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Abstract
At the moment we may witness several international programs that aim at interconnecting national input-output (IO) tables. These programs make it possible, for the first time, to endogenously explain the levels of interconnected activities (i.e. close the IO models for those activities) at a truly global scale. However, at the same time they re-activate an old problem that first surfaced in regional IO economics. This problem concerns the fact that continuing endogenization blurs the distinction between exogenous and endogenous activities, a distinction that is vital in defining multipliers, the core tool of IO analysis. In fact, with increasing interconnectedness, multipliers rise rapidly increase in size (“explode”) while the exogenous part, which provides the driving forces in the system, tends to zero. The present paper proposes a model to discuss the issues involved, and points to a dilemma regarding the role of primary factors in integrated models. 

1. Introduction 
Nowadays, input-output (IO) models have become a standard tool of economic analysis. Many countries have built these models in close interaction with their national accounts. In an increasing number of fields policy decisions are founded on IO-based numerical calculations. This applies to the standard areas of application such as employment, investment and export related issues, but also to relatively new fields such as lifecycle analysis, emission trading, and the study of ecologically motivated footprints. 
The usefulness of input-output models in policy analysis, essentially, depends on a sharp distinction between endogenous and exogenous activities. In the words of Miller and Blair (2009, p. 34)

“The model […] depends on the existence of an exogenous sector, disconnected from the technologically interrelated productive sectors, since it is here that the important final demands for outputs originate. ” 

This built-in dichotomy gives us the multipliers which are central in determining the indirect effects of policy on target variables as employment, value added categories and imports. 
However, the argumentation behind the distinction concerning which activities should be classified as endogenous and which as exogenous is, in many respects, an artificial one. The reason is that any classification of this nature disregards the possible existence of interconnections between activities that are classified on either side of the dividing line. A well-known example is the household sector. In standard approaches households' consumption is part of (exogenous) final demand. However, if an exogenous impulse (say a government-based investment program) results in an increase in wages being paid, we may expect that there is an immediate relation between this increase and an increase in in households' consumption. So, if we neglect this indirect effect, the total effect of the investment program will be underestimated. 
The answer has been to reconsider the strict dichotomy and to endogenize part of the exogenous activities. An immediate consequence is that a calibration problem is created. That is, we should ask ourselves where we would like to stop the process of endogenization. Clearly, depending on the decisions we make, we obtain sets of associated multipliers. We thus would like to know the precise relation between the choices we make and the resulting multipliers. apparently, with increasing endogenization the multipliers will increase - but in which way, and by how much? The problem is not a trivial one. One reason is that successive endogenization implies that the dimensions of the resulting input coefficient matrices will increase correspondingly. Simultaneously, because of the added rows and columns, the dominant eigenvalue of this matrix will increase, which means that multipliers will become much larger. So, in any case, we are faced with the complex problem of having to analyze the relation between the rate of endogenization and the corresponding multipliers.   
Additionally, we have two further issues to address. Let us suppose for a moment that those (final demand) categories that have been endogenized also are the most relevant ones. 
 By implication then, those categories that are left as part of exogenous final demand are “less relevant”, and it seems unwise to impute to them all exogenous activity that should drive the model. Finally, last but not least, after endogenization the multipliers may rapidly increase in size (“explode”) which may mean that we end up with models that, to obtain total outputs, tell us to multiply minuscule and trivialized final demand categories and very large multipliers.  
The problem first surfaced in a number of publications in regional economics, more than a decade ago. In that context it dealt with the fact that if (regional) IO models become more and more interconnected, the possibilities to explain more and more activities endogenously will increase. Because the size of the multipliers increases with increasing endogenization, this also raises the problem of how to calibrate the multipliers involved.

