

s
j /K

s
j eq.(3.46)

households: 3
W s =

∑
j ω

s
jL

s
j +

∑
j γ

s
jK

s
j + TRs eq.(3.47)

price system: 3× 2
qsi =

∑
r(p

r
i + crsi )trsi = psi + cssi eq.(3.42) P

trade coefficient: 3× 2× 3

trsi =
(pri+c

rs
i )−σ

s
i∑

r
(pri+c

rs
i )
−σs

i
eq.(3.24) T

subtotal: 54

Table 2: Variables and parameters

Xr
i (3× 2) , ps3X

s
3 (3) ,

endogenous variables pri (3× 2) , ωsj (3× 2 + 3) , γsj (3× 2 + 3),
and subtotal W s (3) , trsi (3× 2× 3) subtotal: 54.
exogenous variables Ks

j , Lsj , crsi (crsi = ξid
rs).

parameters α s
ij , α s

Kj , α s
Lj , βsi , σsi , ξi .∑

i 6=3 α
s
ij + αsLj + α s

Kj = 1 ,
∑
i6=3 β

s
i = 1.
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3.2 Simulation Results

Three different benchmark equilibriums were calculated for testing the impacts of Armington
elasticity on trade coefficients, price system and other endogenous solutions in details under
given transport conditions. Benchmark 1 represents an economic system, in which the distri-
bution pattern of interregional transport costs is completely uniform. Benchmark 2 provides
an economy, in which the distribution pattern of transport costs is completely symmetric with
relatively low intra-regional transport costs. Benchmark 3 shows an non-symmetric economic
system, in which transport cost between two selected regions is lower than the other regions.
These three benchmark situations are compared under the following two scenarios: (1) the
Armington elasticities are perfect substitutes, (2) the Armington elasticities are imperfect sub-
stitutes.

3.2.1 Benchmark 1

The parameters and exogenous variables used in benchmark 1 are shown below:
αsij = 0.25, ∀ i, j, s
αsLj = αsKj = 0.25 ∀j, s
βsi = 0.50 ∀ i, s
Lj = Kj = 100.00 for j = 1, 2, L3 = K3 = 40
crsi = 0.20 ∀ r, s, i (see Figure 1) . 

 

 1 

 3  2 

2.0 2.0

2.0

2.0
2.0

2.0

2.0
2.0

2.0

Figure 1: crsi in benchmark 1

The endogenous variables for convergence calculation are initialized to the following values:
psi = 1.00, ∀i, s
Xs
j = 100.00, ∀j, s
From the above conditions, it is easy to see that the economy given is a completely uniform

system. Here, we solve the system under the following two scenarios:
scenario 1: σsi = 10, ∀i, s
scenario 2: σsi =∞, ∀i, s, where σsi = 1/(1 + ρsi )

The calculation results of Benchmark 1 are summarized in Table 3. Obviously, The endoge-
nous solutions are also completely uniform under both scenarios. This means the relationship
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between the Armington elasticity and model solutions is very robust when the distribution
pattern of interregional transport costs is completely uniform.

Table 3: Solutions of endogenous variables in Benchmark 1, (σsi = 10 or ∞)

pri Xr
i ps3X

s
3 ωsj W s trsi

goods 1 2 1 2 1 2 3 region 1 2 3
region1 1.00 1.00 100 100 40 0.25 0.25 0.25 120 1/3 1/3 1/3
region2 1.00 1.00 100 100 40 0.25 0.25 0.25 120 1/3 1/3 1/3
region3 1.00 1.00 100 100 40 0.25 0.25 0.25 120 1/3 1/3 1/3

3.2.2 Benchmark 2

Benchmark 2 presents a relatively real situation, in which the interregional transport costs are
changed as follows:
crsi = 0.20 ∀ i, when r 6= s,
crri = 0.10 ∀ r, i (see Figure 1) .
The other initialization conditions are the same as benchmark 1.

