

Tracking metal flow network using hybrid Ghoshian framework

Sangwon Suh

Bren School of Environmental Science and Management University of California in Santa Barbara

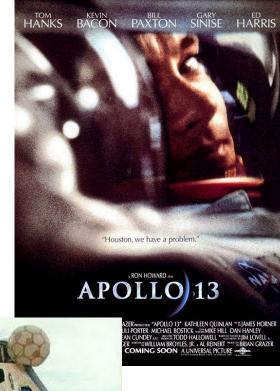
Metals, where are

you going?

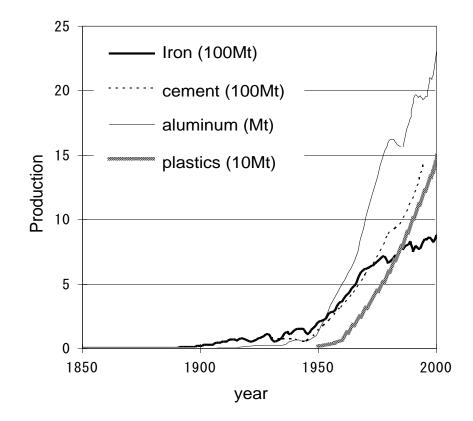
Agenda

- 1. Introduction to Industrial Ecology
- 2. Background and objectives
- 3. Method
- 4. Results
- 5. Conclusions and discussion

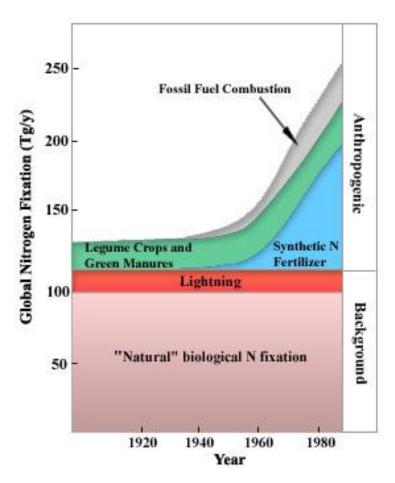
1. Introduction to Industrial Ecology


Biochemical cycles are the building-blocks of the earth's life-supporting system

Ecosphere[®]

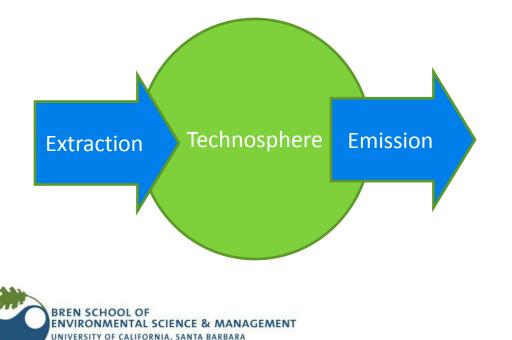


Spaceship Earth: how vulnerable is the technosphere against sudden discontinuation of supplies from the environment?


Human use of materials

Source: Halada (2006) *Hidden material flow of metal behind economics*, Tokyo, Japan.