The problem has given rise to a literature on the so-called “exploding” or “infinite” multiplier. This literature essentially is confined to certain branches of regional IO economics. As far as we know, Cole (1988, 1989) started the discussion by advocating the advantages of the fullest possible closure of (single region) regional IO models. This marked the start of a lively debate that involved Jackson, Madden and Bowen (1997), Jackson and Madden (1999), Oosterhaven (2000), and Cole (1997, 1999). The debate focused on the effects of successive closure on the size of multipliers and, more generally, on the consequences for impact analysis. A core element in the debate was the role –if any- of multipliers in closed models, the point being that closed models, by definition, have no exogenous final demand part – which then would make the notion of a multiplier meaningless.  

The problem arises again when IO tables of countries are interconnected through trade flows or otherwise. The same problem arises when ‘more and more’ production and consumption is explained endogenously, and ‘less and less’ activities are exogenously given. We may end up with a situation in which multipliers increase unboundedly while the exogenous “stimulus” becomes smaller and smaller. 
So, what happens with increasing endogenization? In different words, do we, or don’t we run into fundamental problems? The literature is unclear, and, in our view, the topic was never convincingly addressed.  
At present, efforts to develop consistent frameworks for linking country-based input-output tables offer renewed possibilities of endogenizing, which offers a new urgency to address the problem. At the moment several international projects have been initiated that aim at connecting national IO tables, each of which has a special focus. We may mention here the well-known EU-KLEMS project which aims at finding consistent estimates of productivity for a worldwide. Furthermore, there are the World Input-Output Database (WIOD) project, and the EXIOPOL project. These new efforts are an answer to questions regarding comparability of productivity and trade figures, and environmental issues. This finds a natural counterpart in a renewed interest in economic models that enable us to view these  developments in terms of a set of interacting economies. One recent example here is the world model presented by Duchin (2005), reviving earlier efforts such as Leontief, Carter and Petri (1977).    
Below we propose a framework to address the issues we have mentioned. We point out that the standard model  is not well-equipped to  address the problem. Hereafter, we shall propose a reformulation that does. One of our results will be two types of multipliers must be identified with different relevance for use in applied work.   

2. Input-Output Tables and Input-Output Models
Input-output models are based on input-output tables which provide a detailed insight in the production and consumption activities within a specific country or region. Production takes place in technologically interrelated industries which produce a unique product. The industries' technologies are described in terms of production functions the coefficients of which, in the short run, are assumed to be fixed. Industries deliver to other industries (the intermediate inputs) and to the final demand categories. These categories include several types of activities such as households consumption, government purchases, private investments, the formation of  stocks, and exports; scale and composition of each of these latter activities are assumed to be exogenously determined. Similarly, two types of inputs are distinguished, intermediate inputs and primary inputs. Primary inputs typically include labour, capital use, government-based inputs, and imports. These categories constitute the economy’s value added, where import may be treated as a separate category. 
 
 Below we shall present the tables that we adopt as starting points. We shall use tables of a type that is somewhat different from the standard one. 
This paper is about increasing endogenization. Therefore, we shall, where possible, build on existing efforts at endogenization. That is, at efforts to close the IO model concerning activities like households’ consumption, government investments, import/export volumes, et cetera. This process has a dynamics of  its own, which undermines impact analysis employing multipliers, the basic raison d’être of IO analysis. 

As households’ consumption probably is the most well-known “candidate” for endogenization, we shall assume that in Table 1, below, the first column is households, where we assume that the employed definitions are such that the wage and salaries (row) sum is equal to (column sum of) households’ consumption. We thus have the following tableau, where, as usual, an industry’s outputs (sales) are recorded over the rows and its inputs (costs) over the columns. 
Table 1,  The standard input-output table 

	
	industries
	final 
demand
	total

	
	x11 
	x1n
	f1l
	f1k
	x1

	industries 
	
	
	
	
	

	
	xnl
	xnn
	fnl
	fnk
	xn

	
	v11
	v1n
	-
	-
	v1

	value-added
	
	
	
