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Abstract 
This paper deals with the identification of appropriate measures of the performance of the 
European Union in reducing its carbon dioxide emissions via external trade, both at the 
aggregate and at the industry levels. We have found that standard measures based on the 
Leontief quantity model and profusely used by input-output practitioners and industrial 
ecologists will result in underestimation of the actual performance of the EU in reducing its 
carbon dioxide emissions via external trade. Briefly, standard measures currently available in 
the literature seem to assign the EU less amounts of exported air emissions (carbon dioxide) 
than it should be. However, this rule does not hold for all industries individually. From a 
methodological viewpoint, the conclusions are justified by a new approach to estimate 
unbiased and statistically consistent emission multipliers. This approach has three important 
advantages: (a) it improves the accuracy of the environmental impacts assessed by industrial 
ecologists; (b) it finds a way to compute unbiased and consistent input-output multipliers for 
input-output analysts; and (c) the use of the Leontief inverse is no longer necessary; only the 
supply and use matrices are required. In addition, another advantage of this approach is that 
all the data needed to make the calculations are ready to use worldwide at many countries’ 
statistical offices.  
 

Keywords: carbon dioxide emissions; air emissions; European Union; supply and use tables; 
input-output analysis. 
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1 Background 

Sustainable consumption and production is currently a challenging issue on the policy agenda 
of the European Union (EU). At the World Summit on Sustainable Development (WSSD) in 
2002, all countries committed themselves to promoting sustainable patterns of consumption 
and production, with developed countries taking the lead. More specifically, countries 
committed to promoting the development of a ten-year framework of programmes on 
sustainable consumption and production, in support of national and regional initiatives. In 
March 2003, the European Council (the EU Heads of State or Government) identified 
sustainable consumption and production and the development of the ten-year framework as 
one of the key priorities for the EU in the follow-up to the WSSD. This was re-emphasised in 
the Commission Communication ‘The World Summit on Sustainable Development one year 
on: implementing our commitments’ (EU, 2003a) where sustainable consumption and 
production is one of three overarching objectives. Achieving more sustainable consumption 
and production patterns is therefore first and foremost an EU internal challenge. The 
overarching goal of the EU Thematic Strategy on the Sustainable Use of Natural Resources 
(EU, 2004) is to de-couple environmental impacts associated with the use of natural resources 
from economic growth, in support of sustainable development. To achieve this, the Strategy is 
likely to provide a framework and measures that allow resources to be used in a sustainable 
way without further harming the environment. It is likely to be based on three core tasks: 
gathering and keeping up-to-date information; assessing policies that directly or indirectly 
affect resources; and identifying appropriate measures, which will primarily be integrated into 
other policies. This paper particularly deals with the latter core task, i.e. the identification of 
appropriate measures of the performance of the EU in reducing its carbon dioxide emissions 
via external trade, both at the aggregate and at the industry levels. 

 The reduction of carbon dioxide (CO2) emissions is considered one of the main 
objectives of the EU Sustainable and Production Strategy. Consequently, major efforts are 
being undertaken by European governments to reduce the amount of carbon dioxide emitted 
by their own nations (see in EU (2004) several descriptions of interesting experiences carried 
out in the EU Member States).  The most challenging issue in planning attempts to reduce 
carbon dioxide emissions occurs in identifying which activities are the most polluting or 
which products consumed by final users are the most environmentally harmful. The 
environmental impact of final consumption was already expressed by Leontief (1970) as an 
undesirable externality of the production process (a negative by-product). At this respect, the 
distinction between production and consumption-driven emissions is crucial within the 
international policy context.  For instance, final users from one developed country may 
demand emission-intensive products from developing countries (via external trade) in order to 
reduce their own emissions. During this process, the developed country will emit less, but at 
the cost of an increase in emissions by the developing country to satisfy this new demand. In 
the end, the net global effect might well be an increase in emissions rather than a reduction, 
even though the developed country will be able to argue for the achievement of certain 
emission reduction goals. Hence, in order to clarify environmental responsibilities at the 
country level, total emissions must be decomposed into two groups: emissions generated by 
the consumption of goods and services produced domestically and emissions associated with 
imports, the latter of which is of extreme relevance to the current global policy agenda. 
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Moreover, the relevant figures should take into account not only direct emissions but also 
those indirectly emitted by supplier industries in order to produce a certain commodity. 

 Ideally, a full information on bilateral trade statistics at the industry detailed level and 
also on the different technologies of production of each of the Member States of the EU 
together with appropriate NAMEA-based environmental physical accounts on air emissions 
(e.g. carbon dioxide) would suffice to quantify the air emissions exported by each country via 
external trade by means of multi-regional input-output analysis (Miller and Blair (2009) is a 
standard reference on the state-of-the-art of input-output analysis: its foundations and 
extensions). Nevertheless, the availability of these kinds of data is still very limited and does 
not allow such type of analysis. Although there are major efforts being currently done by the 
European Commission to solve these important data drawbacks, namely the two EU-funded 
international research projects EXIOPOL (www.feem-project.net/exiopol/) and WIOD 
(www.wiod.org), their outcomes are still on the way.  

 At this point, this paper provides an alternative (and rather more complementary than 
exclusive) measure of the performance of the European Union (or any country at hand) in 
reducing its carbon dioxide emissions via external trade on the basis of a previous work 
published by Rueda-Cantuche and Amores (2010). In other words, this paper will provide a 
ratio of performance that measures at the industry level how far the current productive 
structure of an economy is from its maximum polluting capacity with a given domestic 
technology. This approach is perfectly in line with Leontief's (1953) approach, the main 
purpose of which is to compute not the labour/capital consumption of the rest of the world, 
but the labour/capital saved by the US through imports. Accordingly, our purpose will be to 
estimate the carbon dioxide emissions saved by the EU through imports and not to compute 
the emission intensity of the rest of the world. Hence, it seems sensible to take for granted the 
domestic technology assumption for the reduction in emissions by the EU through imports. 
Otherwise, imported products should have been produced domestically. This approach may 
be criticised for not being too realistic, but this would be true only if we wished to measure 
international emissions, which is not the purpose of this paper. The assumption of domestic 
technologies in imports in order to account for saved emissions, is already implicit in 
Dietzenbacher and Mukhopadhyay (2007) and Rueda-Cantuche and Amores (2010). The 
former authors proved, at least for India, that the pollution avoided by increasing imports is 
much greater than the pollution generated as a result of increasing exports, which incidentally 
turned out to be a new green Leontief paradox according to the authors. 

 Moreover, this paper will also prove that the standard measures available in the 
literature would underestimate the ratio of performance and thus, would assign the EU less 
amounts of exported air emissions (carbon dioxide) on average. In addition, another 
advantage of this approach is that all the data needed to make the calculations are ready to use 
worldwide at many countries’ National Statistical Institutes websites. Notice however that this 
paper deals particularly with the EU as a whole and benefited from the joint work developed 
by Eurostat and the Joint Research Centre’s Institute for Prospective and Technological 
Studies of the European Commission for the compilation of the necessary EU aggregate data, 
which has already been partially published in Rueda-Cantuche, et al. (2009) 

The paper is structured as follows. The next section briefly presents the current 
methodological framework under which input-output economists and industrial ecologists 
account for environmental impacts, with a particular focus on carbon dioxide emission 
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multipliers. Section 2 also discusses stochastic input-output modelling and the construction of 
input-output tables from a supply-use system, all of which will be integrated into a single 
modelling framework. Section 3 introduces an econometric model that provides domestic and 
total unbiased and consistent emission multipliers. Section 4 provides a new ratio of the 
performance of the EU’s reduction of carbon dioxide emissions via external trade. Section 5 
presents briefly the process of compilation of the aggregate supply and use tables of the EU 
economy (2000) and Section 6 compares on empirical grounds the results of the standard and 
econometric approaches. The last section concludes the paper, with a summary of the most 
important findings. 