The calculation results of Benchmark 2 under scenario 1 and 2 are summarized in Table 4
and 5 respectively. Both of them give completely symmetric solutions. Comparing with those
for benchmark 1, under scenario 1, namely, the elasticities of substitution are 10, the outputs
of non-transport sectors, the disposable incomes for each region, and factor prices for each
region go up. This means the reduction of intraregional transport costs give an positive effect
on outputs of non-transport sectors, regional incomes and factor prices. However, this will
directly decrease the revenue of transport sector, therefore the output and the labor wage in
transport sector seems to be damaged. On the other hand, the relatively lower intraregional
transport costs give an positive impact on the intraregional trade coefficients. This can easily be
understood, since the reduction of intraregional transport cost will cut down the production cost
inside region, then the firms and households can enjoy relatively low CIF prices inside region. As
an extreme case, when the Armington elasticity approximates to an infinite value, the economic
system becomes autarkic pattern for each region. This means when the intermediate inputs
can be perfectly substituted each other among regions, every region will just import goods and
services from its own region, since the CIF prices inside region are the smallest one.

Table 4: Solutions of endogenous variables in Benchmark 2, (σsi = 10)

pri Xr
i ps3X

s
3 ωsj W s trsi

1 / 2 1 / 2 1 / 2 3 1 2 3
1 1.00 101.57 ↑ 27.37 ↓ 0.25↑ 0.17 ↓ 115.25 ↓ 0.54↑ 0.23↓ 0.23↓
2 1.00 101.57 ↑ 27.37 ↓ 0.25↑ 0.17 ↓ 115.25 ↓ 0.23↓ 0.54↑ 0.23↓
3 1.00 101.57 ↑ 27.37 ↓ 0.25↑ 0.17 ↓ 115.25 ↓ 0.23↓ 0.23↓ 0.54↑
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Figure 2: crsi in benchmark 2

Table 5: Solutions of endogenous variables in Benchmark 2, (σsi =∞)

pri Xr
i ps3X

s
3 ωsj W s trsi

1 / 2 1 / 2 1 / 2 3 1 2 3
1 1.00 101.95 ↑ 20.47 ↓ 0.26↑ 0.13 ↓ 112.18 ↓ 1.00↑ 0 ↓ 0↓
2 1.00 101.95 ↑ 20.47 ↓ 0.26↑ 0.13 ↓ 112.18 ↓ 0↓ 1.00↑ 0↓
3 1.00 101.95 ↑ 20.47 ↓ 0.26↑ 0.13 ↓ 112.18 ↓ 0↓ 0 ↓ 1.00↑

3.2.3 Benchmark 3

Comparing with Benchmarks 1 and 2, Benchmark 3 presents a non-uniform and non-symmetric
economic initial conditions, in which the transport cost of commodity 1 from region 1 to region
2 decreases from 0.2 to 0.15. This setup not only helps us to check the impacts of the Arming-
ton elasticity on model solutions, but also helps us to simulate the impacts of transport cost
reduction for selected pair of regions on the whole economy. The interregional transport costs
for Benchmark 3 are given as follows:
crsi = 0.20 ∀ i, when r 6= s,
crri = 0.10 ∀ r, i
c12

1 = 0.15 (see Figure 3).
The other initialization conditions are the same as benchmark 2.

The calculation results of Benchmark 3 under scenarios 1 and 2 are shown in Tables 6
and 7 respectively. Obviously, under the non-symmetric distribution pattern of interregional
transport costs, the equilibrium solutions also give an non-symmetric image. Under scenario 1,
the prices of commodity 1 for region 1 and 2 reduced, this is because the interregional transport
cost for commodity 1 from region 1 to region 2 cut down the CIF prices in both region 1 and
region 2. Comparing with the decreasing of CIF prices in these two regions, the CIF price in
region 3 will become relatively high inevitably. This high price will give an negative impact
on the output of commodity 1 in region 3, since high price results in low demands. It should
be noted that the output of commodity 2 in region 1 and 2 also accept negative effects. This

14



 

 