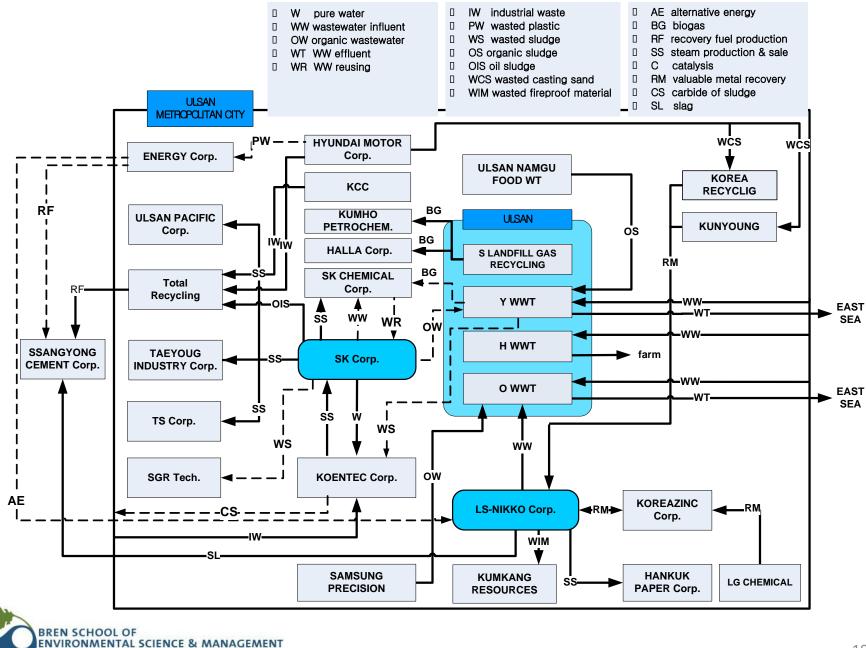
Nutrient flows and hypoxia



Source: Vitousek, P. M., Matson, P. A. (1993) Agriculture, the global nitrogen cycle, and trace gas flux. The Biogeochemistry of Global Change: Radiative Trace Gases. R. 7 S. Oremland. New York, Chapman and Hall

Industrial Ecology: closing the loop

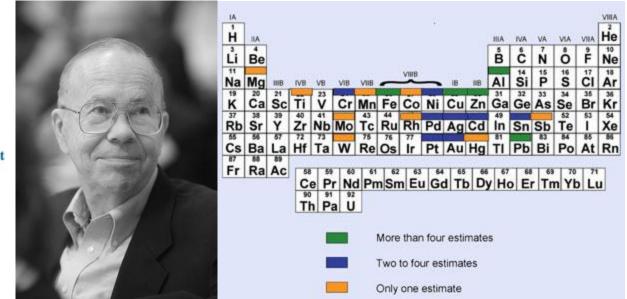
• In principle, adverse impacts by humans can be prevented from the source by closing the materials cycle within the technosphere.



Industrial ecology

- Derived from "industrial ecosystem" coined by Frosch and Gallopoulos (1989).
- Field of study concerns stocks and flows of materials and energy in human-nature complexity.

Frosch, R.A.; Gallopoulos, N.E. (1989). Strategies for Manufacturing. *Scientific American* 261 (3): 144–152


UNIVERSITY OF CALIFORNIA, SANTA BARBARA

Recycling rate

- Little is known
- Only a few metals exceed 50%, many <1%

International Panel for Sustainable **Resource Management**

Graedel, T. et al. (2011) Metal stocks in society and recycling rates, International Panel for Sustainable Resources Management, UNEP, Paris, France.

Urban mining

1 ton

150 g

2. Background and ojbectives

Background and objectives

- With the rising raw materials price, in 2007 S.
 Korean government initiated a project to identify
 - Materials efficiency improvement opportunities
 - Urban mining opportunities
- Systematic material flow data infrastructure is lacking in S. Korea

Question

- Can a screening analysis on urban metal stock be made with limited resources using readily available information?
- What are the structures and pathways of major metals in South Korean economy?
- Where do these metals end up?
- What are the modeling choices?

3. Method

- 3.1. Overview
- 3.2. Markov chain
- 3.3. Supply and demand driven IO
- 3.4. Markov chain revisited

Methodology

- Target metals:
 - Lead (Pb), Zinc (Zn), Manganese (Mn), Aluminum (Al), and Molybdenum (Mo).
- Survey of available information
 - Input-Output Tables
 - Domestic extraction data
 - Import and export statistics
 - Point data on particular metal flows