2 Methodological framework 

2.1 Industrial ecology and input-output analysis 

Following Suh and Kagawa (2005), recent developments have made Life Cycle Assessment 
(LCA), a key subfield of industrial ecology, one of the areas that most extensively use input-
output analysis (IOA). LCA can be thought of as a tool that allows for the quantification and 
evaluation of the environmental impact of a product over the course of its entire life cycle 
(Guinée et al., 2002). Another area where IOA is deeply linked to industrial ecology is the 
product policy field. The European Commission adopted a communication (EC, 2003b) that 
identified products with the greatest potential for environmental improvement by considering 
IO-LCA as one of the approaches best suited to implement the European Integrated Product 
Policy analyses (Suh and Kagawa, 2005; Weidema et al. 2004; Tukker et al. 2005). The rapid 
generalisation and evolution of systems such as Systems of Environmental and Economic 
Accounts (SEEA) and National Accounting Matrices including Environmental Accounts 
(NAMEA) (for instance, Haan and Keuning, 1996; EC, 2001; UN, 2003) also provide an 
international accounting framework in which input-output tables are supplemented by an 
increasing number of natural resource accounts (land, water, forestry, etc…) and 
environmental emissions at the industry level. IOA is also rapidly broadening its scope of 
application to industrial ecology by extending the analysis to a global level. For instance, the 
World Trade Model developed by Duchin (2005) and extended by Strømman et al. (2005) has 
been used to examine the global implications of changes in agricultural land yields due to 
future climate change (Juliá and Duchin, 2005). 

As far as we know, the IO type of analysis used so far by LCA practitioners is based 
almost exclusively on the Leontief quantity model (Dietzenbacher, 1995) and the multipliers 
obtained through the so-called Leontief inverse. By changing the amounts of products 
consumed by final users, the Leontief quantity model yields variations in industry outputs 
(considering industry-by-industry IO tables). Therefore, the emission coefficients per unit of 
industry output generally provided by LCA practitioners and/or NAMEA accounts are to be 
used to determine the variation in air emissions resulting from the initial final demand change. 

Emission multipliers have been reported in a number of studies. Proops et al. (1993) 
conducted a comparative study of the German and British cases, whereas Östblom (1998) 
addressed the environmental outcome of emissions-intensive economic growth in the Swedish 
economy. Lenzen (1998) investigated energy and greenhouse gas flows within the Australian 
economy; Gerilla et al. (2001) studied the environmental repercussions of changes in 
technology in the Japanese economy; Haan (2001) developed a structural decomposition 
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analysis of pollution in the Netherlands; Creedy and Sleeman (2005) addressed emission 
reductions in New Zealand; Lenzen et al. (2004) developed a multi-regional model to 
compute emission multipliers and emission balances; Alcántara and Roca (1995) analysed 
primary energy requirements and carbon dioxide emissions during the 1980–1990 period; 
Llop (2007) decomposed total changes in emission multipliers to account for changes in 
emission coefficients (polluting intensity) and changes in technical coefficients (economic 
structure) and more recently, Rodríguez-Morilla et al. (2007) computed the emission 
multipliers of greenhouse effect gasses using Social Accounting Matrix and Environmental 
Accounts (SAMEA).  

2.2 The concept of unbiasedness in Econometrics 

We show briefly in this sub-section the general concept of unbiasedness within an 
econometric framework. We hope this general introduction to basic Econometrics will help 
the reader to follow next sub-sections on stochastic input-output analysis.  

 Generally speaking, the error term (u) in a multiple linear regression model, e.g., y = a 
+ bx+ cz + u, includes various factors that cannot be explicitly incorporated as explanatory 
variables for the following motivations: (a) the functional form (i.e., linear) may not be the 
most appropriate; (b) the theory explaining the explained variable may be incomplete, with 
omitted relevant variables; (c) perhaps the variables are correctly specified by the theory, but 
there are no data available or they are difficult to quantify; (d) human behaviour is often 
random and may arbitrarily influence the explained variable; (e) there could be errors of 
measurement; and (f) there could be sampling errors. Consequently, the error term is thought 
of as the composite of a number of (hopefully) minor influences on the explained variable. 
Nonetheless, we will assume that the error term only includes sampling errors by assuming a 
linear and correctly specified model without relevant omitted variables, and that the 
randomness of human behaviour and the errors of measurement do not significantly affect the 
results. 

Accordingly, we will regress direct industry carbon dioxide emission levels 
(explained variable) on the net outputs of different products (explanatory variables), allowing 
for an error term that takes into account all the deviations of the actual data (carbon dioxide 
emission levels) from those estimated by the deterministic part (a + bx+ cz) and only derived 
from sampling errors. The estimations will be carried out using ordinary least squares (OLS). 
This method guarantees that the OLS estimated coefficients (emission multipliers) are the best 
linear unbiased estimates according to the Gauss-Markov theorem (Greene, 2008). That is, the 
OLS estimates are unbiased in the sense that if we ever happen to use a set of all possible and 
exclusive samples of the firms populating a given economy to run the same regression, the 
expected values of the various OLS coefficients derived from each one of them will match the 
true values of the unknown parameters of the regression. To the contrary, if one only had one 
single sample of firms to compile the official supply-use and input-output tables (as it is in 
practice) and did not allow for sampling errors (u) in the calculation of impacts or any kind of 
multiplier (e.g. by using the Leontief inverse), then this would be implicitly equivalent to 
assume that official statistics provide nothing else than the true values of the supply-use and 
input-output systems with just one single sample!. Bearing this in mind, the use of the 
Leontief inverse to calculate emission multipliers will lead to biased estimates of emission 
multipliers just because they simply assume that there are no sampling errors (u) and that the 
figures depicted in the supply-use tables are precisely the true values. We find this argument 
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not very much acceptable and propose in this paper the inclusion of stochastics in the analyses 
of emission multipliers to be carried out by industrial ecologists and input-output economists. 

2.3 Stochastic input-output analysis 

While many studies provide estimations of environmental impacts, as far as we are concerned 
IO-LCA practitioners have paid little attention to the positive and significant bias of the 
impact multipliers derived from the Leontief inverse (Dietzenbacher, 2006). Assuming a 
stochastic technical coefficients matrix, A, leads to the central result that the Leontief inverse, 
L, is positively biased, with input coefficients that are totally independent (Simonovits, 1975), 
biproportionally stochastic (Lahiri, 1983) or moment-associated (Flam and Thorlund-
Petersen, 1985). That is, denote the true value of a stochastic IO matrix A as A0 and that of its 
Leontief inverse L as L0. Suppose the expected value of A equals A0 as E(A) = A0 
(unbiasedness of the technical coefficients). Consequently, 

E(L) = E[(I - A)-1] > [I - E(A)]-1 = (I – A0)-1 = L0 

In practice, even if we happen to dispose of an unbiased matrix A and use the true 
value of A, the derived multiplier matrix (I - A0)-1 – see right hand side of the inequality – will 
not correspond to the true value of L.  That would be something like: E(L) = L0 + bias. Notice 
that L0 does not correspond to (I – A0)-1 but to the true value of L. The difficulty to deal with 
the unknown true value of E[(I−A)−1] due to its stochastic nature makes researchers use 
[I−E(A)]−1 instead. In particular, Simonovits (1975) further assumes that E(A)=A0=At, being At 
the available matrix of technical coefficients. This explains why he reported in his paper 
under-estimation of the Leontief inverse when referring to the same inequality as 
Dietzenbacher does. Hence, even though Dietzenbacher (2006) states over-estimation and 
Simonovits (1975) under-estimation the reader should be aware that they were referring to the 
same inequality but from two different points of view. This should not lead the reader to 
confusion.  