 1 

 3  2 

1.0 2.0

2.0

2.0
2.0

1.0

15.0
2.0

1.0

( )2.0

Figure 3: crsi in benchmark 3

is because the relatively lower CIF price of commodity 1 in region 1 and 2 will boost up
the demand for commodity 1 produced in these regions, for satisfying the increased demand,
the non-transport firms in these region have to transfer the resources originally used for the
production of commodity 2. As a result, the outputs of commodity 2 in both regions fall down.
The pattern of trade coefficients also becomes non-symmetric. Comparing with Benchmark
2, every region tends to import relatively more commodity 1 from region 1 and 2. This also
results from the reduction of transport costs between region 1 and region 2. However, when the
Armington elasticity approaches to an infinite value, the economic system becomes autarkic for
each region as well as the solution of Benchmark 2. This means when the intermediate inputs
can be perfectly substituted each other among regions, every region will just import goods and
services from its own region, even if the initial condition is non-symmetric.

Table 6: Solutions of endogenous variables in Benchmark 3, (σsi = 10)

pri Xr
i ps3X

s
3 ωsj W s trs1

1 2 1 2 1 2 3 1 2 3
1 0.99 1.00 112.13 97.91 23.26 0.28 0.26 0.15 116.15 0.56 0.29 0.27
2 0.97 1.00 115.00 96.36 24.18 0.28 0.24 0.15 115.85 0.29 0.58 0.33
3 1.04 1.00 71.27 103.72 22.61 0.17 0.26 0.14 100.31 0.15 0.13 0.41

Summarizing the above discussion, it can be concluded that, if the intermediate inputs from
different regions are aggregated by Cobb-Douglas technique, namely, the elasticity of substi-
tution is set as an infinite value, just two solution patterns can be obtained: (1) completely
symmetric regional economic structure, (2) complete autarkic regional economies. This implies
that if Cobb-Douglas technique is used to aggregate interregional intermediate inputs, it is
impossible to calibrate the spatial CGE model by using real data without any closure errors,
unless the real data originally reflects either one of the above two solution patterns. For other
calculation results in details, one can refer to Appendix D.
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Table 7: Solutions of endogenous variables in Benchmark 3, (σsi =∞)

pri Xr
i ps3X

s
3 ωsj W s trs1

1 2 1 2 1 2 3 1 2 3
1 1.00 1.00 101.95 101.95 20.46 0.26 0.26 0.13 112.18 1.00 0 0
2 1.00 1.00 101.95 101.95 20.46 0.26 0.26 0.13 112.18 0 1.00 0
3 1.00 1.00 101.95 101.95 20.46 0.26 0.26 0.13 112.18 0 0 1.00

4 Conclusion

In this paper, we formulated a SCGE model based on Armington assumption with multi-
regional framework (3 regions, 3 sectors). To complete the formulation, we haven given a
separate presentment to the transport sectors so that the CIF price can be distinguished from
FOB price. And then we simplified the model according to the Chenery-Moses assumption,
which defines intermediate inputs and final demands through a set of trade coefficients in
MRIO analysis. As a result of the simplification, we got a unified form of trade coefficients for
all sectors and regions. The equilibrium conditions are summarized, and the parameters are
calibrated then. At last, the benchmark status is simulated under each benchmark.

To evaluate the performance of the model, we divided the equilibrium conditions into several
blocks(shown in flow chart of Computation procedure), then, we set three benchmark equi-
libriums to complete the simulation. Comparing the simulation results with each other, we
can see that, if the intermediate inputs from different regions are aggregated by Cobb-Douglas
technique, namely, the elasticity of substitution is set as an infinite value, just two solution
patterns can be obtained: (1) completely symmetric regional economic structure, (2) complete
autarkic regional economies. This implies that if Cobb-Douglas technique is used to aggregate
interregional intermediate inputs, it is impossible to calibrate the spatial CGE model by using
real data without any closure errors, unless the real data originally reflects either one of the
above two solution patterns.