Methodology

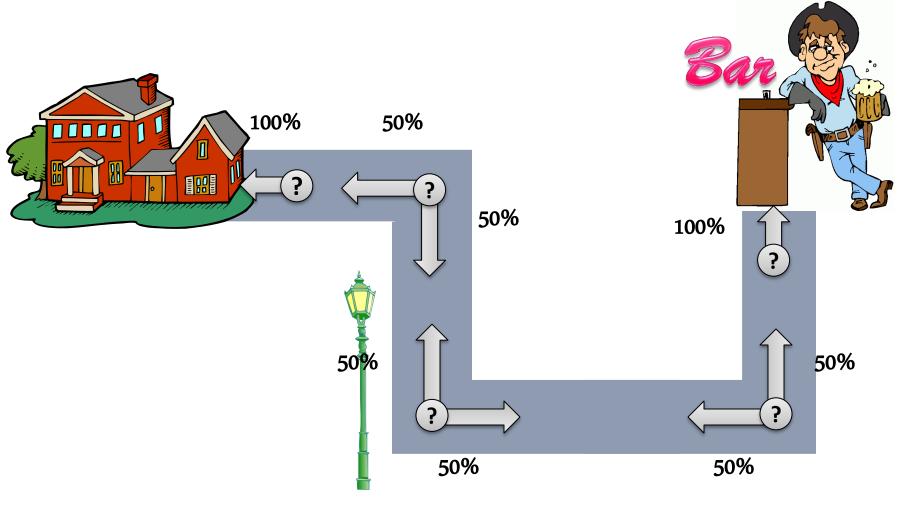
- Making the best use of existing data
 - Puzzle making
 - Sufficiency principle
- Use of Ghoshian framework
 - Distribution of materials
- Hybrid approach
 - Use of both physical and monetary quantities
 - Use of both company-supplied and IO data

Time-series supply-driven model

- Suh (2005) demonstrated that supply-driven models works well in describing physical flows.
- Modified Ghoshian framework:
 - Disaggregation of sectors (ex: Lead and Zinc)
 - Adding waste, scrap, increase in stock
 - Reflecting physical quantities
 - Distinguishing material and non-material products

3.2. Markov chain

Absorbing Markov chain


Andrey Markov (1856 – 1922): Russian mathematician

- Concerns how an initial state of a system eventually arrives at a final (absorbing) state.
- Illustrated using the famous "drunkard walk" problem.

Drunkard walk problem

Transient matrix, P

$$P = \begin{array}{cccccccccc} 0 & 1 & 2 & 3 & 4 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1/2 & 0 & 1/2 & 0 & 0 \\ 0 & 1/2 & 0 & 1/2 & 0 \\ 3 & 0 & 0 & 1/2 & 0 & 1/2 \\ 4 & 0 & 0 & 0 & 0 & 1 \end{array}$$

Canonical form

$$P = \operatorname{ABS}\left(\begin{array}{c|c} \mathsf{TR.} & \mathsf{ABS.} \\ Q & R \\ \hline 0 & I \end{array}\right) =$$

BREN SCHOOL OF ENVIRONMENTAL SCIENCE & MANAGEMENT UNIVERSITY OF CALIFORNIA, SANTA BARBARA

Solution

$$N = (I - Q)^{-1} = \begin{array}{ccc} 1 & 2 & 3 \\ 1 \begin{pmatrix} 3/2 & 1 & 1/2 \\ 1 & 2 & 1 \\ 3 \begin{pmatrix} 1/2 & 1 & 3/2 \end{pmatrix} \end{array}$$

