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Benchmarking problem

What is benchmarking?

Series of high-frequency data: quarterly, monthly, daily

Timely data, only information about the short-term movements, less
reliable

Series of low-frequency data: annual series

High precision, reliable information on the aggregate level and
long-term movements

Benchmarking problem: combine the relative strengths of the
inconsistent low- and high-frequency series
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Benchmarking problem

Figure: Benchmarking problem example (Source: Bloem et al. (2001), QNA
Manual, IMF, Washington DC, p. 91)
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Benchmarking problem

Methods

Basis of current benchmarking methods: principle of movement
preservation

Mathematical methods: deterministic, binding annual constraints

Denton (1971), Causey and Trager (1981)

Statistical methods: stochastic, binding/nonbinding constraints

Regression methods: Chow and Lin (1971), ARIMA and generalized
regression-based methods (Dagum and Cholette, 2006)
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Benchmarking problem

Assessment and applications

Chen (2007): 60 series from the US national economic accounts
“the modified Denton proportional first difference method
outperforms the other methods, though the Causey-Trager growth
preservation model is a close competitor in certain cases.”

Denton procedures: BEA, Statistics Netherlands

Causey-Trager procedure: US Census Bureau (Brown 2010, Titova et
al. 2010)
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Benchmarking problem

This paper

Principle of movement and sign preservation

Motivation: abundant series are volatile and/or include both positive
and negative values

Extended pro-rata distribution (semiGRAS method)

Entropy-based benchmarking methods
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Denton and Causey-Trager methods

Notations

t = 1, . . . ,T years

i = 1, . . . , I sub-periods for each year

zt = I × 1 vector of observed indicator series for year t

xt = I × 1 vector of estimated benchmarked series for year t

z = (z′1, z
′
2, . . . , z

′
T )′

x = (x′1, x
′
2, . . . , x

′
T )′

y = T × 1 vector of annual data

Consider annual constraints ı′xt = yt for all t, or
ı′ 0′ ... 0′

0′ ı′
... 0′

...
...

. . .
...

0′ 0′ · · · ı′

 x = Bx = y
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Denton and Causey-Trager methods

Denton (1971)

The additive first difference (AFD) and proportional first difference
(PFD) variants are:

fAFD = (x1 − z1)
2 +

N∑
j=2

[(xj − zj)− (xj−1 − zj−1)]
2 , (1)

fPFD =

(
x1

z1
− 1

)2

+
N∑

j=2

(
xj

zj
−

xj−1

zj−1

)2

, (2)

subject to Bx = y.
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Denton and Causey-Trager methods

Causey and Trager (1981)

Growth rate preservation principle:

fCT =
N∑

j=2

(
xj

xj−1
−

zj

zj−1

)2

. (3)

subject to Bx = y.

For all methods, changing sign is possible!
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SemiGRAS method

Apply the Generalized RAS idea to benchmarking (Günlük-Şenesen and
Bates 1988,Junius and Oosterhaven 2003)

Result

The solution of the benchmarking problem is X = Pŝ−Nŝ−1, where the
annual adjustment factors s are derived from

s = 0.5× P̂′ı
−1

(
y +

√
y ◦ y + 4× (P′ı) ◦ (N′ı)

)
,

where Z = (z1, z2, . . . , zT ), X = (x1, x2, . . . , xT ) and Z = P−N.

Level preservation principle ⇒ step problem due to discontinuities between
years
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Entropy-based methods

Proportional first difference preservation

xj

zj
=

xj−1

zj−1
+ εj0, denote gj =

zj

zj−1
and εj = zj−1εj0, then

xj = gjxj−1 + εj for all j = 2, . . . N(= IT )
xN − gNxN−1 = εN

xN−1 − gN−1xN−2 = εN−1
...

x2 − g2x1 = ε2

 ⇔


1 −gN 0 · · · 0
0 1 −gN−1 0
...

...
. . .

. . .
...

0 0 · · · 1 −g2




xN

xN−1
...
x1

 =


εN

εN−1
...
ε1


PFD constraints: CP x̃ = ε
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Entropy-based methods

Proportional first difference preservation

Annual constraints with non-binding possibilities: y = Bx̃ + τ

[
y
0

]
=

[
B
CP

]
x̃ +

[
τ
−ε

]
⇔ ỹ = Γ x̃ + e

OLS?

Generalized cross-entropy (Golan et al. 1996): principle of minimum
discrimination information (Kullback 1959)

Treat x̃j as a discrete random variable with a compact support and M
possible outcomes rj = (rj1, . . . , rjM)′ with 2 ≤ M < ∞, i.e.,

x̃j =
M∑

m=1

rjmpjm = r′jpj .
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⇔ ỹ = Γ x̃ + e

OLS?