	
	

	
	vml
	vmn
	-
	-
	vm

	total 
	xl
	xn
	fl
	fk
	


We observe that the table consists of four quadrants. These stand for, beginning in the upper left corner and proceeding row wise, the intermediate inputs per industry, the final demand categories, the value added categories, and the primary inputs delivered to the final demand categories, respectively. The last quadrant, for ease of exposition, is assumed to be empty, because its entries do not play a role in the formation of the multipliers we are interested in. The number of final demand categories need not be equal to the number of value-added categories, but we shall assume it is – by appropriate handling of concepts and definitions.   
For each industry the sum of total revenues (its row total) is equal to total costs (its column total). This rule also applies to the aggregated final demand and value-added categories. That is, the sum of the entries in the second quadrant is equal to the sum of the entries in the third quadrant. For individual categories row and column totals may be equal; whether or not this is the case depends on the classification scheme underlying the construction of the table. Below we shall assume that the first final demand category is households,  corresponding row and column totals  being equal. (This means that for the aggregated remaining categories, the corresponding totals are also equal).   
the exogenous impulse

The idea of a clear distinction between the exogenously determined activities (here: the final demand categories), and the endogenously determined ones (the industries) has a long history. In its modern form it dates back to the work of Lord Kahn and John Maynard Keynes in 1930’s Britain. Leontief’s IO model contains the same idea, but operationalized at a disaggregated level with its own internal structure; see e.g. Archer (1977) for a brief history.  
As said, the strict distinction between what is exogenous and what is endogenous is the basis of modern the IO analysis. The concept of a multiplier entirely rests on this. However, there also is a problem: the strict separation between endogenous and exogenous activities may rob us from the benefits of interrelatedness which may exist between activities now classified on either side. A typical example is the earlier mentioned example of households consumption. Miyazawa (1976) captured existing relations by endogenizing households consumption, meaning  that households are treated as industries. However, additional structures exist where we meet the same problem. Let us consider Table 2 which links two countries and the rest of the world (ROW):
Table 2, Two integrated countries and ROW 

	
	Country 1
	Country 2
	ROW

	Country 1
	A11
	A12


	E1



	Country 2
	A21
	A22
	E2

	ROW
	I1
	I2
	R


Here A11 and A22 stand for the individual country’s IO table (such as of the type pictured in Table 1), while A12 and A21 show the interdependencies in the form of the exports/imports of one region to the other one. If we wish to study country 1 and country 2 as one integrated economic system, part of what used to be exogenously determined from the point of view of the individual countries, now has become endogenous. We should note that if we wish to consider this as an integrated system where ROW functions as the “trigger”, the dimension of the IO matrix has become 2(n + m). 

Before introducing the model we shall employ, we shall present an aggregated version of Table 1. This table is the one underlying equations (1) to (6). Because the households consumption/wage relation in many cases is the important relation linking final demand and value added categories, we shall use the symbols l and L for the aggregated value added categories.  

Table 3,  Aggregated form of Table 1
	
	industries
	aggregated 
final demand
	total

	
	x11
	x1n
	f1l
	x1

	industries 
	xn1
	xnn
	fn
	xn

	value-added
	ll
	ln
	-
	V\L

	total
	x1
	xn
	-
	


where fi  =  Σfik  (i = 1,…,n) and lj  =  Σlji  (i = 1,…,n), and with Σfi  =  Σli. 
 
Let us now introduce the basic model and the notation to be used. Writing f and l for, respectively, the column vector of aggregated final demand and the row vector of aggregated value added categories as introduced in Table 1, we have:   
(1)
x  =  Ax  +  f

and

(2)
L  =  lx

Solving for x, we find

(3)
x  =  (I  -  A)-1f

where matrix (I  -  A)-1 is the well-known Leontief inverse or multiplier matrix. Prices are given by

(4)
p  =  pA  +  wl

where w is the wage rate. Solving for p we have

(5)
p  =  wl (I  -  A) -1
We observe that the structure of the model is such that

(6)
pf  =  wlx

Clearly, if w = 1, then pf = lx. Now, suppose we want to benefit as much as possible from the insights in interconnections we have. That is, we would mean that we would like to endogenize “as much as possible”. That, evidently, would mean that the corresponding set of final demand activities would shrink accordingly. We then will witness a situation where growing multipliers will multiply a shrinking final demand vector into ever larger total outputs. Unfortunately, the model, still being of the standard open type, does not offer us the tools to see what happens if we let final demand shrink to zero or almost zero. For example, existing theory gives no clue about what happens if  we multiply (almost) zero by a very large number, an annoying and unacceptable situation.