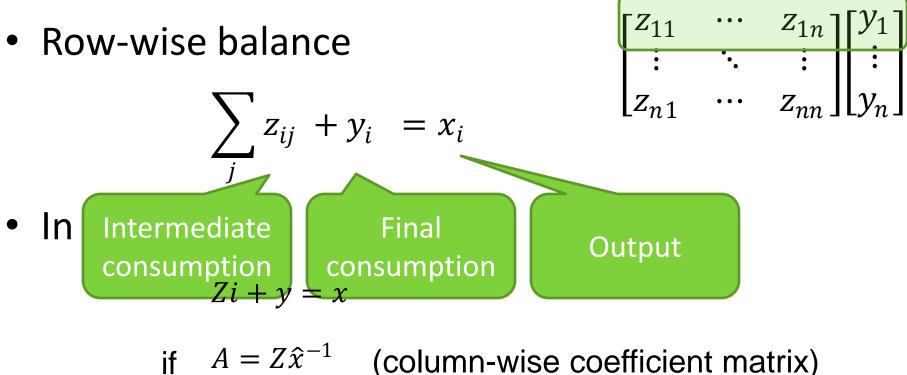
• Absorption probability, B

=

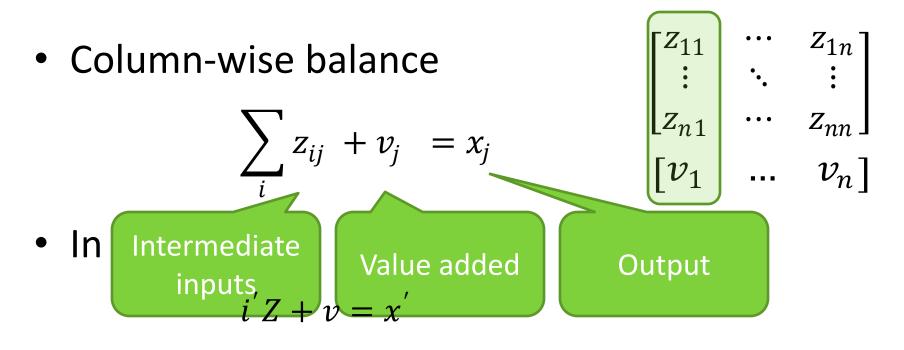
$$B = NR = \begin{pmatrix} 3/2 & 1 & 1/2 \\ 1 & 2 & 1 \\ 1/2 & 1 & 3/2 \end{pmatrix} \begin{pmatrix} 1/2 & 0 \\ 0 & 0 \\ 0 & 1/2 \end{pmatrix}$$

$$\begin{array}{cccc}
0 & 4 \\
1 & 3/4 & 1/4 \\
2 & 1/2 & 1/2 \\
3 & 1/4 & 3/4
\end{array}$$

Absorbing Markov chain


- Used for many applications including multimedia fate-and-transport modeling of pollutants, modeling microbial activities, voting propensity analysis, etc.
- Has inherent similarities with IO frameworks:
 I will come back on this later.

3.3. Demand and supply-driven IO frameworks


Demand-driven model

If
$$A = 2x$$
 (column-wise coefficient matrix)
 $Ax + y = x$
 $x = (I - A)^{-1}y$ (demand-driven primal)

Supply-driven model

if $B = \hat{x}^{-1}Z$ (row-wise coefficient matrix) x'B + v = x' $x' = v(I - B)^{-1}$ (supply-driven primal)

BREN SCHOOL OF ENVIRONMENTAL SCIENCE & MANAGEMENT UNIVERSITY OF CALIFORNIA, SANTA BARBARA

Ghoshian framework for monetary system

- Ghosh, Ambica (1958) "Input-output approach to an allocative system" *Econometrica*.
- Based on the supply-driven model (columnwise balancing = row-wise coefficient matrix).
- Discussion followed by
 - Oosterhaven (1988, 1989, 1996), Dietzenbacher (1989, 1997), Miller (1989), Sonis and Hewings (1992), de Mesnard (1997, 2002, 2008).

Ghosh (1958): interpretation

- Dietzenbacher (1997) interpreted the Ghosh (1958) as a cost-push mechanism
 - How an increase in price of a factor input is passed onto the consuming sectors.
- But generally, the literature is rather critical about Ghosh (1958) as an economic model because...

It doesn't work!

• Suppose a row-wise coefficient matrix (monetary):

Motor			
Iron ore	Steel	vehicle	
0	0.5	0	
0	0	0.1	
0	0.1	0	
	lron ore 0 0 0	0 0.5 0 0	

$$x' = v(I - B)^{-1} = v + vB + vB^{2} + \cdots$$
If $v = (1 \ 0 \ 0)$

$$x' = (1 \ 0 \ 0) \begin{pmatrix} 0 \ 0.5 \ 0 \\ 0 \ 0.1 \ 0 \end{pmatrix}$$

$$+ \cdots$$
Works as if the iron ore is the only limiting factor: violates non-substitution
$$y_{1} = (1 \ 0 \ 0) \begin{pmatrix} 0 \ 0.5 \ 0 \\ 0 \ 0 \ 0.1 \ 0 \end{pmatrix}$$

$$+ \cdots$$
But it mimics the propagation of cost push toward the downstream.

Nevertheless...

- I would argue two things:
 - 1. The supply-driven model works fine for describing *ex-post* flows of physical quantities.
 - 2. Physical version of the supply-driven model is equivalent to Markov chain model.

