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ABSTRACT  This paper presents a discrete-time growth model based on the classical growth 

framework to describe the disequilibrium dynamics of an m-agent, n-good economy. And an 

exchange function is formulated to describe the exchange process among agents, which serves as 

the exchange part of the growth model. For concreteness a system of Sraffa (1960) is utilized to 

exemplify the growth model and simulations are performed. First, business cycles in the growth 

model are discussed, which are found to be limit cycles in some sense. Then a method is presented to 

compute the equilibrium land rent in a Sraffian system including homogeneous land, and the 

fluctuation of land rent is also simulated. Finally, the system of Sraffa is extended to a two-country 

economy, and the dynamic economic effects of free trade and trade protectionism are investigated. 
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1. Introduction 

As Kurz and Salvadori (2000, 2001) pointed out, the input-output models of Leontief (1936, 1941) 

and the growth model of von Neumann (1945) have a classical root, and should be viewed as 

essential components of the classical growth framework which consists of Quesnay’s (1972) 

Tableau Economique (Economic Table), Marx’s (1956) reproduction models, Sraffa’s (1960) 

Production of Commodities by Means of Commodities etc.  

The classical growth framework has two major characteristics, i.e. its dynamic perspective and 
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structural perspective. That is, the framework regards the economy as a circular flow containing 

interdependent sectors (or agents), and provides deep insights into the structure and interplay of all 

parts of the economy. Specifically, the models under the classical growth framework usually are 

characterized by following features: 

 (i) The models contain multiple sectors (or agents) and goods, and each sector (or agent) 

needs products of other sectors (or agents) as inputs of production; 

 (ii) The models usually assume constant returns to scale (e.g., see Samuelson and Etula, 

2006); 

 (iii) Equilibrium paths usually are balanced growth paths with a uniform growth rate (i.e 

profit rate); 

 (iv) Equilibrium growth rate, equilibrium prices and equilibrium output structure are 

determined by technologies of sectors (or agents); 

 (v) Fixed capital usually is dealt with in a joint production framework, as a result joint 

production plays an important role (e.g., see Salvadori and Steedman, 1990); 

 (vi) Matrices and Perron-Frobenius theorem are (or can be) used widely as mathematical 

tools; 

 (vii) Dynamic models usually are discrete-time systems. 

Up to now issues related to equilibrium have been analyzed thoroughly under the classical growth 

framework, such as the existence of equilibrium (e.g. Kemeny, Morgenstern and Thompson, 1956), 

exchange equilibrium (e.g. Gale, 1960), optimality of equilibrium (e.g. Dorfman, Samuelson and 

Solow, 1958; McKenzie, 1963, 1976), perturbations of equilibrium (e.g. Dietzenbacher, 1988), 

stability of equilibrium (e.g. Morishima, 1964), equilibrium models of Marx (e.g. Morishima, 1973). 

However, it seems that some disequilibrium issues such as the fluctuation of prices and land rent, 

business cycles, international trade under disequilibrium circumstances etc., haven’t been 

investigated sufficiently, and this paper is a tentative attempt to explore the method for the analysis 

of these disequilibrium issues under the classical growth framework.  

The main idea in this paper is to develop an exchange function describing the (disequilibrium) 

exchange process among agents (or sectors), and then combine it with the input-output production 

processes to obtain a growth model capable of describing the disequilibrium dynamics of an m-agent, 
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n-good economy. Then by simulations the model will provide some insights to those disequilibrium 

issues aforementioned.  

The paper is organized as follows. Section 2 introduces concepts about technology and production, 

and an economy system given by Sraffa (1960) is also introduced. Section 3 presents the exchange 

function, and the exchange process is illustrated with the example of the Sraffa’s system. Section 4 

introduces the structural growth model, and a computable specific form of the model is also given to 

serve as the simulation platform in following sections. Section 5 analyzes the business cycles and 

the land rent in a one-country economy. Section 6 analyzes the international trade in a two-country 

economy. The final section contains some concluding remarks. 

In the sequel the following notations and terms will be used. e  denotes the vector (1, 1, , 1)   . A 

vector x is called positive (or nonnegative) and we write x 0  (or x 0 ) if all its components 

are positive (or nonnegative). x is called semipositive and we write x 0  if x 0  and x 0 . For 

vectors x and y, we write x y , x y  and x y  analogously. Such notations and terms are 

also used for matrices. A semipositive column (or row) vector x is said to be normalized if 1 e x  

(or 1xe ) holds. x


 denote diag(x), i.e. the diagonal matrix with the vector x as the main diagonal. 

2. Technology and Production 

Suppose there are m agents and n goods in an economy, which are indexed by 1, 2, , m    and 

1, 2, , n    respectively. An agent may stand for a firm or a sector. If we regard a household as a 

producer of labor power (or human capital, service, etc.), which absorbs consumer goods, education, 

trainings and medical treatment etc, and regard its consumption process as an investment and 

production process, then such an agent can also stand for a household roughly. And such treatment 

of the consumption process is generally used (e.g., see Solow and Samuelson, 1953). 

2.1 Input Coefficient Matrix and Output Coefficient Matrix 

When each agent has only one technology and joint production is allowed for, as in the growth 

model of von Neumann (1945) all technologies can be represented by an (n × m) input coefficient 

matrix A and an (n × m) output coefficient matrix B, and in either matrix the ith row and ith column 
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correspond to good i and agent i respectively. 

Below is an example of (4 × 6) input and output coefficient matrices. 

 

0.28 0.50 0.53 0 0 0

0.84 0 0 0 0 0.77

0 0.49 0.45 0.50 0.48 0

0 0 0 0.51 0.57 0.29

 
 
 
 
 
 

A , 

1 0 0 0 0 0

0 1 0 0 1 0

0 0.25 1 1 0.25 0

0 0 0 0 0 1

 
 
 
 
 
 

B  (1) 

Let ( )ia  and ( )ib  denote the ith columns of A and B respectively, which are supposed to be 

semipositive, then the vector pair  ( ) ( ),i ia b  stands for the technology of agent i, and ( )ia  is called 

the standard input bundle of agent i. Given a positive price vector p, whose ith component ip  

denotes the price of good i,    ( ) ( ) 1i i  p b p a  is the profit rate of agent i under p. 