Generalized cross-entropy (Golan et al. 1996): principle of minimum
discrimination information (Kullback 1959)

Treat x̃j as a discrete random variable with a compact support and M
possible outcomes rj = (rj1, . . . , rjM)′ with 2 ≤ M < ∞, i.e.,

x̃j =
M∑

m=1

rjmpjm = r′jpj .

(RuG) Benchmarking 19th IIOA Conference 13 / 22



Entropy-based methods

Proportional first difference preservation

Annual constraints with non-binding possibilities: y = Bx̃ + τ[
y
0

]
=

[
B
CP

]
x̃ +

[
τ
−ε

]
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Entropy-based methods

Proportional first difference preservation

Similarly, ek =
∑J

j=1 vkjwkj = v′kwk

Reparameterize: ỹ = Γ x̃ + e = ΓRp + Vw

Let q and u be prior weights of x̃ and e, respectively

The GCE estimator is

min
p,w

I (p,q,w,u) = p′ log(p/q) + w′ log(w/u) (4)

subject to

ỹ = ΓZx̃ + Vw, (5)

ı = (I⊗ ı′)p, (6)

ı = (I⊗ ı′)w, (7)
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ỹ = ΓZx̃ + Vw, (5)

ı = (I⊗ ı′)p, (6)

ı = (I⊗ ı′)w, (7)

(RuG) Benchmarking 19th IIOA Conference 14 / 22



Entropy-based methods

Additive first difference preservation

xj − zj = (xj−1 − zj−1) + εj for all 2 = 1, . . . N

zj − zj−1 = xj − xj−1 + εj
zN − zN−1

zN−1 − zN−2
...

z2 − z1

 =


1 −1 0 · · · 0
0 1 −1 0
...

...
. . .

. . .
...

0 0 · · · 1 −1




xN

xN−1
...
x1

 +


εN

εN−1
...
ε1


AFD constraints: ∆z = CAx̃ + ε
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Entropy-based methods

Additive first difference preservation

Annual constraints with non-binding possibilities: y = Bx̃ + τ[
y

∆z

]
=

[
B
CA

]
x̃ +

[
τ
ε

]
⇔ ỹ = Γ x̃ + e
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Entropy-based methods

Growth rate preservation

xj

xj−1
=

zj

zj−1
+ ζj , denote gj =

zj

zj−1
then

xj = (gj + ζj)xj−1 for all 2 = 1, . . . N

Assume ζj = ζ +
εj

xj−1
, then xj = (gj + ζ)xj−1 + εj

Work in progress
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Empirical illustration

Aggregate indicators of closeness

1 Average absolute level difference: AALD =
∑N

j=1 |xj−zj |
N

2 Average absolute change difference:

AACD =
∑N

j=2 |(xj−xj−1)−(zj−zj−1)|
N−1 =

∑N
j=2 |(xj−zj )−(xj−1−zj−1)|

N−1

3 Average absolute proportional difference:

AAPD = 100
N−1

∑N
j=2

∣∣∣ xj

xj−1
− zj

zj−1

∣∣∣
4 Average absolute relative proportional difference:

AARPD = 100
N−1

∑N
j=2

∣∣∣ (
xj

xj−1
− zj

zj−1

)
/

zj

zj−1

∣∣∣.
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Empirical illustration

Denton (1971) data

z = (50 100 150 100 . . . 50 100 150 100)′

Bz =


400
400
400
400
400

 6=


500
400
300
400
500

 = y

r′j = (0.1, 0.55, 1, 1.45, 1.9)× zj with q′
j = (0.05 0.05 0.98 0.05 0.05)

v′k = (−1.7,−0.85, 0, 0.85, 1.7)× σz with
u′

k = (0.05 0.05 0.98 0.05 0.05) except for the annual constraints with
u′

k = (0 0 1 0 0)
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Empirical illustration

Results

Table: Some aggregate indicators

fCT AALD AACD AAPD (%) AARPD (%)

SemiGRAS 0.069 15.000 9.868 2.719 5.439
AFD Denton 1.198 18.324 5.972 17.510 13.260
AFD Entropy 0.323 16.774 6.270 10.360 9.440
PFD Denton 0.144 17.563 10.565 6.971 6.088
PFD Entropy 0.078 15.557 10.277 4.508 5.962
CT 0.044 16.553 10.348 3.761 5.761
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Conclusion

Conclusions

1 Advantages of entropy-based benchmarking methods

(Any choice of) Binding and/or nonbinding constraints

Reliability indicators for each element
Applicable for any size of yearly observations
Using non-sample information
Controlling for sign change

2 Plausible competitors to current benchmarking methods
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Thanks for your attention!
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