To sum up, the Leontief inverse matrix is even positively biased even when the 
matrix A of technical coefficients is unbiased. Nevertheless, this is not the case in practice. 
The usual estimator of E[(I−A)−1] is given by Lt=(I−At)−1, which does not use A0 but a 
technical coefficient matrix that has been estimated by sampling methods (At). So, the bias 
might be even larger than that of A0. The expectation of Lt should be L0 + bias, but notice that 
the bias here is different from the bias mentioned previously in E(L). Denote the econometric 
(unbiased) estimator of the Leontief inverse as Le so that E[Le]= L0. It follows that the bias of 
the standard Leontief inverse can be calculated by E(Lt)−E(Le), and following ten Raa and 
Rueda- Cantuche (2007) we estimated this bias as Lt - Le. 

As Dietzenbacher (2006) argues, the overestimation of the multipliers is not a 
negligible issue. Because the Leontief inverse is usually post-multiplied by an exogenously 
specified (positive) final demand vector, all separate positive biases accumulate in the 
projection of output levels and even more on emission multipliers. Dietzenbacher (2006) also 
recommended assuming stochastics on the symmetric input-output table (IOTs) values rather 
than on the input coefficients. Although more plausible from an economic viewpoint, this 
approach has rarely been adopted (Gerking, 1976, 1979; and Dietzenbacher, 1988). The 
reason for the rarity of this approach is likely that the additional step of transforming 
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intermediate uses into input coefficients seriously complicates the analysis, typically 
producing input coefficients of a rather complex stochastic nature. 

Alternatively, ten Raa and Rueda-Cantuche (2007) computed unbiased estimates of 
the column row sums of the Leontief inverse (backward multiplier estimates) directly from 
supply and use firms’ data. Their study assumed that total output and employment (firms) 
data used to compile the official supply and use tables were stochastic. The supply and use 
tables incidentally form the preparatory step for constructing an IOT. These authors proposed 
a single-equation econometric model in which the regression coefficients result in the output 
(and employment) multipliers obtained through the Leontief inverse, using the product 
technology assumption for the construction of the input coefficients matrix A. The authors 
estimated output and employment multipliers and compared them with those obtained through 
the Leontief inverse. The results confirmed the positive expected bias on almost all of the 
significant multipliers, in addition to some with values that were not as negligible.  

Apart from the problem of quantifying the positive bias, the main advantage of this 
approach is that unbiased and consistent multipliers can be estimated for further application to 
the calculation of emission variations due to changes in final demand quantities.  
Furthermore, this approach allows for the estimation of confidence intervals for the emission 
multipliers and standard hypotheses tests. However, this approach is significantly limited by 
data availability at the firm level. More recently, in order to circumvent this issue Rueda-
Cantuche and Amores (2010) shifted the analysis to supply and use tables and carried out the 
analysis for Denmark. This paper eventually extends the latter to the European Union and, in 
addition, discusses the repercussions of Leontief-based biased emission multipliers on its 
performance in reducing carbon dioxide emissions via external trade. 

2.4 Supply-use and input-output tables 

A relevant issue in the estimation of input coefficients is the technology assumption to be 
assumed for the compilation of the IOT if it is product-by-product (for a review, see ten Raa 
and Rueda-Cantuche, 2003). The same applies for industry-by-industry IOTs provided two 
alternative delivery assumptions (Eurostat, 2008). A vast body of literature has detailed a 
long-standing controversy regarding the best method of compiling IOTs on theoretical 
grounds. On one hand, Kop Jansen and ten Raa (1990) have proven that the product 
technology assumption (i.e., that all products are produced in the same way irrespective of the 
producer industry) is the best method of compiling product-by-product tables. On the other 
hand, Rueda-Cantuche and ten Raa (2008) recently proved that for industry-by-industry 
tables, the superior method is the fixed industry sales structure assumption—i.e., constant 
deliveries of industries irrespective of the products they sell. 

2.5 Contributions 

This paper continues the line initiated by Rueda-Cantuche and Amores (2010) when they first 
combined the use of econometric modelling tools within a supply-use system to address 
environmental repercussions (carbon dioxide emissions) of changes in the amounts consumed 
by final users. This approach provides one-shot unbiased and consistent estimates of carbon 
dioxide emission multipliers on the basis of official supply and use tables. The method also 
provides confidence intervals for emission multipliers. Under this approach, a Leontief 
inverse is no longer necessary to estimate emission impacts. Accordingly, IO-LCA 
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practitioners would be able to estimate statistically significant impacts using only published 
supply-use tables (both at basic prices), data on direct emissions and some standard 
econometrics. This paper deals with the performance of the EU in reducing (carbon dioxide) 
emissions via importation of emission-intensive products from other countries.  

 Following ten Raa and Rueda-Cantuche (2007), the practice of interrelating accounts 
and input-output multipliers can be deconstructed into three steps. The first step consists of 
filling data gaps, imputing values to non-observed establishments, and summation over firms 
within industries. These operations are straightforward and produce the use and make tables U 
and V (the latter being the transposed production matrix of a supply table), which display the 
commodity inputs and outputs of the industries. The off-diagonal elements of the make table 
are the secondary outputs, all of which will have to be treated in the second step. The result is 
a matrix of input-output coefficients, A. The third and last step is a Leontief inversion, (I – A)-

1 = I + A + A2 + … . In multiplier analysis, the first term represents the direct effect, the 
second term the direct input requirement, and the third and following terms the indirect input 
requirements.  

The theory of input-output coefficients centres on the second step and analyses 
several models for their construction. The results are partial, and problems persist, such as the 
problem of negative coefficients. The stochastic input-output literature focuses on the third 
step, analysing the transmission of errors under the Leontief inversion. At this point, 
nonlinearity adds to the list but not actually associated with secondary production. As 
mentioned earlier, positive bias are expected in multipliers. 

This paper makes two interrelated contributions to the literature. Firstly, the Leontief 
inverse-based estimates of the carbon dioxide emission multipliers are proven to overestimate 
the true values of the emission impacts and therefore, mislead the performance measures of 
emission reductions via external trade. This is done by imposing stochastics on the variability 
of the supply-use statistics across industries rather than on input coefficients. Secondly, we 
integrate all the three mentioned steps by reducing the impact multiplier calculations to a 
single use of a linear econometric model that uses the available supply-use tables instead of 
the usual symmetric IOT.  The non-linearity of the different construction methods used to 
compute an IOT together with the non-linearity of the Leontief inversion in the calculation of 
impact multipliers that frustrate the construction of input-output coefficients and transmit 
errors in the Leontief inverse, neutralise each other upon combination. Thus, we are able to 
estimate consistent linear unbiased estimates of (emission) multipliers. The application refers 
to the European Union for the year 2000. 