Let’s assume constant returns to scale, thus each feasible production process of agent i can be 

represented by  ( ) ( ),i i a b , where   is a nonnegative real number, ( )ia  is the input bundle 

and ( )ib  is the output bundle; moreover,   is called the production intensity of the production 

process. In the special case B I  the production intensity of one agent is also the output amount 

of its sole product. 

When each agent has multiple technologies and will adjust the technology in use for maximizing 

profit when market prices changes, the input and output coefficient matrices may be treated as 

variables with respect to prices. 

2.2 An Economic System of Sraffa 

Let’s write an economic system given by Sraffa (1960) here, which contains two agents (or sectors) 

and two goods, and the system will be utilized to exemplify the growth model presented in this 

paper. In the initial period (or year) the system runs as follows. 

 280 quarters wheat +12 tons iron  575 quarters wheat (2a) 

 120 quarters wheat +8 tons iron  20 tons iron (2b) 

Formula (2a) represents the production process of agent 1 (i.e. the wheat producer) in the initial 

period, and Formula (2b) represents the production process of agent 2 (i.e. the iron producer) in the 

initial period. The input coefficient matrix is 
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56

115

12 2

575 5

6 
 
 
  

A  (3) 

and the output coefficient matrix is B I . The first column of A, i.e.  56 12

115 575
,


, is the standard 

input bundle of agent 1, and the second column, i.e.  2

5
6,


, is the standard input bundle of agent 2. 

It’s well known that the equilibrium price vectors and equilibrium output vectors in the system 

(2a)-(2b) are the left and right P-F (i.e. Perron-Frobenius) eigenvectors of A respectively. Here a left 

and right P-F eigenvector of A are  * 1

15
, 1


p  and * (575, 30)z  respectively. That is, with iron 

as the numeraire, the equilibrium price of wheat is 1

15
 or 0.0667 approximately. And the 

equilibrium output amount of iron should be 30 tons when the output amount of wheat is 575 

quarters, and the system will be in equilibrium if Formula (2b) is substituted by 

 180 quarters wheat +12 tons iron  30 tons iron ( 2b' ) 

The P-F eigenvalue of A is 0.8  , which implies the equilibrium growth rate of the system 

(2a)-(2b) is 1 1 0.25   . 

The outputs of two agents in the initial period are represented by an output matrix 

 
575 0

0 20

 
  
 

Y  (4) 

The outputs of agents may also be represented by an output vector (575, 20)  here. However, the 

output matrix will become necessary when there is joint production. 

3. Exchange Process among Agents 

A major weakness of some models under the classical growth framework is that the market 

mechanism is not reflected in them (Los, 2001). That is, the exchange process, price fluctuation, and 

their economic effects, are ignored. In this paper we try to integrate the market mechanism into the 

growth model by embedding an exchange process in it. And this section is devoted to developing an 

exchange function describing the exchange process among m agents. 
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3.1 The Exchange Function 

Let’s consider the exchange process among m agents under a given price vector p, in which each 

agent sells its outputs and purchases an input bundle for its next production process. 

Let S denote the (n × m) supply matrix, whose ( , )i j  entry denotes agent j’s supply amount of 

good i. Let s Se  denote the supply vector, which is supposed to be positive. 

For example, in the system (2a)-(2b) of Sraffa, when two agents put their products into market the 

supply matrix is 

 
575 0

0 20

 
  
 

S  (5) 

and the supply vector is (575, 20)s . Here the supply matrix S equals the output matrix Y since 

both agents have no inventory in the initial period. 

Demand structures of agents are represented by the input coefficient matrix A and each agent 

intends to purchase some standard input bundles indicated by A for its production. That is, in the 

exchange process the bundle purchased by agent i must be ( )ia , where   is a nonnegative real 

number and ( )ia  is the ith column of A.   is called the purchase amount of agent i. Let z denote 

the vector consisting of purchase amounts of m agents, and z is called the purchase vector or 

exchange vector (of standard input bundles), and Az is called the sales vector of goods. 

For example, in the system (2a)-(2b) the bundles purchased by agent 1 and agent 2 must be 

 56 12

115 575
, 


 and  2

5
6 , 


 respectively, where   and   are nonnegative real numbers. 

Then the exchange vector is ( , )   , which indicates the purchase amounts of standard input 

bundles, and the corresponding sales vector of goods is 

  56 12 2

115 575 5
6 ,   


  Az  (6) 

which indicates the sales amount of two goods. 

Let x


 denote diag(x), i.e. the diagonal matrix with the vector x as the main diagonal. For 

example, for the supply vector (575, 20)s  we have 
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575 0

0 20

 
  
 

s


 (7) 

The sales rate of a good refers to the proportion of its sales amount to its supply amount. Suppose 

for one good all its suppliers share the same sales rate, and let u be the n-dimensional sales rate 

vector indicating the sales rates of n goods, that is, 

 
1

u s Az


 (8) 

For example, if (575, 20)s  and  2875

6
, 25


z , then the sales rate vector is 

      
1 1

1

56
2875 1150 2115

6 3 312 2

575 5

6575 0 575 0
, 25 , 20 , 1

0 20 0 20

 


                    

u s Az


 (9) 

Obviously, the matrices Az


 and uS


 indicate each agent’s purchase and sales amounts of goods 

respectively. For the example above we have 

 
700

3
150

10 10

 
 
  

Az


, 
1150

3
0

0 20

 
 
  

uS


 (10) 

Under the given price vector p, the purchase and sales values of m agents are p Az


 and p uS


 

respectively. Suppose the value each agent purchases must equal the value it sells, that is, 

 
-1

   p Az p uS p s AzS
  

 (11) 

Eq. (11) is the equivalent exchange condition. When Eq. (11) holds and S A  is indecomposable 

the following proposition shows that there exists a unique normalized exchange vector. 