3.4. Markov chain revisited

Physical IO system

	Intermediate	Waste treatment	Final demand		
Intermediate	Z	S	У		
Resource input		r			
Waste	W				

Supply-driven model becomes:

$$x' = (r - w)(I - B)^{-1}$$

• Suppose a row-wise coefficient matrix (for iron flow):

В	Iron ore	Steel	Motor vehicle			
Iron ore	0	0.5	0			
Steel	0	0	0.1			
Motor vehicle	0	0.1 0	0			
x' = (r - v)	v)(I-B)	$^{-1} = (r - 1)^{-1}$	-w)(I + I)	$B + B^2 -$	+ …)	
If $r - w = (1 0$	0)	lf	r - w = 0	(2 0	0)	
$ \begin{aligned} x' &= (1 0 0) \\ &+ (1 0 0) \begin{pmatrix} 0 \\ 0 \\ 0 \\ + \dots \end{pmatrix} \end{aligned} $	0.5 0	x'	= (2 0 + (2 0)	$^{(0)}$	0.5	0 \
$+(1 \ 0 \ 0) (0$	0 0.1		+(2 0)	0)(0	0	0.1
+	0 0	/	+	/0	0	0 /
Supply-driven me shows the cumula materials passed the next stage	odel ative onto		ex- describ	d applicabil ante mode ing ex-post ow works w	l, but materia	

Observations

- Supply-driven physical model can describe the ex-post cumulative resources passed onto the consuming sectors.
- But such an analysis does not necessarily require supply-driven model.
- What makes supply-driven model useful is its ability to show the intermediate resource flows (will come back on that).

Physical supply-driven model closed toward waste and final demand

			Motor		Final
B *	Iron ore	Steel	vehicle	waste	demand
Iron ore	0	0.5	0	0.5	0
Steel	0	0	0.1	0.3	0.6
Motor vehicle	0	0	0	0.2	0.8
Scrap	0	0	0	0	0
Final demand	0	0	0	0	0

Physical supply-driven model closed toward waste and final demand

B *	Iron ore	Steel	Motor vehicle	waste	Final demand
Iron ore Steel Motor vehicle		<i>B</i> ₁		E	B ₂
Scrap Final demand		0			0

Physical supply-driven model closed toward waste and final demand

B *	Iron ore	Steel	Motor vehicle	waste	Final demand
Iron ore Steel Motor vehicle			R*		
Scrap Final demand			D		

Ghosh inverse

 $(I - B^*)^{-1} = \begin{pmatrix} I - B_1 & -B_2 \\ 0 & I \end{pmatrix}^{-1} = \begin{pmatrix} (I - B_1)^{-1} & (I - B_1)^{-1}B_2 \\ 0 & I \end{pmatrix}$ Waste and final demand portion

• Recall that the Markovian canonical form was:

$$P = \operatorname{ABS.} \begin{pmatrix} \mathsf{TR.} & \mathsf{ABS.} \\ Q & R \\ \hline 0 & I \end{pmatrix}$$

and that the chance of final absorption was given by

Observations

- Absorbing Markov chain is works as a supplydriven physical IO model.
- Furthermore, if there is no waste, the total embodied resource calculated by physical Leontief primal equals the material content in the final demand and waste.
 - Proof is simple and left to the readers.

Network of resource distribution

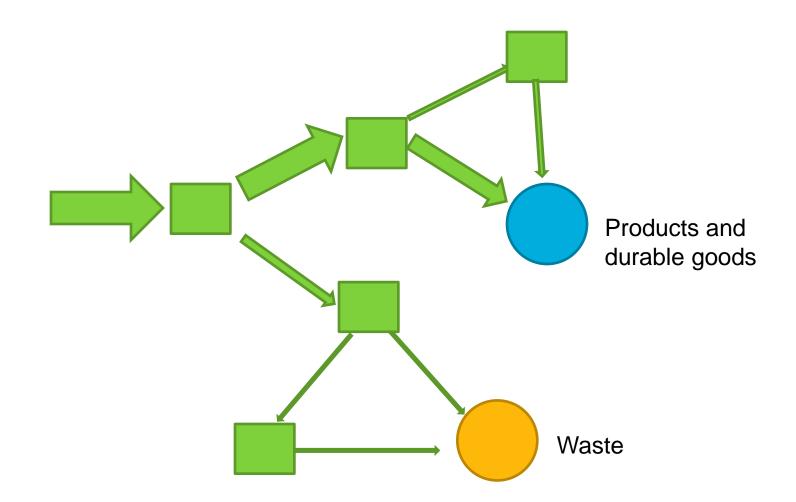
 From the supply-driven model, one can derive a matrix of resource flow (not embodiment) network, M such that