Several limitations of this paper should be mentioned here. First, the model is formulated
under the framework of three regions and three sectors, in consideration of regional differen-
tials it can be enlarged more concretely. Second, as a MRIO model, this paper falls short of
providing a reasonable explanation of many other economic agents, such as government and
foreign investment. Third, the model has not been simulated based on actual dates of I-O
table. Finally, the model is formulated as a system of non-linear equations. Hence, existence
and uniqueness of equilibrium as well as development of formulas to reduce Walras error should
be investigated. So there is room for improvement of the model.

The Armington assumption takes the products with the same name but coming from different
country of origin to be imperfect substitutes for each other. This assumption has been widely
used in the existing CGE models. For investigating the impacts of this assumption on trade
coefficients and model solutions in details, we formula a 3-region, 2-commodity simple spatial
CGE model with explicit consideration on transport sector and regional price differentials. Un-
der the Armington assumption, the model shows that trade coefficient can be endogenously
derived from the rational and deterministic decision making of firm or household. Using this
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trade coefficient, the model solutions show that (1) if commodities produced in different regions
are perfect substitutes, the regional economies will become autarkic or complete symmetric pat-
tern; (2) if the commodities are imperfect substitutes, the impacts of the Armington elasticity
on trade coefficient and model solution will be non-monotone and sometimes very sensitive.
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Appendix A: Composited price

Derivation of composited price.
From the first-order condition equation (3.3) the composite price can be derived. First, rewriting
equation (3.5) as follows:

α s
ij =

xrsij (pri + crsi )
∑
r(x

rs
ij )−ρ

s
ij

psjX
s
j (x

rs
ij )−ρ

s
ij

(A.1)

And making an identical transformation on the above equation,

α s
ij =

∑
r x

rs
ij

psjX
s
j

· x
rs
ij

∑
r(x

rs
ij )−ρ

s
ij

(xrsij )−ρ
s
ij
∑
r x

rs
ij

· (pri + crsi ) (A.2)

Then according to the relations between monetary and physical regional input coefficients, we
find that, the terms with an underline in equation (A.2) are equal to the prices of composited
goods. Arranging it by equation (3.4) as follows:

xrsij
∑
r(x

rs
ij )−ρ

s
ij

(xrsij )−ρ
s
ij
∑
r x

rs
ij

· (pri + crsi ) =
trsi
∑
r(t

rs
i )−ρ

s
ij

(trsi )−ρ
s
ij
∑
r t
rs
i

· (pri + crsi ) (A.3)

Finally, substituting equation (3.8) for trsi in the RHS of the above equation, and the definition
of composited price can be obtained.

qsi =

∑
r(p

r
i + crsi )

ρ s
ij

1+ρ s
ij

∑
r(p

r
i + crsi )

−1
1+ρ s

ij

(A.4)

The above equation just stands for the same meaning with price index of the Krugman model.
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Appendix B: Symbols in this paper

Table B.1: Symbols in this paper

Symbols Definitions

Xs
j production amount of industry j in region s

xrsij amount of good j from region s, used in production of good i in region r
Lsj input amount of labor, used in production of industry j, in region s
Ks
j input amount of capital, used in production of industry j, in region s

πsj profit of industry j in region s
psj supply price of good j in region s
qsi demand price of good i in region s
crsi transport cost of goods i carried from region r to region s
U s households utility in region s
yrsi households consumption in region s of good i produced in region r
W s income of households in region s
Asj scale coefficient
ρ s
ij substitution parameter about elasticity
α s
ij regional input coefficient of intermediate goods, measured in monetary term

α s
Lj regional input coefficient of labor, in monetary term
α s
Lj regional input coefficient of capital, in monetary term
ωsj wage rate of industry j in region s
γsj rental rate of capital of industry j in region s
a s
ij regional input coefficient of intermediate goods, measured in physical term
trsi trade coefficient (physical term)
δsi substitution parameter about elasticity of households in region s
βsi final demand parameter (monetary term)
TRs net income transfer to region s
TFM s regional net export of region s
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Appendix C: Alternate derivation of trade coefficients

It is well known in modern microeconomics that a duality exists between the production function
and the cost function. According to the so-called Shephard’s duality, the unit cost function can
be represented as follows:

psj =
∏

i

[
1

αij

(∑
r

(pri + crsi )
ρi

1+ρi

) 1+ρi
ρi

]αij[ γsj
αsKj

]αsKj[ ωsj
αsLj

]αsLj
. (C.1)

We further employ the Shephard’s lemma, and then obtain the unit demand function for input
xrsij shown below, which theoretically equals interregional input-output coefficient.