Proposition 1. Let A and S be (n × m) semipositive matrices such that s Se  is positive and 

S A  is indecomposable. Let p be an n-dimensional positive vector and z be an m-dimensional 

semipositive vector. Then:  

 (i)  1 1 
 Z A p S s pA

 
 is an indecomposable nonnegative matrix possessing the P-F 

eigenvalue 1; 

 (ii) z satisfies 
-1

 p Az p s AzS
 

 if and only if z is a right P-F eigenvector of Z, i.e. Zz=z 

holds; moreover, if z satisfies 
-1

 p Az p s AzS
 

 then z is positive. 
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The proof of Proposition 1 is in the Appendix. 

Let x denote the normalized right P-F eigenvector of Z. Then by Proposition 1(ii) we have 

z x , where   is a nonnegative real number. Since the sales amount of each good is no more 

than its supply amount, we find Az s  holds, that is,  Ax s . Hence   is no greater than the 

minimal component of 
1

Ax s . Suppose all agents attempt to obtain maximal exchange amounts. 

The unique maximal exchange vector can be found by following steps, which stands for the 

outcome of the exchange process: 

 Step 1. Compute the matrix  1 1 
 Z A p S s pA

 
; 

 Step 2. Find the normalized right P-F eigenvector of Z, denoted by x; 

 Step 3. Find the minimal component of 
1

Ax s , denoted by  ; 

 Step 4. Compute the exchange vector z x . 

Thus the exchange process can be represented by a function as follows: 

    , Z , ,u z A p S  (12) 

where A, S and p satisfy those assumptions in Proposition 1, and z is computed by steps above and 

u equals 
1

s Az


. Here we write u explicitly on the left side of Eq. (12) only for the expression 

convenience of the growth model in Section 4. 

Note that given A and s there may be no nonnegative vector z such that Az s , hence in such a 

case the market cannot clear whatever the market prices are. 

Finally, let’s explain how to view that in the exchange process represented by Eq. (12) each agent 

may buy and sell its product at the same time. Let’s take the example of Sraffa, in which wheat 

producer will not only sell but also buy wheat in the market. Note that the wheat is a representative 

of consumer goods, and its producer is a representative of producers of consumer goods, the wheat 

producer sells and buys wheat at the same time in the market should be viewed as that producers of 

food, clothes, furniture etc., exchange distinct consumer goods among themselves. 

3.2 Some Special Cases of the Exchange Function 

As in the system (2a)-(2b), sometimes S is an (n × n) diagonal matrix. In such a case 
1

 S s I

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holds and the matrix Z becomes 

   1
Z A p pA


 (13) 

And in this case the following proposition holds for the exchange process. 

Proposition 2. Let the supply matrix S be an (n × n) diagonal matrix such that the supply vector 

s Se  is positive. Let A be an (n × n) indecomposable semipositive matrix and p be a positive n-

dimensional price vector. For the exchange function    , Z , ,u z A p S  we have: 

 (i) z is a right P-F eigenvector of A if and only if p is a left P-F eigenvector of A; 

 (ii) if Az s  holds (i.e. the market clears) and p is a left P-F eigenvector of A, then s is a 

right P-F eigenvector of A; 

 (iii) if Az s  holds, A is nonsingular, and s is a right P-F eigenvector of A, then p is a left 

P-F eigenvector of A; 

 (iv) for agent i, let p  be another positive price vector satisfying i ip p  and j jp p  (for 

all j i ), and let z  be the exchange vector under p , i.e.    , Z , ,u z A p S , then i iz z  and 

i i j jz z z z  (for all j) hold; moreover, i i j jz z z z  holds if j i  and 0ija  . 

The proof of Proposition 2 is in the Appendix. 

Next let’s suppose further ( )ijaA  is a positive (2 × 2) matrix, as in the system (2a)-(2b) of 

Sraffa. By computing the exchange vector z we find  

 1 12 1

2 21 2

z a p

z a p
  (14) 

That is, the exchange ratio 1 2z z  is proportional to the price ratio 1 2p p .  

Furthermore, the sales amounts of two goods are indicated by Az and the sales amount ratio 

between two goods is computed to be 

 11 12 1 2 12 21

21 12 1 2 22 21

a a p p a a

a a p p a a






 (15) 

Let   denote 1 2p p , then we have 

  12 11 22 12 21
2

21 12 22

( )

( )

a a a a ad

d a a a


 





 (16) 
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Hence   is monotonic with respect to  , and by Eq. (15) it’s clear that the sales amount ratio 

  must fall between 11 21a a  and 12 22a a . In the system (2a)-(2b)   must fall between 15 and 

70

3
23.3 . When the supply ratio of the two goods isn’t in that interval, the market won’t clear 

whatever the market prices are. 

Moreover, Eq. (16) indicates that depending on the sign of 11 22 12 21( )a a a a    may rises, fall or 

keep constant when   rises. For instance, by Eq. (3) the value of 11 22 12 21( )a a a a  in the system 

(2a)-(2b) is positive, that is so say, when the price of wheat rises it will sell more relative to iron in 

the market due to that the wheat producer will purchase more wheat. The cause is that the 

technology of the wheat producer is more wheat-intensive than that of the iron producer, and when 

the price of wheat rises the increase of sales revenue of wheat producer results in more demand for 

wheat relative to iron. And here that the wheat producer buys and sells more wheat should be 

viewed as that the producers of consumer goods exchange more consumer goods among themselves. 

3.3 Exchange Process in Sraffa’s System 

Here let’s illustrate the exchange process among agents with the example of Sraffa. Formula (2a) 

and (2b) may be viewed as the production processes in the initial period. After the production 

processes two agents will exchange their products in the market, and the supply matrix is indicated 

by Eq. (5). Suppose the current market price vector is an equilibrium price vector  1

15
, 1


, then the 

exchange vector is computed to be  2875

6
, 25 (479.2, 25)


 z , and the sales vector of goods is 

 1150

3
, 20


Az  (383.3, 20) , that is, iron sells out and wheat not. And the sales rate vector is 

 2

3
, 1


u . Accordingly, the inventory of wheat is about 191.7 quarters and there is no inventory of 

iron.  