3 Econometric model for determining carbon dioxide emission multipliers 

This section aims to describe how carbon dioxide emission multipliers can be estimated 
econometrically. We will take as starting point the standard input-output formulation for 
input-output multipliers in the case of carbon dioxide emissions. As in Miller and Blair (2009) 
and following ten Raa (2005) and ten Raa and Rueda-Cantuche (2007), among others, a row 
vector of carbon dioxide emission multipliers (γ) is denoted by the following expression: 

 
1)( −−= AIcγ , (1) 
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where c denotes a row vector of direct carbon dioxide emission coefficients and (I-A)-1 the 
usual Leontief inverse. Each value of γ  measures the total (direct and indirect) emissions 
produced as a result of one-unit increase in the amounts consumed by final users of a certain 
commodity. Next, according to the product technology assumption by which direct carbon 
dioxide emissions of a commodity in absolute values are independent of the producing 
industry, we denote 

 
T

T

CVc
cVC

−=

=

, (2) 

where C stands for a row vector of direct industry carbon dioxide emission levels and VT (the 
transpose of the intermediate matrix of a make table) for a production matrix of the supply 
table at basic prices. Similarly, the construction of the input matrix A under the product 
technology assumption is given by 

 
T

T

UVA
AVU

−=

=

, (3) 

where A represents the matrix of technical coefficients (product by product) and U represents 
the intermediate part of a use table at basic prices (product by industry). Bearing in mind the 
two former assumptions, equation (1) becomes 

 1T1TT1TT )UV(C]V)UVI[(C)UVI(CV −−−−−− −=−=−=γ , (4) 

which can be rearranged as 

 )( UVC T −= γ . (5) 

If there were the same number of industries and products, equation (5) would simply 
become a system of equations with just a single solution for the γ coefficients. Nevertheless, 
rectangular systems typically derived from supply and use tables usually have different 
number of industries and products and thus allow for the introduction of a random disturbance 
error ε.This error term can thus be defined as a row vector of m independent and normally 
distributed errors with zero mean and constant variance: 

 εγ +−= )( UVC T . (6) 

Subsequently, the emission multipliers result to be stored in a vector of regression 
coefficients, γ. In equation (6), C is an m-order row vector (m industries) of direct carbon 
dioxide emissions, γ corresponds to an n-order row vector (n products) of emission 
multipliers, V is the make matrix of order m x n, and U is the use matrix of order n x m 
(product by industry). 

Notice that m represents the number of industries and also the number of 
observations. Moreover, the net output of commodities (n) would be the explanatory variables 
of the derived model. In order to get enough degrees of freedom, we need to have more 
industries than products in our equation system (m>n). However, rectangular supply and use 
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tables (SUTs) are rarely available in official statistics although they are compiled originally 
from a rectangular system where business establishment reports on inputs and outputs are 
organized in worksheets, which are essentially disaggregated supply and use tables (ten Raa, 
2005). So, from square SUTs one can have more industries than products by two ways, i.e.: 
either aggregating products or splitting up industries. In the absence of more available data, 
the simplest way to proceed is clearly the former option while the latter would require more 
detailed information on inputs and outputs that statistical offices very seldom report. This 
justifies our decision to aggregate products instead of breaking down industries in order to 
obtain enough degrees of freedom. 

Concerning the differences between the econometric estimations and the Leontief 
inverse-based calculations, Rueda-Cantuche and Amores (2010) proved that the econometric 
estimations of the emission multipliers obtained from equation (6) will match those calculated 
with equation (1) only when the number of industries equals the number of products. In other 
words, if one assumes complete absence of stochastic errors in equation (6), which should not 
be necessarily true, then one must always use square SUTs. Therefore, our econometric 
approach is definitely oriented to rectangular supply-use systems rather than to square 
systems, for which the two approaches would not make any difference. 

4 Measuring the performance of emission reductions via external trade 

Suppose the simplest case of one economy with just one single sector. In National Accounts, 
the total product output x would result from the sum of the intermediate use of products 
produced domestically (zd), the imported intermediate uses (zm) and final demand, y 
(including final consumption, investment and exports). In mathematical terms, 

 d mx z z y= + + . (7) 

 Equation (7) can be transformed into: 

 d mx a x z y= + +   

being ad the domestic input requirements per unit of product output (zd/x). Subsequently, 
d m(1 )a x z y− = +  and therefore, 

 m m

d d d1 1 1
z y z yx

a a a
+

= = +
− − −

  

Consequently, the change in product output (∆x) per one-unit variation in final 
demand yields: 

 
d

1
1

x
y a

∆
=

∆ −
  

and provided that co stands for the amount of carbon dioxide emitted per unit of product 
output, the domestic emission impact resulting for each one-unit change in final demand  
would be: 
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 o
o

d1
cxc

y a
∆

=
∆ −

,   

which, for a multiple n-dimension economy, is actually: 

 ( ) 1
d dc I Aγ −= −   

being c the so called emission coefficients vector. 

If one assumes now that all imports of good and services were to be produced 
domestically, then zm = 0 and hence, zd = z. Consequently, equation (7) could also be 
expressed as x ax y= + , being a the total input requirements per unit of product output (z/x). 
Similarly, the change in product output (∆x) per one-unit variation in final demand (∆y) 
yields: 

1
1

x
y a

∆
=

∆ −
 

and given that co stands again for the physical amount of carbon dioxide emissions emitted 
per unit of product output, the domestic emission impact resulting for each one-unit change in 
final demand  would be: 

o
o 1

cxc
y a

∆
=

∆ −
,  

which, for a multiple n-dimension economy, can be expressed as: 

( ) 1c I Aγ −= − . 

Since a is expected to be always greater or equal than ad, then it is straightforward that: 

d

1 1
1 1a a

≥
− −

 

and eventually, in matrix terms, this is similar to ( ) ( )1 1
dc I A c I A− −− ≥ −  and hence, dγ γ≥ . 

 In other words, γ can be considered a measure of the maximum polluting capacity (per 
one-unit increase in final demand quantities) of an economy. If all imported products were 
produced domestically, γ would yield how much carbon dioxide emissions were to be 
increased (per one physical unit of final demand) to reach the maximum level of emissions for 
a given domestic technology. However, in the real outside world, countries indeed import, 
and emissions are transferred abroad via external trade. Therefore, if one considers domestic 
intermediate uses, then γd would be just a measure of the actual polluting capacity calculated 
by taking into account only domestically produced inputs. 
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Because γd is expected to be benchmarked by γ, we define the following ratio of 
performance (P) that measures at the industry level how far the current productive structure of 
an economy is from its maximum polluting capacity. The ratio of performance, P, is defined 
as follows: 

 1 dP γ
γ

= − . (8) 

For example, if γd is equal to 10 tonnes and γ is equal to 20 tonnes (P=1-10/20 = 0.5) 
for a certain product, then the European importation of such commodities allows the EU to 
use only 50% of its maximum polluting capacity per unit of final demand. It is 
straightforward that as long as the P value gets closer to 1, then the emissions of the 
corresponding industry are being reduced via external trade (imports). The opposite applies to 
values of P close to 0. 