$$M=\widehat{G_{i,*}}B$$

 $G_{i,*}$ is the *i*th row of the Ghosh inverse, $(I - B)^{-1}$

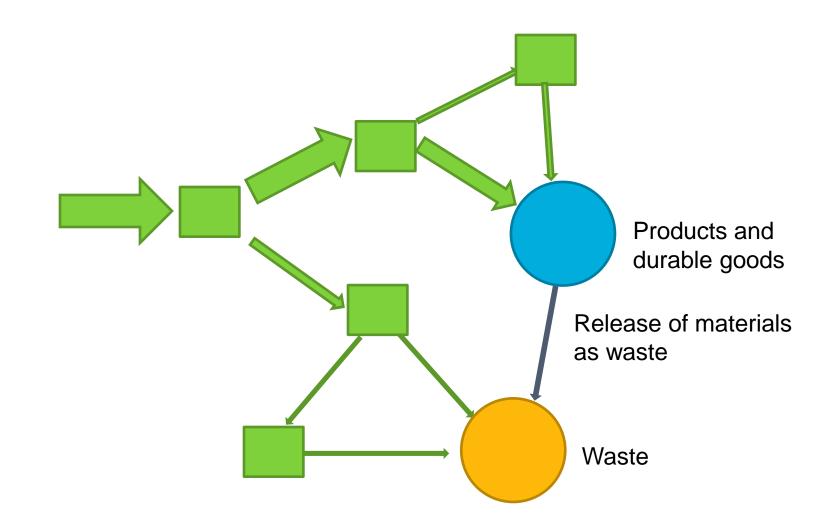
• Output Environ analysis by Patten (1982)*

* Patten, B.C., 1982. Environs—relativistic elementaryparticles for ecology. Am. Natural. 119, 179–219.

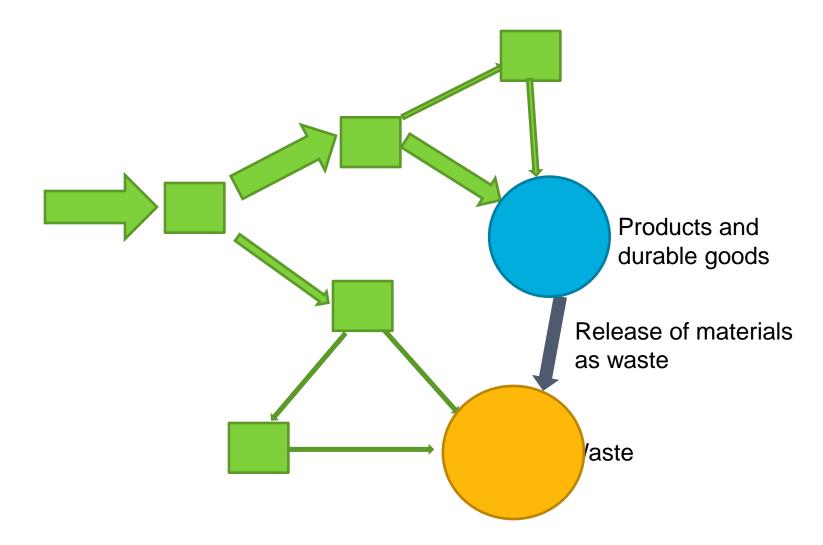


See: Suh, S., 2005: Theory of Materials and Energy Flow Analysis in Ecology and Economics, *Ecological Modeling*, 189 251 – 269.