If the market prices change on the basis of supply and demand, the price of wheat will fall 

relatively and the price of iron will rise relatively after the first exchange process. 

After the exchange process the two agents will perform production processes again, and note that 
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the exchange vector z also indicates the ensuing production intensities (and output amounts) of 

agents. Wheat producer has purchased 479.2 standard input bundles in the market, and will yield 

479.2 quarters of wheat in the next production process. Iron producer has purchased 25 standard 

input bundles, and will yield 25 tons of iron in the next production process. That is to say, the output 

of wheat will fall and the output of iron will rise. And then the exchange process and production 

process will repeat again and again. 

In the first exchange process the market doesn’t clear. In fact, recall that the ratio of sales 

amounts of two goods must fall between 15 and 23.33 , and note that the supply ratio of wheat to 

iron now is 575

20
28.75 , the market cannot clear whatever the market prices are. 

The sales rate vector in the first exchange process is  2

3
, 1


u , thus the inventory rate vector is 

 1

3
, 0 e u . Furthermore, the inventory matrix is defined as e uS , whose  ,i j  entry indicates 

the inventory amount of good i of agent j. After the first exchange process the inventory matrix is 

    1 575
1 3 3
3

575 0 575 0 191.7 00 0
, 0

0 20 0 20 0 00 0 0 0

        
            
           

e uS  (17) 

After the first exchange process the inventory of the wheat producer is about 191.7 quarters, 

which may undergo depreciation before the next exchange process comes, say, it has a depreciation 

rate 0.2. Thus 153.3 quarters of wheat will be left when the next exchange process comes. Then in 

the next exchange process the supply of wheat will be 632.5( 153.3 479.2)   quarters. Recall that 

the supply of iron will be 25 tons, hence the supply ratio will be 25.3 and the market cannot clear 

once again. 

4. The Structural Growth Model 

Let’s regard the economy as a discrete-time dynamic system and suppose economic activities such 

as price adjustment, exchange and production etc. occur in turn in each period. And the state of the 

economy in period t is represented by following variables: 

 p(t)  Price vector, which is positive and consists of prices of n goods in period t;  
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 ( )tS   Supply matrix, whose  ,i j  entry stands for the agent j’s supply amount of 

good i in period t; 

 ( )tu   Sales rate vector, which consists of sales rates of n goods in period t; 

 ( )tz  Exchange vector and production intensity vector, which represents the amounts 

of standard input bundles that are purchased and put into production by agents in 

period t; and in the special case B I , ( )tz  is also the output vector of goods 

which indicates the output amounts of all agents; 

 ( )tY   Output matrix, whose  ,i j  entry stands for the output amount of good i by 

agent j in period t. 

4.1 The Model 

Suppose in period t+1 the economy runs as follows. 

Firstly, the new price vector emerges on the basis of the price vector and sales rates of period t, 

which indicates the market prices of n goods in period t+1. 

Secondly, outputs and depreciated inventories of period t constitute the supplies of period t+1. 

Thirdly, supplies are exchanged under market prices, and the exchange vector and sales rate 

vector of period t+1 are obtained. Unsold goods constitute the inventories of period t+1, which will 

undergo depreciation and become a portion of the supplies of the next period. 

Finally, each agent puts into production its input bundle purchased in the market, and outputs of 

period t+1 are obtained. 

The structural growth model is as follows: 

  ( 1) ( ) ( )P ,t t t p p u  (18a) 

  ( 1) ( ) ( ) ( )Qt t t t   S Y e u S  (18b) 

    ( 1) ( 1) ( 1) ( 1), Z , ,t t t t   u z A p S  (18c) 

 ( 1) ( 1)t t Y Bz  (18d) 

Let’s explain equations above in turn. 

Eq. (18a) stands for the adjustment process of market prices, and P is the price adjustment 
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function. In this paper prices are assumed to be adjusted on the basis of supply and demand, and P 

may assume other forms to allow some prices are exogenous or controlled by agents. 

Eq. (18b) stands for the formation of supplies. If ( )t u e , then there are some unsold goods in 

period t. The inventory amounts of agents in period t are indicated by the inventory matrix 

( ) ( )t te u S . Q is the inventory depreciation function, which stands for the depreciation process of 

inventories. The outputs of period t, which is denoted by ( )tY , plus the depreciated inventories of 

period t, which is denoted by  ( ) ( )Q t te u S , forms the supplies of period 1t  , which is denoted 

by ( 1)tS . 

Eq. (18c) stands for the exchange process, and Z  is the exchange function in Eq. (12).  

Eq. (18d) stands for the production process. Since ( 1)t
iz   indicates the amount of the standard 

input bundle purchased by agent i in period 1t   and a standard input bundle corresponds to a unit 

of production intensity, ( 1)t
iz   also indicates the production intensity of agent i in period 1t  .  

We write Eq. (18d) explicitly in the model only for clarity. Eq. (18d) can be omitted if Eq. (18b) 

is written as 

   ( 1) ( ) ( ) ( )Qt t t t   S Bz e u S  (18b' ) 

When input and output coefficient matrices are variables, an equation may be inserted between 

Eq. (18a) and (18b) to reflect the adjustment of input and output coefficient matrices by agents due 

to price change or technology progress etc. 

4.2 A Specific Form of the Structural Growth Model 

The following is a computable specific form of the model (18a)-(18d), which will be used in Section 

5 and 6 for simulations. 

 
( ) ( )

( 1)

( ) ( )

0.99
, for 1, 2, ,

0.98 0.99

t t
t i i

i t t
i i

p u
p i n

p u
     


      (19a) 

  ( 1) ( ) ( ) ( )0.8t t t t   S Bz e u S  (19b) 

    ( 1) ( 1) ( 1) ( 1), Z , ,t t t t   u z A p S  (19c) 
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Eq. (19a) stands for the price adjustment process, which means when a good nearly sells out its 

price won’t change; otherwise its price will fall by 2 percent. Hence all prices won’t change if and 

only if all goods nearly sell out. If there are goods far from clearing, the prices of nearly sold-out 

goods will rise relatively. Note that only relative prices matters in the model, such adjustment 

method is reasonable.  