This ratio of performance is clearly independent of the way domestic and total 
impact multipliers (γ and γd) are estimated but however, the use of the Leontief inverse or the 
econometric approach proposed in this paper will make a difference with respect to the 
unbiasedness of the emission multipliers. Similarly, using equation (6) from the previous 
section, the alternative econometric estimations of γ and γd would be given by running 
ordinary least squares in the two following linear regressions:  

 d d d( )TC V Uγ ε= − +  (9) 

 εγ +−= )( UVC T  (10) 

being U and Ud the domestic and total intermediate uses, respectively, and ε and εd two 
normally distributed random disturbance errors with zero mean and constant variance. 

5 EU27 aggregated supply and use tables (2000) 

In one of my previous works (Rueda-Cantuche et al, 2009), the very first EU27 aggregate 
(product by product) input-output table (EU27-IOT) at basic prices was compiled for the year 
2000. The EU27-IOT distinguishes between domestic and imported (from third countries) 
uses. The interested reader may find more details on its construction in Rueda-Cantuche et al 
(2009). The EU27-IOT would suffice to calculate the Leontief-inverse based emission 
multipliers but however, our approach requires the use of supply-use tables to run equations 
(9) and (10), which are not directly available.  

As regard the EU27 aggregate supply table for 2000, all supply tables from 
individual Member States are publicly available through the Eurostat website except for 
Cyprus. Consequently, we had to apply the Greek supply matrix structure as a proxy to 
complete the list. We are convinced that provided the size of the Cypriot economy within the 
EU, the error we make by imposing this assumption will not alter dramatically our final 
results. Eventually, the EU27 aggregate intermediate supply matrix (VT ) is compiled by 
merging the twenty-seven individual supply tables. 

Following the Eurostat Manual of Supply, Use and Input-Output Tables (Eurostat, 
2008, p. 352), one can derive a use table at basic prices from: (a) an input-output table at basic 
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prices (either of a product by product or industry by industry type); and (b) a supply table at 
basic prices. As a result, we derived both the domestic and the total use matrices at basic 
prices from the following expressions (e denotes a column vector of ones): 

 
1

* diag( )T TU Z V e V
−

 =    (11) 

 
1

d d * diag( )T TU Z V e V
−

 =    (12) 

being Z and Zd the corresponding total and domestic intermediate uses of the EU27-IOT. By 
using equations (11) and (12), we are implicitly assuming a product technology assumption in 
the construction of the EU27-IOT, which means that all products are produced in the same 
way irrespective of the industry that actually produces them. One of the main advantages of 
this assumption when one reverses supply and use tables from symmetric IOTs is that it does 
not yield negative values. Notice, however, that vice versa is completely the other way round.  

6 Results 

The empirical work was carried out for the EU economy as a test case with supply and use 
tables (SUTs) for the year 2000 (59 industries/commodities) valued at basic prices and 
expressed in millions of euros at current prices. Up to 21 pollutant-wise groups of 
commodities were aggregated in order to obtain sufficient degrees of freedom (59 industries – 
21 commodities = 38 degrees of freedom) to estimate equations (9) and (10). The definite 
number of degrees of freedom in each equation may be slightly modified due to the presence 
and correction of outliers. 

The model was estimated by the Ordinary Least Squares (OLS) method. Due to the 
presence of certain forms of unknown heteroskedasticity, the White estimate (White, 1980) of 
the variance and covariance matrices of the estimated coefficients was used to provide 
consistent and robust standard errors. No autocorrelation problems (as expected in cross-
sectional data) or multicollinearity problems plagued our analysis. For the total model, only 1 
out of the 210 (0.48%) possible off-diagonal elements of the matrix of correlations with 21 
different explanatory variables was larger than 0.5, and none was greater than 0.75. In the 
domestic model, all correlation coefficients were below 0.5. 

For comparison purposes, the Leontief inverse-based emission multipliers were not 
constructed on the basis of the EU27-IOT but on a pure product technology basis for the 
aggregated 21 sectors/products—e.g., in the input matrix A21x21. This means that equation (1) 
was computed using an aggregated version of the EU27-SUT59x59 and the product technology 
model, as expressed in equation (3). 

Eurostat publishes regularly NAMEA (environmental) accounts for all twenty-seven 
EU Member States and the EU as a whole. Hence, we used published official data on the 
direct carbon dioxide emissions. This publication presents data on industry emissions with a 
breakdown of 59 NACE industries or economic activities. Table 1 shows the industries with 
the highest direct emissions in the European Union. Table 1 does not include the emissions 
generated abroad by foreign products imported by the EU.  
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Table 1. 

Domestic direct emissions in the EU (2000) 
Source: Eurostat 

(Thousands of CO2 

tonnes)
(percentage)

01 Agriculture, hunting and related services 95,422.8 2.9%
02 Fishing and other fishing; services incidental of fishing 10,777.7 0.3%

03 Mining of coal, uranium and other mining and quarrying 
products 31,672.5 1.0%

04 Extraction of Crude petroleum & natural gas; and incidental 
related services 32,990.0 1.0%

05 Manufacture of food products and beverages; Tobacco 74,596.3 2.2%

06 Manufacture of textiles, leather, wood, cork, pulp, paper and 
paper products 86,845.7 2.6%

07 Manufacture of coke, refined petroleum products and nuclear 
fuels 154,585.1 4.6%

08 Manufacture of chemicals, rubber and plastics 173,172.0 5.2%
09 Manufacture of other non-metallic mineral products 240,467.2 7.2%
10 Manufacture of metallurgy and fabricated metal products 252,594.9 7.6%

11 Manufacture of machinery and equipment; electrical machinery 
& apparatus 26,004.7 0.8%

12
Manufacture of office mach. & computers; radio, TV & 
communication equip. medical & precision intruments; transport 
equip.

35,750.3 1.1%

13 Manufacture of furniture; other manufactured goods; secondary 
raw materials 19,439.0 0.6%

14 Electricity, gas, steam and hot water 1,348,921.5 40.5%
15 Construction 43,333.3 1.3%
16 Trade; hotel and restaurant services 97,562.5 2.9%
17 Land transport 221,930.1 6.7%
18 Water transport 71,480.7 2.1%
19 Air transport 94,715.8 2.8%
20 Other services 130,818.6 3.9%
21 Public Admin. Education, Health & social work 84,228.9 2.5%

Domestic direct 
emissionsIndustryCode

 

Electricity, gas, steam and hot water generation (14) amount to slightly more than 
40% of total emissions, whereas metallurgy and fabricated metal products (7.6%); the other 
non-metallic mineral products (7.2%); land transport (6.7%); manufacture of chemicals, 
rubber and plastics (5.2%) and crude petroleum and natural gas (4.6%) account for nearly one 
third. Ranking in terms of (domestic) direct emission coefficients (tonnes per million of 
euros) yields different results (see Table 2) for almost all industries except for electricity (14), 
which has the greatest value (3,275.9 tonnes per million of euros); and other non-metallic 
mineral products (09), which have the second largest emission coefficient (1,240.3 tonnes). 
The top-five list is completed by water transport (961.6), the fishing industry (927.5 tonnes); 
and air transport (841 tonnes). Moreover, when considering direct and indirect (domestic) 
emissions through the Leontief inverse-based calculations, the top-five list remains 
unchanged. However, the econometric estimations show that the crude petroleum and natural 
gas industry (04) and the manufacturing of coke and refined petroleum products (07) have one 
of the greatest impacts in terms of domestic carbon dioxide emissions.  
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Table 2. 