3. Modeling endogenization of activities 
We have seen that if we wish to investigate what happens with increasing endogenization, each final demand category being endogenized will increase the dimension of the table involved, and results may rapidly become difficult to compare. Therefore we have opted for a approach that leaves the dimension of the problem the same. 
 Let us return now to the formal model. Combining equations (1) and (2), we have

     x             A      f/L         x

(7)
    ---     =     ------------       ---                

     L              l        0          L

Using (2), we have 

 (8)
x = 
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or

(9)
x = Mx
with 

(10)
M = 
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Defining
(11)
B = 
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we have:

(12)
x  =  (A  +  B)x
We recall that matrix A in the  model (12) has dominant eigenvalue

(13)
0 < λ1(A) < 1

Matrix M in the closed model (9) has dominant eigenvalue

(14)
μ1(M) = 1

Analogously, we have the price equation

(15)
p  =  p [ A  +  (f/L)l]

where we still have to decide whether or not to interpret the vector f/L as consisting of fixed coefficients.  

In our case, matrix M is the sum of the two matrices A and B, where B represents the autonomous part of the economy. That is, f will change following a change in consumer preferences. This will lead to a change in required labour L, and, therefore, in B. This again implies, evidently, that  total production x and prices p also change accordingly. 

We should note that we can create extended IO models of the type introduced above for any number of primary factors. Returning to Table 1, and assuming that the transactions of each type of final demand category is balanced by a corresponding primary factor input, we can write 

(16)
x  =  (A  +  B  +  C  +  …  + K)x

where the matrices B, C, …, K now represent rank 1 matrices of the type discussed above. 

Let us assume now that we should distinguish two types of consumers, a fraction (1 – β) that makes its consumption decisions autonomously, and a fraction β the level of consumption of which is determined endogenously.  We also assume, for simplicity, that  the preferences of the second group are identical to those of the first group. For this first group we thus assume an exogenous decision-making process, while the second group (the followers) exhibits a “technology-like” behavior.     

Let us see now how this influences our model. Let the term (1 - β)Bx represent the autonomous consumption part of the economy. The remaining part of the consumer population then is represented by the term βBx, and is explained endogenously. 
That is, this part should be added to the “technology part” of the model. We now rewrite the model as: 

(17)
x  =  [A + βB + (1 – β)B]x  


    =  (A + βB)x + (1 – β)Bx

Solving for x leads to the equation:

(18)
x  =  [I – (A + βB)]-1(1 – β)Bx

where again we should recall that (1 – β)Bx stands for exogenous f. Compared with (12), we see that the autonomous part of consumption has decreased to (1 – β)Bx, and that the multiplier matrix has changed to [I – (A + βB)]-1. We also see that the multipliers can become arbitrarily large, depending on the value of  β.  

The next question, obviously, is what would happen for β  => 1. Clearly, the elements of the multiplier matrix will approach infinity, while autonomous consumption will decrease to zero. When speaking below of “infinite” or “exploding” multipliers, we shall mean the elements of the inverse matrix [I - (A + βB)]-1 with β close to unity. The question now is how to address this problem. 

At this moment we have arrived at a fundamental question. That is, we have to decide whether we are dealing with an open model (where the supply of primary factors is, in principle, infinitely elastic, or with a closed model where this is not the casae.   

4. Exploding multipliers 
We now shall model increasing endogenization of the final demand categories by “slicing off” parts √f and √v of vectors f and v, respectively. Clearly, then, column and row sums of, respectively, √βf and√βv are equal, and the “sliced off” column and row vectors can be interpreted as representing new “industries”, to be allocated to the input coefficients matrix.   Let us see what happens when we start with β  “small”, and then gradually increase its size.