Eq. (19b) stands for the formation of supplies. Here we assume a simple inventory depreciation 

function Q( ) 0.8M M . Let’s assume (0)z 0  and B A  is indecomposable to guarantee that 

( )tS A  is indecomposable for all 1, 2, ,t   . 

Eq. (19c) stands for the exchange process. 

In the model (19a)-(19c) A and B are exogenous, and let’s always set (0) u e  so that (1)S  will 

equal (0)Bz  (i.e. (0)Y , the outputs in the initial period). Then when we set the values of (0)p  and 

(0)z  the model can run by itself. 

A path of the model (19a)-(19c) is called an equilibrium path if ( )t u e  holds in it for all 

0,1,2, ,t     . That is, the model runs in an equilibrium path if all goods clear all the time. By Eq. 

(19a) the price vector will keep constant in an equilibrium path, which is called an equilibrium price 

vector. By Proposition 2 it can be readily verified that the model will run in an equilibrium path 

when B I , (0) u e , (0)p  and (0)z  are a left and right P-F eigenvector of A respectively. And in 

such a case the output vector ( )tz  in each period is a right P-F eigenvector of A. 

5. One-country Economy 

In this section business cycles in the model (19a)-(19c) will be illustrated with the example of the 

system (2a)-(2b). The system (2a)-(2b) will also be extended to include land, then the equilibrium 

land rent and the dynamics of land rent will be investigated. 

5.1 Business Cycles 

For the system (2a)-(2b) of Sraffa, the input coefficient matrix A is indicated by Eq. (3) and the 

input coefficient matrix B  equals I . Recall that an equilibrium price vector is  1

15
, 1


 and the 
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output vector in the initial period is (575, 20) , let’s set them as (0)p  and (0)z  of the model (19a)-

(19c) respectively, and let (0) u e . The simulation results are depicted in Figure 1. 

Figure 1 shows that the price ratio, output ratio, profit rates and output growth rates fluctuate 

periodically, that is, there are business cycles in the system. 

Recall that the equilibrium price ratio of wheat to iron is 1

15
0.0667 , the equilibrium output 

ratio of wheat to iron is 575

30
19.17 , and the equilibrium profit rates of both agents are 0.25, now 

it’s clear that the price ratios, output ratios, profit rates all fluctuate around their equilibrium values, 

which exemplifies the argument of Kurz and Salvadori: 

‘The classical as well as the early neoclassical economists did not consider 

these [equilibrium] prices are purely ideal or theoretical; they saw them rather 

as “centers of gravitation,” or “attractors,” of actual or market prices.’ (Kurz 

and Salvadori, 1995, p. 1) 

The argument of Kurz and Salvadori also applies to the output ratio and profit rates here. Why 

these variables fluctuate around their equilibrium values rather than other values? A short answer is 

that the market mechanism will keep the supply ratio of two goods between 15 and 23.3 in the long 

run, consequently the two agents must have almost equal average output growth rates in the long run, 

and the equalization tendency of output growth rates forces those variables to fluctuate around their 

 

Figure 1. Price ratio, output ratio, profit rates and output growth rates in period 1 to 100 
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equilibrium values. 

However, the “centers of gravitation” of output growth rates aren’t the equilibrium growth rate 

0.25, instead it’s lower than 0.25 because the average output growth rates of both agents suffer a 

loss due to business cycles. In fact, the average output growth rates of both agents in a regular 

business cycle are 0.2381 approximately. And due to the utilization of inventory sometimes the 

output growth rates of both agents may be higher than the equilibrium growth rate 0.25, e.g. the 

output growth rates of two agents in period 5 are about 0.2745 and 0.3005 respectively. 

When the price ratio and supply ratio of wheat to iron in period 1 to 1000 are depicted in one 

panel, as in Figure 2, business cycles show themselves from another angle and turn out be discrete-

time limit cycles. In Figure 2 the left panel depicts the path with  (0) 1

15
, 1


p  and 

(0) (575, 20)z . And the right panel depicts the path with (0) (0.0660, 1)p , which is slightly apart 

from the equilibrium price vector, and (0) (575, 30)z , which is an equilibrium output vector. The 

asterisks at (19.17, 0.0667) stand for equilibrium paths. 

Figure 2 shows that the economy runs into a limit cycle before long in both cases, and limit 

cycles correspond to business cycles. As the limit cycles in Figure 2 indicate, in both cases a regular 

business cycle contains 12 periods. 

Hence, here the market mechanism leads the economy into limit cycles (i.e. business cycles) 

rather than the fixed point (i.e. equilibrium paths). As the left panel shows, when the economy starts 

running at a point far from the equilibrium, the market mechanism indeed pulls it towards the 

 

Figure 2. Fixed point (i.e. equilibrium paths) and limit cycles (i.e. business cycles) 
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equilibrium at first. However, the economy falls eventually into a limit cycle and will keep 

revolving around the fixed point rather than approach it. And the right panel shows that even the 

economy starts running at a point quite near to equilibrium paths, the invisible hand may also pull it 

away and finally leads it into business cycles. 

Next let’s focus on the path with  (0) 1

15
, 1


p  and (0) (575, 20)z , and investigate the change 

of output growth rates in a regular business cycle. For instance, the output growth rates and sales 

rates in a regular business cycle from period 86 to period 97 are depicted in Figure 3. 

If in one period the output growth rate of an agent is higher than that in the preceding period, here 

let’s call that period a rising period of the agent; and in the opposite case, that period is called a 

declining period of the agent. The left panel of Figure 3 shows that there are 8 rising periods and 4 

declining periods in a regular business cycle for both agents. That is, the number of rising periods is 

much more than the number of declining periods, which implies that when the growth rate declines, 

it declines suddenly and fiercely, and when it rises, it rises slowly and moderately. 