Domestic carbon dioxide emission multipliers in the EU (2000) 
Source: Own elaboration 

Multipliers
lower upper

01 Products of agriculture, hunting and related services 260.5 529.6 412.5 0.000 354.8 470.3 117.0
02 Fish and other fishing products; services incidental of fishing 927.5 1,195.1 # 1,029.5 0.000 723.0 1,335.9 165.6
03 Coal, uranium and other mining and quarrying products 579.0 1,013.6 # 735.8 0.014 161.6 1,310.0 277.8
04 Crude petroleum and natural gas; and incidental related services 439.7 547.4 2,351.9 0.000 2,296.1 2,407.7 -1,804.5
05 Food products and beverages; Tobacco 101.7 462.3 162.9 0.000 131.5 194.3 299.4
06 Textiles, leather, wood, cork, pulp, paper and paper products 107.6 410.1 224.8 0.009 60.3 389.3 185.3
07 Coke, refined petroleum products and nuclear fuels 640.9 969.4 1,278.5 0.000 1,254.5 1,302.5 -309.1
08 Chemicals, rubber and plastics 235.2 622.4 # 503.1 0.000 350.3 655.9 119.3
09 Other non-metallic mineral products 1240.3 1,810.1 1,611.2 0.000 1,525.0 1,697.4 198.9
10 Metallurgy and fabricated metal products 416.1 901.4 206.8 0.000 116.4 297.1 694.7
11 Machinery and equipment; electrical machinery & apparatus 38.1 339.3 145.8 0.000 86.4 205.3 193.5

12 Office mach. & computers; radio, TV & communication equip. 
medical & precision intruments; transport equip. 31.4 328.6 68.2 0.000 35.1 101.4 260.4

13 Furniture; other manufactured goods; secondary raw materials 105.4 432.5 103.8 0.024 14.7 192.9 328.8
14 Electricity energy, gas, steam and hot water 3275.9 4,169.3 5,072.1 0.000 5,033.3 5,110.9 -902.8
15 Construction work 37.9 391.7 96.0 0.000 79.8 112.3 295.6
16 Trade; hotel and restaurant services 46.3 222.3 117.2 0.024 16.4 218.0 105.2
17 Land transport 524.0 721.1 # 734.5 0.000 710.5 758.4 -13.3
18 Water transport 961.6 1,263.4 # 1,245.7 0.000 1,120.6 1,370.8 17.7
19 Air transport 841.0 1,054.9 # 1,020.0 0.000 959.7 1,080.2 34.9
20 Other services 27.5 147.8 227.5 0.000 155.1 299.9 -79.7
21 Public Admin. Education and Health & social work services 40.7 164.9 61.5 0.001 25.5 97.5 103.5

Key: p value = 0.000: p values less than 10-4 are rounded down to 0.000, but are different from zero. #:   Within the CI bounds
CI bounds: Confidence Intervals bounds at a confidence level of 95%.

Note: All the coefficients are significant at the 97% confidence level.

CI boundsp value
estimated 

bias
CommodityCode

(CO2 tonnes per  million of Euro)

Emission multipliers (Domestic model)
Econometric. CalculationEmission 

Coefficient
Leontief 

calculation

 
 

Table 3. 
Total carbon dioxide emission multipliers in the EU (2000) 

Source: Own elaboration 

Multipliers
lower upper

01 Products of agriculture, hunting and related services 260.5 565.1 454.0 0.000 376.8 531.3 111.1
02 Fish and other fishing products; services incidental of fishing 927.5 1,246.5 # 1,149.8 0.000 619.2 1,680.3 96.8
03 Coal, uranium and other mining and quarrying products 579.0 1,067.8 # 1,005.8 0.008 278.4 1,733.2 62.0
04 Crude petroleum and natural gas; and incidental related services 439.7 563.7 5,606.0 0.000 5,478.1 5,734.0 -5,042.4
05 Food products and beverages; Tobacco 101.7 511.2 178.5 0.000 137.4 219.7 332.7
06 Textiles, leather, wood, cork, pulp, paper and paper products 107.6 462.0 250.8 0.014 53.2 448.4 211.2
07 Coke, refined petroleum products and nuclear fuels 640.9 1,213.1 1,472.9 0.000 1,430.5 1,515.4 -259.8
08 Chemicals, rubber and plastics 235.2 708.8 # 638.0 0.000 387.2 888.8 70.8
09 Other non-metallic mineral products 1240.3 1,869.6 1,713.6 0.000 1,597.1 1,830.0 156.1
10 Metallurgy and fabricated metal products 416.1 1,000.9 246.3 0.000 127.3 365.3 754.6
11 Machinery and equipment; electrical machinery & apparatus 38.1 407.7 187.0 0.000 112.9 261.1 220.7

12 Office mach. & computers; radio, TV & communication equip. 
medical & precision intruments; transport equip. 31.4 420.9 87.2 0.003 31.2 143.1 333.7

13 Furniture; other manufactured goods; secondary raw materials 105.4 501.6 120.3 0.065 -7.7 248.3 381.3
14 Electricity energy, gas, steam and hot water 3275.9 4,241.7 5,140.8 0.000 5,088.7 5,192.8 -899.0
15 Construction work 37.9 438.3 103.9 0.000 83.0 124.7 334.4
16 Trade; hotel and restaurant services 46.3 244.9 126.0 0.030 12.9 239.2 118.9
17 Land transport 524.0 752.3 # 765.8 0.000 735.0 796.5 -13.4
18 Water transport 961.6 1,327.5 # 1,309.9 0.000 1,118.7 1,501.1 17.6
19 Air transport 841.0 1,119.2 # 1,122.3 0.000 1,022.5 1,222.1 -3.1
20 Other services 27.5 163.9 267.2 0.000 170.7 363.7 -103.3
21 Public Admin. Education and Health & social work services 40.7 182.8 61.7 0.002 24.5 98.9 121.1

Key: p value = 0.000: p values less than 10-4 are rounded down to 0.000, but are different from zero. #:   Within the CI bounds
CI bounds: Confidence Intervals bounds at a confidence level of 95%.

Note: All the coefficients are significant at the 93% confidence level.

Code

(CO2 tonnes per  million of Euro)

Emission multipliers (Total model)
Econometric. CalculationEmission 

Coefficient
Leontief 

calculation CI boundsp value
estimated 

bias
Commodity
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Table 2 also shows the extent to which a sector has a large emission multiplier due to 
the extensive use of intermediate pollutant inputs. Such an overview can be provided by 
relating the direct emission coefficients to the direct and indirect econometric multipliers. 
These sectors are typically other services (20); crude petroleum and natural gas (04); 
machinery and equipment (11); construction work (15); trade, hotel and restaurant services 
(16), among others. 

Table 3 shows that the top-five of (total) direct and indirect emission multipliers is 
almost identical to that of the direct emission coefficients, i.e. just the crude petroleum and 
natural gas replace air transportation. Nevertheless, the econometric estimations show that the 
crude petroleum and natural gas industry (04) and the manufacturing of coke and refined 
petroleum products (07) also have great impacts in terms of total direct and indirect carbon 
dioxide emissions. Table 3 also shows the industries with largest total emission multipliers 
due to an extensive use of intermediate pollutant inputs, i.e.: crude petroleum and natural gas 
(04); other services (20); machinery and equipment (11); office machinery and computers 
(12); construction work (15); trade, hotel and restaurant services (16), among others. 