We start from (17) where (1 – β)Bx is the multiplicand (i.e. the “impulse”) and (A + βB) the matrix of enlarged intermediate input coefficients. For the next step, we shall assume 0 < β < 1. In that case we can rewrite to (18) where the inverse matrix [I – (A + βB)]-1 exists. 
 Moving the term (1 – β) in front, we obtain

(19)
x  =  (1 - β )[I – (A + βB)]-1Bx
So the matrix on the r.h.s. of equation (19), i.e. matrix

(20)
(1 - β )[I – (A + βB)]-1B

has Perron-Frobenius (PF) eigenvalue equal to 1. We also see that matrix [I – (A + βB)]-1B has PF eigenvalue equal to 1/(1 – β). So, for 0 < β < 1, x clearly is the right-hand PF eigenvector of matrix (1 - β )[I – (A + βB)]-1B. Simultaneously, the (row-vector) pB is the left-hand PF eigenvector of this matrix. We also note that both matrices [I – (A + βB)]-1 and [I – (A + βB)]-1B are singular (because r(B) = 1). 
The problem we shall address is what happens for β approaching 1. First of all we see that the term (1 – β) approaches zero for β => 1. Simultaneously, for β => 1 matrix [I – (A + B)] approaches singularity, so for β = 1, its inverse does not exist. This also means that the dominant eigenvalue of the inverse matrix [I – (A + βB)]-1 approaches infinity. 
Before continuing, we shall provide a numerical illustration, using a three-industries flow table with coefficients matrices:
Table 4; numerical example
	
	industry
	final 
demand
	total

	
industry
	 500

1000

1500
	
1000


 500


 250
	
2000


1200


  800
	4000


4500


4800
	7500

7200

7350

	
value-added
	
1000
	  2550
	     690
	         -
	4240


Calculation gives the following input coefficients matrix, rounded in three decimals:

                        0.067       0.174       0.315

         A  =        0.133       0.009       0.189

                        0.200       0.043       0.126

and


                         0.105        0.347       0.088

          B  =        0.118        0.389       0.099

                         0.126       0.416       0.106

Figure 1, below, gives the PF eigenvalue µ (mu) of matrix [I – (A + βB)]-1 as a function of β.
Figure 1, Dominant eigenvalue of the multiplier matrix [I – (A + βB]-1 as a function of β, with 0 <  β  < 0.99
[image: image5.emf]
As a next step, let us concentrate on matrix Q = (1 – β)[I – (A + βB)]-1B. We first consider matrix [I – (A + βB)]-1. We observe that this matrix is an extension of the familiar multiplier matrix (I – A)-1 in the standard model {(1),(2)}. From equation (7), we have 

(21)
p(f/L) = (pf)/L = 1 

Thus,

(22)
l(I  -  A)-1(f/L)  =  pf/L  =  1

For 0 < β < 1, matrix [I – (A + βB)] is nonsingular, so its inverse exists. 
 In proceeding we shall make use of the fact that r(B) = 1. This allows us to rewrite matrix [I – (A + βB]-1. Standard we have 
 
                                                              β(I  -  A)-1B(I  -  A)-1
(23)
[I – (A + βB]-1 =  (I  -  A)-1 +  -----------------------------

                                                            1  -  β[l(I  -  A)-1(f/L)]
Let us take a further look. From (22) we have that the denominator of the second term on r.h.s. of (23) is equal to (1 -  β). This means the second term can be written as

(24)
[β/(1 – β)][(I  -  A)-1B(I  -  A)-1]

The second term in brackets (i.e. the matrix [(I  -  A)-1B(I  -  A)-1] doesn’t contain β. This means that for increasing β, the term β/(1 - β) will determine the magnitude of the inverse matrix [I – (A + βB]-1. 