Furthermore, when output growth rates of both agents are compared with sales rates, it’s clear 

that they rise and decline quite synchronously, that is, the rise of the growth rate is usually 

accompanied with the reduction in inventory. 

5.2 Land Rent 

Supplies of some factors of production may be fixed or grow at an exogenous rate ( 1, )    , 

e.g. land, mineral deposits, labor force etc., consequently their rents (or wage) have more complex 

 

Figure 3. Output growth rates and sales rates in a regular business cycle 
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dynamics than common goods, and land rent may be taken as a representative. The theory of land 

rent of Sraffa (1960) has been discussed by a number of authors, e.g. Kurz (1978), Salvadori (1986), 

Woods (1987), Bidard (2004), and these discussions ignore the consumption structure of the 

landowner. Assuming simply that land is uniform in quality, here let’s compute the equilibrium land 

rent with a method taking account of the supply growth rate of land and the consumption structure 

of the landowner, and then simulate the dynamics of land rent. First let’s extend the system (2a)-(2b) 

to include land as follows, where the supply of land is assumed to be 1140 units all the time. 

 280 quarters wheat +12 tons iron +18 units land 575 quarters wheat (20a) 

 120 quarters wheat +8 tons iron +5 units land  20 tons iron (20b) 

 115 quarters wheat +6 tons iron +3 units land  1140 units land (20c) 

The first two formulas are self-evident. The third formula means that in the initial period the 

landowner (i.e. agent 3) have 1140 units of land for rent, and the landowner consumes 115 quarters 

of wheat and 6 tons of iron, and uses 3 units of land for his own living. Of course, the landowner has 

to rent out his land to exchange his consumption bundle. 

For simplicity, let’s suppose the consumption structure of the landowner will keep unchanged all 

the time, that is, his consumption bundle muse be  115 , 6 3   ， , where   is a nonnegative real 

number indicating his consumption intensity and is determined by the magnitude of land rent and 

the prices of goods etc. in the exchange process. Now the variable input coefficient matrix is 

  

56 23

115 228

12 2 1

575 5 190

18 1 1

575 4 380

6 





 
 
   
 
  

A  (21) 

and the output coefficient matrix is B I . The last column of A stands for the standard input 

bundle (i.e. standard consumption bundle) of the landowner, which is his consumption bundle 

divided by 1140. That is to say, here land is treated as the product of the landowner, and the 

production intensity equals 1140 all the time and the standard input bundle is variable. 

Since land is indispensable for production in the economy (20a)-(20c) and technological change 

is excluded here, under the fixed supply of land the growth rate of the economy in an equilibrium 

path must be zero, that is, the P-F eigenvalue of A must be 1. Hence   are computed to be 40. 
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That is, in an equilibrium path the input coefficient matrix must be 

 *

56 230

115 57

12 2 4

575 5 19

18 1 2

575 4 19

6 
 
   
 
  

A  (22) 

Furthermore, a left P-F eigenvector of *A  is found to be (0.0759, 1, 0.5777)  approximately, 

that is, the equilibrium land rent is about 0.5777 per unit per period with iron as the numeraire. By 

computing the right P-F eigenvector of *A  the production processes in the equilibrium path are 

found be: 

 11200 quarters wheat +480 tons iron +720 units land  23000 quarters wheat (23a) 

 7200 quarters wheat +480 tons iron +300 units land  1200 tons iron (23b) 

 4600 quarters wheat +240 tons iron +120 units land  1140 units land (23c) 

Now let’s run the model (19a)-(19c) with (0) (0.0759, 1, 0.5777)p  and (0) (575, 20, 1140)z  

to simulate the dynamics of prices, land rent, and outputs. In each period the supply of land in the 

model is set to be 1140 units. Figure 4 depicts the simulation results. 

Figure 4 shows that the land rent decreases at first due to its oversupply. However, the demand for 

land increases as the economy grows, and eventually the demand exceeds the fixed supply. Then the 

land rent begins rising until the average growth rate of the economy becomes zero. Hence only after 

a long time the land rent begins fluctuating around its equilibrium value. And eventually the outputs 

of wheat and iron also fluctuate around their equilibrium values. 

 

Figure 4. Price, land rent and outputs under fixed land supply in period 1 to 400 
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When the supply of land in the system (20a)-(20c) grows exogenously at a fixed rate  , the 

equilibrium land rent can be computed analogously.  

Note that the equilibrium growth rate of the original economy (2a)-(2b) without land is 0.25 and 

the supply of land is exogenous, it’s clear that when   is no less than 0.25 agent 1 and 2 can obtain 

land as much as needed and need pay nothing in an equilibrium path, that is, in such a case land 

becomes a free good and the equilibrium land rent is zero.  

When   falls between -1 and 0.25, say 0.2  , the equilibrium growth rate of the economy 

(20a)-(20c) must be 0.2  , which implies that the P-F eigenvalue of A in Eq. (21) must be 

1 5

1 6



. Hence we find 6.1  , and a left P-F eigenvector is found to be (0.0684, 1, 0.0907)  

approximately, that is, the equilibrium land rent is about 0.0907 per unit per period with iron as the 

numeraire. 

Furthermore, note that when the system (2a)-(2b) runs in a disequilibrium path the long-run 

average growth rate is lower than 0.25, hence in a disequilibrium path the supply of land may 

exceed the demand all the time even though   is less than 0.25. And generally speaking, the 

exogenous supply disturbs the market mechanism and consequently the land rent does not 

necessarily fluctuate around its equilibrium value in a disequilibrium path. For instance, Figure 5 

depicts the dynamics of the land rent and the wheat price with iron as the numeraire when 0.2  , 

wherein (0) (0.0684, 1, 0.0907)p  and (0) (575, 20, 1140)z . The figure shows that the wheat 

price fluctuates around 0.0684, however, the land rent fluctuates below its equilibrium value 0.0907. 