From Tables 2 and 3, we have also derived the following considerations from a 
comparison between the carbon dioxide emission multipliers obtained from the econometric 
model and those derived from the Leontief inverse. 

a) In most cases, the Leontief inverse-based multipliers overestimate the unbiased values 
given by the econometric regression. Indeed, between15 to 16 out of 21 commodities have 
lower estimated multipliers than those calculated using the traditional approach. 
Confirming the results reported by Dietzenbacher (2006), the magnitude of the estimated 
bias tends to be small and positive. Nonetheless, the weighted average (the weights used 
are the shares of the econometric estimates of emission multipliers) of the positive 
estimated biases only amounts to between 0.2% and 0.4%, whereas that of the negative 
biases varies between -3.1% and -6.9%. Similar results were provided by Dietzenbacher 
(1995), Roland-Holst (1989), ten Raa and Rueda-Cantuche (2007) and Rueda-Cantuche 
and Amores (2010). 

b) Econometric input–output (ordinary least squares) estimates are unbiased and consistent, 
providing confidence intervals for carbon dioxide emission multipliers. Our confidence 
intervals provide a range of values for the true emission multipliers in the sense that the 
true value of the emission multiplier demonstrates a 95% probability (also called 
confidence level) of belonging to this interval. Obviously, the number of degrees of 
freedom will affect the amplitude of the interval, making it more precise (with less 
amplitude) when it has a large number of degrees of freedom. The opposite applies to 
models with a smaller number of degrees of freedom, in which the confidence intervals 
may be so wide that it becomes difficult to provide a meaningful range of values. The 
midpoint of the confidence interval is precisely the unbiased econometric estimate, and the 
amplitude will depend on the degrees of freedom, the fixed confidence level (e.g., 95%) 
and the estimated standard errors of the regression coefficients (the interested reader may 
refer to Greene, 2008). Note that only six multipliers derived from the traditional approach 
fell within the confidence intervals. That is, only six out of the twenty-one traditional 
emission multipliers calculated may be sufficiently close to the true value of the parameter 
with 95% probability. 
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c) The measurement of the extent to which sectors use intermediate pollutant inputs is also 
affected by the bias. Because the Leontief inverse-based multipliers are generally 
overestimated, the use of econometric multipliers may make sectors like office machinery 
(12) appear to consume emission-intensive inputs when this is not really the case. The 
same applies to metallurgy and fabricated metal products (10); furniture and other 
manufactured goods (13) as well as construction work (15). The opposite can be said about 
crude petroleum and natural gas (04) and other services (20). 

In order to test for significant correlations between the different rankings obtained 
from the econometric and Leontief-based approaches, we computed the Spearman coefficient 
of correlation, which amounted to 0.83 and was also significant at the 99% confidence level.  

Table 4 presents the results of estimated equations (9) and (10) together with the 
results of the ratio of performance (P) given by (8). As expected, domestic emission 
multipliers are always lower than total emission multipliers. Figure 1 shows that the most eco-
efficient sectors in transmitting emissions abroad via external trade are the extraction of crude 
petroleum and natural gas (including incidental related services) (04); coal mining (03); 
chemicals, rubber and plastics (08); machinery and equipment (11) and the manufacturing of 
office machinery and computers and other electronic equipments (12). Public administration, 
education and health services (21); electricity, gas, steam and hot water (14); land transport 
(17), water transport (18) and the manufacturing of other non-metallic mineral products (09) 
reported the lowest values, indicating inefficient reduction of emissions through external 
trade.  

 
Table 4. 

Domestic and total carbon dioxide emission multipliers (summary). Ratio of performance. 
Source: Own elaboration 

lower upper lower upper
01 Products of agriculture, hunting and related services 412.5 354.8 470.3 0.000 454.0 376.8 531.3 0.000 0.09
02 Fish and other fishing products; services incidental of fishing 1,029.5 723.0 1,335.9 0.000 1,149.8 619.2 1,680.3 0.000 0.10
03 Coal, uranium and other mining and quarrying products 735.8 161.6 1,310.0 0.014 1,005.8 278.4 1,733.2 0.008 0.27
04 Crude petroleum & natural gas; and incidental related services 2,351.9 2,296.1 2,407.7 0.000 5,606.0 5,478.1 5,734.0 0.000 0.58
05 Food products and beverages; Tobacco 162.9 131.5 194.3 0.000 178.5 137.4 219.7 0.000 0.09
06 Textiles, leather, wood, cork, pulp, paper and paper products 224.8 60.3 389.3 0.009 250.8 53.2 448.4 0.014 0.10
07 Coke, refined petroleum products and nuclear fuels 1,278.5 1,254.5 1,302.5 0.000 1,472.9 1,430.5 1,515.4 0.000 0.13
08 Chemicals, rubber and plastics 503.1 350.3 655.9 0.000 638.0 387.2 888.8 0.000 0.21
09 Other non-metallic mineral products 1,611.2 1,525.0 1,697.4 0.000 1,713.6 1,597.1 1,830.0 0.000 0.06
10 Metallurgy and fabricated metal products 206.8 116.4 297.1 0.000 246.3 127.3 365.3 0.000 0.16
11 Machinery and equipment; electrical machinery & apparatus 145.8 86.4 205.3 0.000 187.0 112.9 261.1 0.000 0.22

12 Office mach. & computers; radio, TV & communication equip. medical & 
precision intruments; transport equip. 68.2 35.1 101.4 0.000 87.2 31.2 143.1 0.003 0.22

13 Furniture; other manufactured goods; secondary raw materials 103.8 14.7 192.9 0.024 120.3 -7.7 248.3 0.065 0.14
14 Electrical energy, gas, steam and hot water 5,072.1 5,033.3 5,110.9 0.000 5,140.8 5,088.7 5,192.8 0.000 0.01
15 Construction work 96.0 79.8 112.3 0.000 103.9 83.0 124.7 0.000 0.08
16 Trade; hotel and restaurant services 117.2 16.4 218.0 0.024 126.0 12.9 239.2 0.030 0.07
17 Land transport 734.5 710.5 758.4 0.000 765.8 735.0 796.5 0.000 0.04
18 Water transport 1,245.7 1,120.6 1,370.8 0.000 1,309.9 1,118.7 1,501.1 0.000 0.05
19 Air transport 1,020.0 959.7 1,080.2 0.000 1,122.3 1,022.5 1,222.1 0.000 0.09
20 Other services 227.5 155.1 299.9 0.000 267.2 170.7 363.7 0.000 0.15
21 Public Admin. Education and Health & social work services 61.5 25.5 97.5 0.001 61.7 24.5 98.9 0.002 0.00

Key: p value = 0.000: p values less than 10-4 are rounded down to 0.000, but are different from zero.
CI bounds: Confidence Intervals bounds at a confidence level of 95%.

CommodityCode PCI bounds CI boundsMultiplier p 
value

Multiplie
r

p 
value

Domestic model Total model
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Fig. 1. Ratio of performance, P (using econometric emission multipliers). 

Note that the larger the share of imports, the larger the expected performance score 
(with a maximum of 1). External trade indeed influences the reduction of emissions in sectors 
like crude petroleum and natural gas (04), coal mining (03) and chemicals, rubber and plastics 
(08). Other sectors, like public administration, education and health services (21), energy (14) 
and land transport (17), have small shares of imports and, therefore, small values of P. 
Nevertheless, we may find specific industries with a large share of imported primary products 
but low values for P—or, in other words, products that are not performing very well in the 
transfer of emissions abroad via external trade (e.g., fishing activities (02) and textiles (06)). 
In contrast, the other services category (20) and construction (15) display small shares of 
imported services, but that share is sufficient to keep this category far from its maximum 
polluting capacity. In this respect, it is useful to keep in mind that domestic emission 
multipliers may vary according to different import shares and that their elasticity plays an 
important role (see Figure 2). 