Let us also consider matrix [(I  -  A)-1B(I  -  A)-1] a bit closer. We have

(25)
(I  -  A)-1B(I  -  A)-1  =  (I  -  A)-1 [(f/L)l](I  -  A)-1
                                            =  [(1/L)x][p]
                                          =  xp/L

Thus     

(26)
[I – (A + βB]-1 =  (I  -  A)-1 + [β/(1- β)]xp/L
Returning to matrix [I – (A + βB)]-1B, find,
(27)
[I – (A + βB)]-1B  =  [(I  -  A)-1 + [β/(1- β)]xp]B

                                      =  (I  -  A)-1B + [β/(1- β)]xpB

                                      =  (I  -  A)-1B + [β/(1- β)]xl/L
From this we have directly

(28)
(1- β)[I – (A + βB)]-1B  =    

                                  =  (1- β)[(I  -  A)-1B + [β/(1- β)]xl/L] 
                                  =  (1- β)(I  -  A)-1B + β[xl]/L

Going back to equation (19), we thus see that for β => 1, the system matrix [I – (A + βB)]-1B converges to the matrix xl/L. This means that the structure of the model is such that the effects of the “exploding multiplier” have been completely neutralized by pre-multiplication by the term (1 – β) and post-multiplication by matrix B.   

Above we mentioned that the model informs us that we are at a cross-roads in working with multiplier concepts in input-output models. The derivation above shows that when have access to a completely integrated set of tables for a particular region, which may be the world, we are confronted with a calibration problem: we will have to decide which part of this integrated system should be designated as being “exogenous” and which part as “endogenous”. This decision fixes the multipliers and, hence, the predicted impacts of changes in the exogenous part. Any researcher now has to decide whether or not he will accept the activities that have been designated as “exogenous” as being really exogenous in established economic views. Given the difficulties surrounding this decision, and given the sensitivity of the multipliers for the outcomes of it (i.e. the β in the model of this section), we should hope for a lot of wisdom.                 
5. Conclusion 
As we know, the usefulness of input-output methods in policy analysis rests on the strict dichotomy between endogenous and exogenous activities. This dichotomy brings us the multipliers, but at the same time introduces incorrect estimates of policy effects – usually underestimation - because existing interconnections between activities classified on either side of the dividing wall necessarily must be discarded. The answer has been increased endogenization of activities previously classified as exogenous. Above we have shown that this introduces a) a calibration problem, and b) very large (“exploding”) multipliers. We show that the standard IO approach needs an reformulation to address this problem, and that two ways are open for dealing with the resulting multiplier matrix.    

This paper discusses the consequences of two distinct developments, That is, the trend to interconnect more and more and more IO tables and models at the regional and national level to one level above, and the wish for improved impact analysis using multipliers. The problem is that increasing endogenization of activities blurs the well-established distinctions between endogenous and exogenous activities, which affects the effectiveness of the multipliers. As we point out, the problem is not a new one. It was signaled more than a decade ago in regional IO models, but never satisfactorily addressed. In our time with renewed attention for world modeling, it resurfaces again. Above we have proposed a model to study the relation between the options that exist regarding endogenization of activities, and their consequences for the multiplier matrix. We point out that a dilemma exists regarding the role of the primary factors in the resulting models.  
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� For example, if we concentrate on size, the households sector often is the largest category of final demand. Miller and Blair (2009, p. 35) point out that this type of consumption expenditure frequently has constituted more than two-thirds of the totality of final demands.    


� This depends on whether exports are registered as gross or as net.  


� For a recent discussion of foundations of IO analysis, see Duchin (1998). 


� For additional discussion, see e.g. Miller and Blair (2009, section 3.2.3). 


� This reflects the general rule which says that the sum of all final demand categories is equal to the sum of all value added categories.   


� That is, the dimension of the matrix of input coefficients are left unchanged. 


� As said, the model determines the level of consumption of this group, its preferences having been fixed by its follower type of behavior).


� Adaptations are momentarily in the model. To avoid unnecessary indexation, we have abstracted from adding a time index t. 


� This is because the PF eigenvalue of the positive matrix (A + βB) is smaller than 1.  


� See Lancaster (1969, ch 9) or Takayama (1974, ch 4). 


� See e.g. Rao and Bhimasankaram (2000).   
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