∂psj
∂(pri + crsi )

=
αijp

s
j

pri + crsi

(pri + crsi )
ρi

1+ρi

∑
r(p

r
i + crsi )

ρi
1+ρi

= arsij (C.2)

Using equations (8) and (13) to arrange the above equation, we have

trsi =
qsi

pri + crsi

(pri + crsi )
ρi

1+ρi

∑
r(p

r
i + crsi )

ρi
1+ρi

. (C.3)

And then move the term pri + crsi to the left side and compute their
∑
r for both sides, we can

obtain
qsi =

∑
r

(pri + crsi )trsi (C.4)

which implies that the purchasing price index can be considered as an average value of the
purchasing prices weighted by the trade coefficients. Since

∑
r t
rs
i = 1, then directly summarize

both sides of (C.3) by r, we have a different expression of the purchasing prices indices as
follows:

qsi =

∑
r(p

r
i + crsi )

ρi
1+ρi

∑
r(p

r
i + crsi )

− 1
1+ρi

. (C.5)

We further substitute the above equation into equation (C.3) to calculate trsi . The results are
as follows

trsi =
(pri + crsi )

− 1
1+ρi

∑
r(p

r
i + crsi )

− 1
1+ρi

which is the same as the earlier equation (8).
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Appendix D: Results of computation

Table D.1: xrsij in physical terms for Benchmark 2,(σsi = 10)

xrsij 1 2 3

1 2 3 1 2 3 1 2 3
1 12.56 12.56 3.36 5.26 5.26 1.42 5.26 5.26 1.42

1 2 12.56 12.56 3.36 5.26 5.26 1.42 5.26 5.26 1.42
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 5.26 5.26 1.42 12.56 12.56 3.39 5.26 5.26 1.42

2 2 5.26 5.26 1.42 12.56 12.56 3.39 5.26 5.26 1.42
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 5.26 5.26 1.42 5.26 5.26 1.42 12.56 12.56 3.86

3 2 5.26 5.26 1.42 5.26 5.26 1.42 12.56 12.56 3.86
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table D.2: yrsi in physical terms for Benchmark 2,(σsi = 10)

yrsi 1 2 3
1 28.51 11.94 11.94

1 2 28.51 11.94 11.94
3 0.00 0.00 0.00
1 11.94 28.51 11.94

2 2 11.94 28.51 11.94
3 0.00 0.00 0.00
1 11.94 11.94 28.51

3 2 11.94 11.94 28.51
3 0.00 0.00 0.00
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Table D.3: xrsij in FOB price for Benchmark 2,(σsi = 10)

xrsij 1 2 3

1 2 3 1 2 3 1 2 3
1 12.56 12.56 3.39 5.26 5.26 1.42 5.26 5.26 1.42

1 2 12.56 12.56 3.39 5.26 5.26 1.42 5.26 5.26 1.42
3 5.29 5.29 1.79 4.88 4.88 1.68 4.88 4.88 1.68
1 5.26 5.26 1.42 12.56 12.56 3.39 5.26 5.26 1.42

2 2 5.26 5.26 1.42 12.56 12.56 3.39 5.26 5.26 1.42
3 4.88 4.88 1.69 5.29 5.29 1.79 4.88 4.88 1.69
1 5.26 5.26 5.26 1.42 5.26 5.26 1.42 12.56 12.56

3 2 5.26 5.26 5.26 1.42 5.26 5.26 1.42 12.56 12.56
3 4.88 4.88 1.69 4.88 4.88 1.68 5.29 5.29 1.79