 

Figure 5. Wheat price and land rent under growing land supply ( 0.2  ) in period 1 to 800 
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6. Two-Country Economy 

In this section let’s extend the system of Sraffa to a two-country economy and analyze its dynamics 

under free trade and trade protectionism. Let’s regard the system (2a)-(2b) as country 1, and 

suppose there is another country, namely country 2, which consists of agent 3 and 4, and runs in the 

initial period as follows: 

 215 quarters wheat +14 tons iron  575 quarters wheat (24a) 

 105 quarters wheat +10 tons iron  20 tons iron (24b) 

The equilibrium growth rate of country 2 is also 0.25. An equilibrium price vector is 

 * 2

35
, 1 (0.0571, 1)


 p , and an equilibrium output vector is * (345, 28)z . Similar to country 1, 

with  (0) 2

35
, 1


p  and (0) (575, 20)z  the economy of country 2 will also exhibit regular 

business cycles, and the average output growth rates of both agents in a regular business cycle are 

about 0.2379.  

Next let’s investigate the economy consisting of the two countries. 

6.1 Two-country Economy under Free Trade 

When all goods are internationally tradable, the two-country economy contains 2 goods and 4 agents, 

and the input and output coefficient matrices are 

 

56 43 21

115 115 4

12 2 14 1

575 5 575 2

6 
   
  

A , 
1 0 1 0

0 1 0 1

 
  
 

B  (25) 

Let’s run the model (19a)-(19c) with  (0) 1
, 1

15
p , i.e. an equilibrium price vector for country 1, 

and (0) (575, 20, 575, 20)z . The output growth rates of agents are depicted in Figure 6, and the 

price ratio of wheat to iron is depicted in the left panel of Figure 7.  

Figure 6 shows that the output growth rate of wheat of country 1 is much lower than that of 

country 2, and the output growth rate of iron of country 1 is much higher than that of country 2. 

That is, the outputs of agent 1 and agent 4 grow at much smaller rates than that of agent 3 and 2. As 

a result, the share of agent 1 in the wheat market and the share of agent 4 in the iron market keep 
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decreasing, thus they will be washed out from the market in the long run. As a matter of fact, both 

the wheat output ratio of country 1 to country 2 and the iron output ratio of country 2 to country 1 in 

period 100 are about 0.1%. Consequently, the pattern of international trade in the long run must be 

that country 1 exports iron and imports wheat and country 2 exports wheat and imports iron. 

Hence in the long run the two-country economy is dominated by agent 2 and 3, and in fact the 

two agents can compose an autarkic sub-economy. The equilibrium price ratio of wheat to iron in 

the sub-economy is computed likewise to be 0.0616 approximately, and the equilibrium growth rate 

is about 0.2997. The left panel of Figure 7 shows that the prices ratio in the two-country economy 

fluctuates around 0.0616 due to the domination of the sub-economy. 

Finally, let’s discuss the intensities of inputs in technologies briefly. By Eq. (25) it’s clear that the 

technologies producing iron are more iron-intensive than the technologies producing wheat for both 

countries. In other words, iron is the iron-intensive product and wheat isn’t. Furthermore, either 

technology of country 2 is more iron-intensive than the corresponding technology of country 1. So 

we may say that technologies of country 2 are more iron-intensive than country 1. Since country 2 

exports wheat and imports iron, we see that a country with relatively iron-intensive technologies 

may import an iron-intensive product and export a non-iron-intensive product. 

6.2 Two-country Economy under Trade Protectionism 

Now let’s suppose wheat is internationally non-tradable due to trade protectionism. Since the wheat 

of country 1 and country 2 isn’t substitutable for each other and consequently may have different 

prices, they need to be treated as two distinct goods. Therefore the two-country economy contains 3 

 

Figure 6. Growth rates of outputs under free trade in period 1 to 100 
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goods (i.e. wheat of country 1, iron, wheat of country 2) and 4 agents now, and the input and output 

coefficient matrices are 

 

56

115

12 2 14 1

575 5 575 2

43 21

115 4

6 0 0

0 0

 
 
   
 
  

A , 

1 0 0 0

0 1 0 1

0 0 1 0

 
   
  

B  (26) 

Let (0) (1, 15, 1 p ）, that is, the initial prices of wheat of both countries are equal, and let 

(0) (575, 20, 575, 20)z . The price ratios of wheat to iron are depicted in the right panel of Figure 7, 

which shows that the wheat price of country 1 now is higher than that of country 2. 

Since either wheat producer cannot trade with the foreign iron producer, iron also becomes 

internationally non-tradable in effect because two iron producers needn’t trade with each other. 

Thus there is virtually no international trade now, and two countries are linked only through the 

unified iron market and the same iron price. Now an equilibrium path in the two-country economy is 

merely a simple combination of the equilibrium paths in two one-country economies. So the 

equilibrium price ratios of wheat to iron of two countries are still 0.0667 and 0.0571 respectively 

now. The right panel in Figure 7 shows that the price ratios indeed fluctuate around them. And now 

the equilibrium growth rate of the two-country economy is still 0.25. 

The output growth rates of agents are depicted in Figure 8, and the growth rates of output values 

of two countries are depicted in Figure 9. Here the output value of one country in one period is 

computed on the basis of outputs of its agents and the normalized market price vector in that period.  

Now the average growth rates of agents 2 and 3 are lower than that under free trade, and the 

 

Figure 7. Price ratio of wheat to iron under free trade and trade protectionism 
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Figure 8. Growth rates of outputs under trade protectionism 

average growth rates of agents 1 and 4 are higher. The average growth rates of agent 1 and 2 in a 

regular business cycle are computed to be about 0.2324 and that of agent 3 and 4 are about 0.2338. 

Agent 1 and 4 survive due to trade protectionism, however, both countries suffer a growth rate 

loss in output values. In a regular business cycle, the average growth rates of output values of both 

countries under free trade are computed to be 0.2896, which are higher than 0.25 (i.e. the 

equilibrium growth rates of both countries when they are separated). Under trade protectionism the 

average growth rates of output values of two countries are computed to be 0.2324 and 0.2338 

respectively. 