Figure 2 represents the way in which import shares and emission multipliers may be 
related. When all imports are produced domestically (s=0 and P=0), total emission multipliers 
match domestic emission multipliers. In contrast, if everything is imported, then the domestic 
emission multiplier is zero (P=1). Let us assume that a certain share of imports (so) with γd is 
associated with the domestic emission multiplier. Then, if we assume an increase in the share 
of domestically produced goods and services (a reduction of import shares), this should lead 
to increased emissions up to γA, γB or γC, depending on the selected straight line: A, B or C, 
respectively (see Figure 2). Model C can be considered inelastic in comparison to model A, 
whereas model B is more elastic than model A. 
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Fig. 2. Elasticity of emission multipliers with respect to shares (s) of imports 
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Coming back to Table 4, the resulting coefficients of determination for both models 
are 0.99, which is quite satisfactory. All estimated multipliers are significant at the 97% 
confidence level in the domestic model. In the total model, 18 are significant at the 99% 
confidence level, one at the 98% confidence level, another one at the 96% confidence level 
and the last one at the 93% confidence level. We have also addressed the impact of different 
levels of aggregation on the goodness of fit and the results of the model. As long as we 
aggregate products from a square supply-use system, the number of degrees of freedom 
should increase (e.g., up to 38, with 21 products and 59 industries). Therefore, the 
performance of R2 should show us whether the goodness of fit of the model is really affected 
by aggregation. It is expected that for zero degrees of freedom, the R2 will be exactly equal to 
1. Consequently, because in our case the R2 is sufficiently close to 1 (0.99) at the maximum 
level of aggregation, we can deduce that aggregation does not affect the goodness of fit of the 
model and did not affect the results. 

Table 5 depicts the P ratio scores using the Leontief inverse-based emission 
multipliers. It is especially remarkable that its average value (0.09) is sensibly lower than that 
of the econometric approach (0.14). The same can be said using the median, which is by the 
way not affected by extreme values. In plain words, by using the Leontief inverse we would 
be underestimating the actual performance of the EU in reducing its carbon dioxide emissions 
via external trade. On average, the EU seems to be exporting more pollution than what one 
could expect from the Leontief inverse based approach. However, this rule does not hold for 
all industries individually. In the case of the EU, half were found to be underestimated and 
half overestimated.  
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Table 5. 

Leontief inverse-based ratio of performance, P. 
Source: Own elaboration 

P

01 Products of agriculture, hunting and related services 529.6 565.1 0.06
02 Fish and other fishing products; services incidental of fishing 1195.1 1246.5 0.04
03 Coal, uranium and other mining and quarrying products 1013.6 1067.8 0.05
04 Crude petroleum & natural gas; and incidental related services 547.4 563.7 0.03
05 Food products and beverages; Tobacco 462.3 511.2 0.10
06 Textiles, leather, wood, cork, pulp, paper and paper products 410.1 462.0 0.11
07 Coke, refined petroleum products and nuclear fuels 969.4 1213.1 0.20
08 Chemicals, rubber and plastics 622.4 708.8 0.12
09 Other non-metallic mineral products 1810.1 1869.6 0.03
10 Metallurgy and fabricated metal products 901.4 1000.9 0.10
11 Machinery and equipment; electrical machinery & apparatus 339.3 407.7 0.17

12 Office mach. & computers; radio, TV & communication equip. medical & 
precision intruments; transport equip. 328.6 420.9 0.22

13 Furniture; other manufactured goods; secondary raw materials 432.5 501.6 0.14
14 Electrical energy, gas, steam and hot water 4169.3 4241.7 0.02
15 Construction work 391.7 438.3 0.11
16 Trade; hotel and restaurant services 222.3 244.9 0.09
17 Land transport 721.1 752.3 0.04
18 Water transport 1263.4 1327.5 0.05
19 Air transport 1054.9 1119.2 0.06
20 Other services 147.8 163.9 0.10
21 Public Admin. Education and Health & social work services 164.9 182.8 0.10

Leontief calculations
CommodityCode Domestic 

model
Total 
model

 
 

Finally, we have carried out a macro check to test the robustness and coherence of the 
results by making a forecast of the total amount of direct domestic emissions (C) using the 
(total) econometric estimated model. The forecasted total amount of estimated direct 
emissions yielded 3,344.3 millions of tonnes of carbon dioxide, which is only 0.5% greater 
than the published total emissions (3,327.3 million tonnes). For the sake of clarification, this 
small deviation corresponds to the inherent errors of any econometric regression with a 
coefficient of determination lower than 1. Only if one has a perfect fit (R2 = 1) then the 
deviation could have been reduced to null and actual estimations would have matched. 
Incidentally, this would correspond to equation (5), which is a deterministic system of 
equations with one single solution rather than an econometric equation. 

7 Conclusions 

This paper deals with the identification of appropriate measures of the performance of the EU 
in reducing its carbon dioxide emissions via external trade, both at the aggregate and at the 
industry levels. This issue falls under the EU Thematic Strategy on the Sustainable Use of 
Natural Resources (EU, 2004) which aims to de-couple environmental impacts associated 
with the use of natural resources from economic growth, in support of sustainable 
development.  
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 We have found that standard measures based on the Leontief quantity model and 
profusely used by input-output practitioners and industrial ecologists will result in 
underestimation of the actual performance of the EU in reducing its carbon dioxide emissions 
via external trade. Briefly, standard measures currently available in the literature seem to 
assign the EU less amounts of exported air emissions (carbon dioxide). However, this rule 
does not hold for all industries individually. In the case of the EU, half were found to be 
underestimated and half overestimated. The most eco-efficient industries in transmitting 
emissions abroad by importing foreign products were crude petroleum and natural gas (04); 
coal, uranium and other mining and quarrying products (03); office machinery and computers 
(12); machinery and equipment (11); and chemicals, rubber and plastics (08). These results 
also show that domestic emission multipliers may vary according to different import shares, 
and that elasticities definitely play a key role in the capacity of an industry to reduce its 
emissions via external trade. 

The output multipliers obtained using the Leontief inverse are positive and 
significantly biased, resulting from the assumption of a stochastic nature of either the 
technical coefficients or the elements of a transaction table (IOT). Needless to say, emission 
multipliers computed from biased output impact levels generate an even more serious 
overestimation of the emission impact. Consequently, this paper provides a new approach to 
estimating unbiased and statistically consistent emission multipliers. This approach has three 
important advantages: (a) it improves the accuracy of the environmental impacts assessed by 
industrial ecologists; (b) it finds a way to compute unbiased and consistent input-output 
multipliers for the IOA community; and (c) the use of the Leontief inverse is no longer 
necessary; only the supply and use matrices are required. 

 In addition, another advantage of this approach is that all the data needed to make the 
calculations are ready to use worldwide at many countries’ National Statistical Institutes 
websites. Notice however that this paper deals particularly with the EU as a whole and 
benefited from the joint work developed by Eurostat and the Joint Research Centre’s Institute 
for Prospective and Technological Studies of the European Commission for the compilation 
of the necessary EU aggregate data, which has already been partially published in Rueda-
Cantuche, et al. (2009) 
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