Table D.4: yrsi in FOB price for Benchmark 2,(σsi = 10)

yrsi 1 2 3
1 28.51 11.94 11.94

1 2 28.51 11.94 11.94
3 12.39 11.44 11.44
1 11.94 28.51 11.94

2 2 11.94 28.51 11.94
3 11.44 12.39 11.44
1 11.94 11.94 28.51

3 2 11.94 11.94 28.51
3 11.44 11.44 12.39

Table D.5: xrsij in physical terms for Benchmark 2,(σsi =∞)

xrsij 1 2 3

1 2 3 1 2 3 1 2 3
1 23.17 23.17 4.65 0.00 0.00 0.00 0.00 0.00 0.00

1 2 23.17 23.17 4.65 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 0.00 0.00 0.00 23.17 23.17 4.65 0.00 0.00 0.00

2 2 0.00 0.00 0.00 23.17 23.17 4.65 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 0.00 0.00 0.00 0.00 0.00 0.00 23.17 23.17 4.65

3 2 0.00 0.00 0.00 0.00 0.00 0.00 23.17 23.17 4.65
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table D.6: yrsi in physical terms for Benchmark 2,(σsi =∞)

yrsi 1 2 3
1 50.99 0.00 0.00

1 2 50.99 0.00 0.00
3 0.00 0.00 0.00
1 0.00 50.99 0.00

2 2 0.00 50.99 0.00
3 0.00 0.00 0.00
1 0.00 0.00 50.99

3 2 0.00 0.00 50.99
3 0.00 0.00 0.00

Table D.7: xrsij in FOB price for Benchmark 2,(σsi =∞)

xrsij 1 2 3

1 2 3 1 2 3 1 2 3
1 23.17 23.17 4.65 0.00 0.00 0.00 0.00 0.00 0.00

1 2 23.17 23.17 4.65 0.00 0.00 0.00 0.00 0.00 0.00
3 9.27 9.27 1.86 0.00 0.00 0.00 0.00 0.00 0.00
1 0.00 0.00 0.00 23.17 23.17 23.17 0.00 0.00 0.00

2 2 0.00 0.00 0.00 23.17 23.17 23.17 0.00 0.00 0.00
3 0.00 0.00 0.00 9.27 9.27 9.27 0.00 0.00 0.00
1 0.00 0.00 0.00 0.00 0.00 0.00 23.17 23.17 4.65

3 2 0.00 0.00 0.00 0.00 0.00 0.00 23.17 23.17 4.65
3 0.00 0.00 0.00 0.00 0.00 0.00 9.27 9.27 1.86

Table D.8: yrsi in FOB price for Benchmark 2,(σsi =∞)

yrsi 1 2 3
1 50.99 0.00 0.00

1 2 50.99 0.00 0.00
3 20.40 0.00 0.00
1 0.00 50.99 0.00

2 2 0.00 50.99 0.00
3 0.00 20.40 0.00
1 0.00 0.00 50.99

3 2 0.00 0.00 50.99
3 0.00 0.00 20.40
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Table D.9: xrsij in physical terms for Benchmark 3,(σsi = 10)

xrsij 1 2 3

1 2 3 1 2 3 1 2 3
1 14.42 12.71 3.02 7.85 6.80 1.71 4.40 6.14 1.34

1 2 13.74 12.11 2.88 5.76 4.99 1.25 3.85 5.37 1.71
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 7.14 6.29 1.50 14.89 12.90 3.24 5.24 7.32 1.60

2 2 5.76 5.07 1.21 13.75 11.92 3.00 3.85 5.37 1.17
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 3.90 3.44 0.82 3.32 2.88 0.72 6.62 9.25 2.02

3 2 5.76 5.07 1.21 5.76 5.00 1.25 9.19 12.83 2.80
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table D.10: yrsi in physical terms for Benchmark 3,(σsi = 10)

yrsi 1 2 3
1 30.15 16.36 11.87

1 2 28.73 12.00 10.39
3 0.00 0.00 0.00
1 14.93 31.03 14.15

2 2 12.03 28.65 10.40
3 0.00 0.00 0.00
1 8.15 6.93 17.89

3 2 12.03 12.00 24.81
3 0.00 0.00 0.00

Table D.11: xrsij in FOB price for Benchmark 3,(σsi = 10)

xrsij 1 2 3

1 2 3 1 2 3 1 2 3
1 14.30 12.60 2.99 7.78 6.74 1.70 4.36 6.08 1.33

1 2 13.74 12.11 2.88 5.76 4.99 1.25 3.85 5.37 1.17
3 5.59 5.26 1.70 5.12 4.80 1.62 4.43 5.08 1.61
1 6.90 6.08 1.44 14.39 12.47 3.13 5.06 7.07 1.54