Moreover, note that for the two countries the current average growth rates (i.e. 0.2324 and 0.2338) 

are lower than 0.2381 and 0.2379 respectively, that is, lower than the average growth rates of output 

values of two countries when two countries are separated, hence in this example the best 

arrangement for the two countries is free trade, the next is to separate two countries, and the worst is 

the trade protectionism with non-tradable wheat and tradable iron. 

 

Figure 9. Growth rates of output values of two countries under free trade and trade protectionism 
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7. Concluding Remarks 

The economy in the real world runs in disequilibrium, and in this sense the disequilibrium analysis 

is as crucial as the equilibrium analysis. The structural growth model presented in this paper 

provides a dynamic analytical tool based on the classical growth framework for the disequilibrium 

analysis. In the model a country is treated as a collection of agents, therefore the disequilibrium 

dynamics of a one-country economy and a multi-country economy can be analyzed in a unified way. 

By aggregating the individual variables of agents, the macroeconomic variables of countries such as 

output values and their growth rates, amounts of exports and imports, etc., can be analyzed readily. 

For concreteness a system of Sraffa (1960) is utilized to exemplify the structural growth model 

and simulations are performed, and we arrive at some conclusions as follows. 

First, simulations shows that in some sense the equilibrium paths in the growth model correspond 

to a fixed point and business cycles corresponds to limit cycles, and the market mechanism usually 

will pull the economy into a limit cycle rather than the fixed point. And in business cycles variables 

such as prices, profit rates, output ratios fluctuate around their equilibrium values. However, the 

“centers of gravitation” of output growth rates are lower than the equilibrium growth rate due to the 

growth rate loss resulting from business cycles.  

As for the land rent under an exogenous supply of homogeneous land, its equilibrium value is 

determined by the consumption structure of landowner, the exogenous growth rate of land supply 

and technologies of other agents. Since wage is the rent of labor force, the equilibrium wage rate 

can be computed likewise based on the consumption structure of labor force, the exogenous growth 

rate of labor force supply and technologies of other agents. And due to the exogenous supply of land 

the land rent doesn’t necessarily fluctuate around its equilibrium value in disequilibrium paths.  

For the two-country economy extended from the system of Sraffa in this paper, the free trade 

boosts the growth rates of output values of both countries in comparison with trade protectionism. 

And under free trade those agents with lower growth rates will inevitably be washed out by 

international competitors in the long run, as a result the pattern of international trade emerges 

naturally. Hence, in a disequilibrium multi-country economy the pattern of international trade can be 

identified in the light of output growth rates of agents, and both the growth rates and the trade 



 
 

 
 

26

pattern can be investigated easily by simulations. 
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Appendix. Mathematical Proofs 

Proof of Proposition 1. (i) Because S A  is indecomposable, each column of A must be 

semipositive. Then A p  is a positive vector, and all entries on the main diagonals of 
1

A p , 
1

s


 

and p


 are positive. Hence if the  ,i j  entry of S A  is positive then the  ,i j  entry of Z is 

also positive. Therefore Z is indecomposable.  

And it can be readily verified that  p AZ p A  holds. By Perron-Frobenius theorem, the P-F 

eigenvalue of Z equals 1 and p A  is a left P-F eigenvector of Z.  

 (ii) We have: 

 
  1 1 1  

         p Az p s AzS p Az p Azs S A pz S s pAz
     

 

  1 1 
    A p S s pAz z Zz z

 
 (A.1) 

Hence by Perron-Frobenius theorem the statement holds. █ 

Proof of Proposition 2. (i) Let p be a left P-F eigenvector of A and   be the P-F eigenvalue, 

it’s clear that  1




 Z A p pA A


. Since z is a right P-F eigenvector of Z, z must be a right P-F 
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eigenvector of A. 

Given a positive exchange vector z, we have 

    1 1 
           Zz z A p pAz z pAz A pz Azp zA p Az zA p p

   
 (A.2) 

Thus by Perron-Frobenius theorem a positive exchange vector z corresponds to a unique 

normalized positive price vector p; moreover, if A is nonsingular and  Az s Se  holds then s  

and S  correspond to a unique normalized positive market-clearing price vector. When z is a right 

P-F eigenvector of A, by 
1

 Az zA p p


 it’s clear that p must be a left P-F eigenvector of A.  

 (ii)  And (iii) are immediate results of (i).  

 (iv) The proof is based on the work of Dietzenbacher (1988). Here let jm  and jm  

denote the jth rows of  1
Z A p pA


 and  1

Z A p pA


 respectively. ja  and ja  denote the jth 

row and jth column of A respectively.  

For a j i , note that ( )j j j jp  m a p a  and ( ) ( )j j j j j j jp p      m a p a a p a , thus 

j j m m  holds. And it can be verified readily that i i m m  holds. Hence i i j jz z z z  (for 

all j) holds by Theorem 5.3 of Dietzenbacher (1988). The theorem says: if M and M  are two 

indecomposable nonnegative (n × n) matrices possessing the same P-F eigenvalue and possessing 

the P-F eigenvector x and x  respectively, and each entry in the ith row of M  is no smaller than 

the corresponding entry of M and each other entry of M  is no greater than the corresponding entry 

of M, then i i j jx x x x  holds for all j . 

Note that if 0ija   and j i  then j j m m  holds. If there is a j i  such that 0ija   

(thus j j m m  holds) and i i j jz z z z  (thus j j k kz z z z  holds for all k), then like the 

proof of Theorem 2.1 of Dietzenbacher (1988) a contradiction is found: 

 j j j
j j j j j j

j j j

z z z
z z z

z z z      m z m z m z  (A.3) 

Furthermore, if i iz z  then by i i j jz z z z  (for all j) we yield z z . Thus we find 

Az Az s , i.e. Az s , which implies each good doesn’t sell out in the second exchange process, 

and this contradicts the definition of the exchange function. Hence i iz z  holds.  █ 