2 2 5.76 5.07 1.21 13.75 11.92 2.99 3.85 5.37 1.71
3 5.36 5.05 1.65 5.64 5.26 1.73 4.60 5.32 1.66
1 4.06 3.58 0.85 3.46 3.00 0.75 6.90 9.64 2.10

3 2 5.76 5.07 1.21 5.76 4.99 1.25 9.17 12.83 2.80
3 4.71 4.48 1.52 4.59 4.35 1.51 4.36 4.99 1.59
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Table D.12: yrsi in FOB price for Benchmark 3,(σsi = 10)

yrsi 1 2 3
1 29.88 16.21 11.77

1 2 28.73 12.00 10.39
3 12.55 11.52 11.12
1 14.43 29.99 13.68

2 2 12.03 28.65 10.39
3 12.06 12.64 11.58
1 8.49 7.22 18.64

3 2 12.03 12.00 24.81
3 10.70 10.45 10.94

Table D.13: xrsij in physical terms for Benchmark 3,(σsi =∞)

xrsij 1 2 3

1 2 3 1 2 3 1 2 3
1 23.17 23.17 4.65 0.00 0.00 0.00 0.00 0.00 0.00

1 2 23.17 23.17 4.65 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 0.00 0.00 0.00 23.17 23.17 4.65 0.00 0.00 0.00

2 2 0.00 0.00 0.00 23.17 23.17 4.65 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 0.00 0.00 0.00 0.00 0.00 0.00 23.17 23.17 4.65

3 2 0.00 0.00 0.00 0.00 0.00 0.00 23.17 23.17 4.65
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table D.14: yrsi in physical terms for Benchmark 3,(σsi =∞)

yrsi 1 2 3
1 50.99 0.00 0.00

1 2 50.99 0.00 0.00
3 0.00 0.00 0.00
1 0.00 50.99 0.00

2 2 0.00 50.99 0.00
3 0.00 0.00 0.00
1 0.00 0.00 50.99

3 2 0.00 0.00 50.99
3 0.00 0.00 0.00
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Table D.15: xrsij in FOB price for Benchmark 3,(σsi =∞)

xrsij 1 2 3

1 2 3 1 2 3 1 2 3
1 23.17 23.17 4.65 0.00 0.00 0.00 0.00 0.00 0.00

1 2 23.17 23.17 4.65 0.00 0.00 0.00 0.00 0.00 0.00
3 9.27 9.27 1.86 0.00 0.00 0.00 0.00 0.00 0.00
1 0.00 0.00 0.00 23.17 23.17 23.17 0.00 0.00 0.00

2 2 0.00 0.00 0.00 23.17 23.17 23.17 0.00 0.00 0.00
3 0.00 0.00 0.00 9.27 9.27 9.27 0.00 0.00 0.00
1 0.00 0.00 0.00 0.00 0.00 0.00 23.17 23.17 4.65

3 2 0.00 0.00 0.00 0.00 0.00 0.00 23.17 23.17 4.65
3 0.00 0.00 0.00 0.00 0.00 0.00 9.27 9.27 1.86

Table D.16: yrsi in FOB price for Benchmark 3,(σsi =∞)

yrsi 1 2 3
1 50.99 0.00 0.00

1 2 50.99 0.00 0.00
3 20.40 0.00 0.00
1 0.00 50.99 0.00

2 2 0.00 50.99 0.00
3 0.00 20.40 0.00
1 0.00 0.00 50.99

3 2 0.00 0.00 50.99
3 0.00 0.00 20.40
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