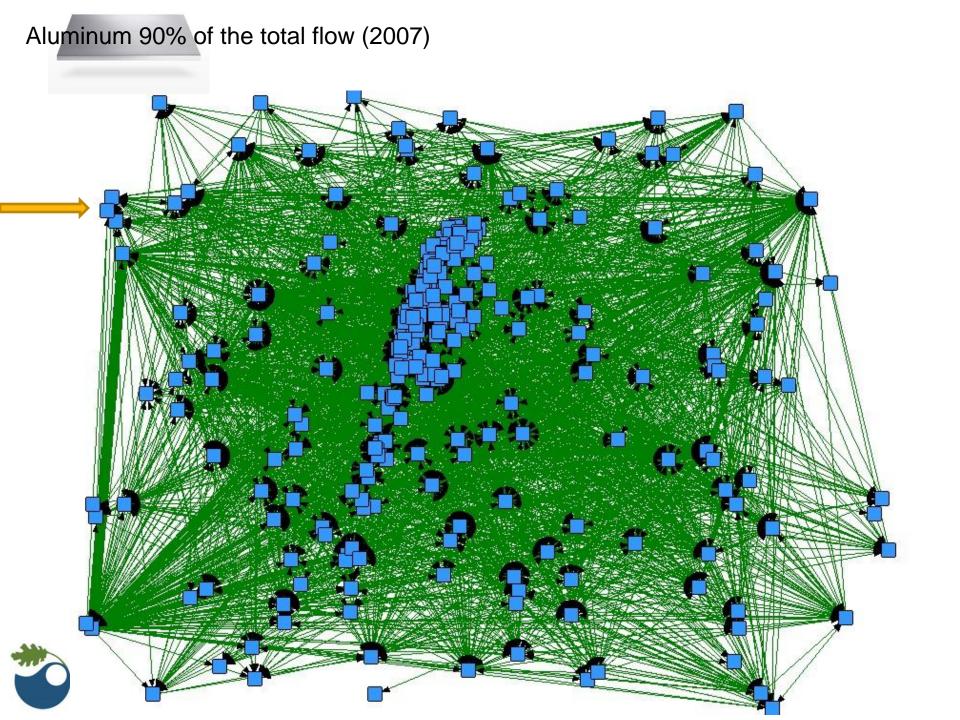
How it works?

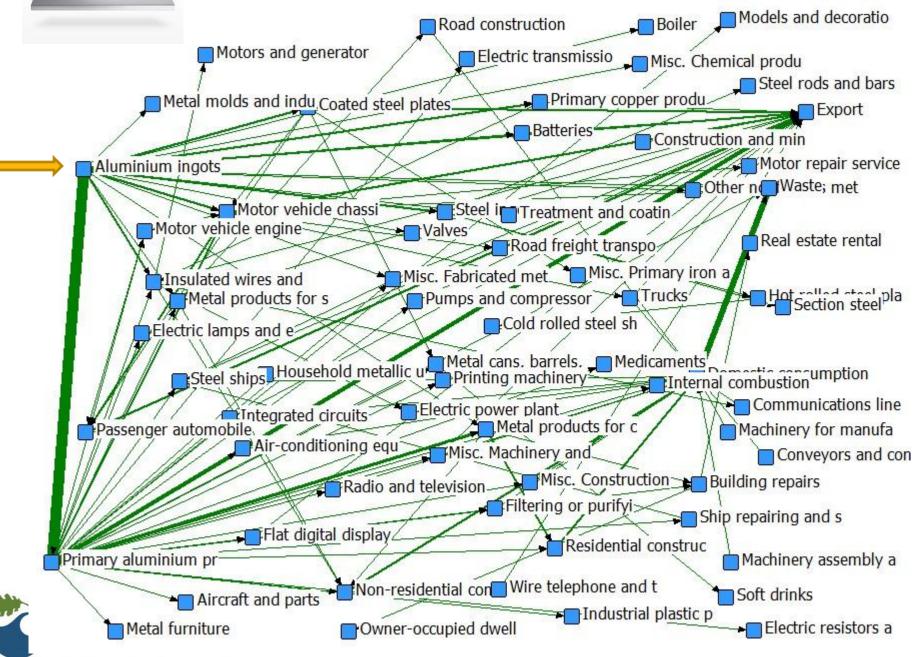


Year 1

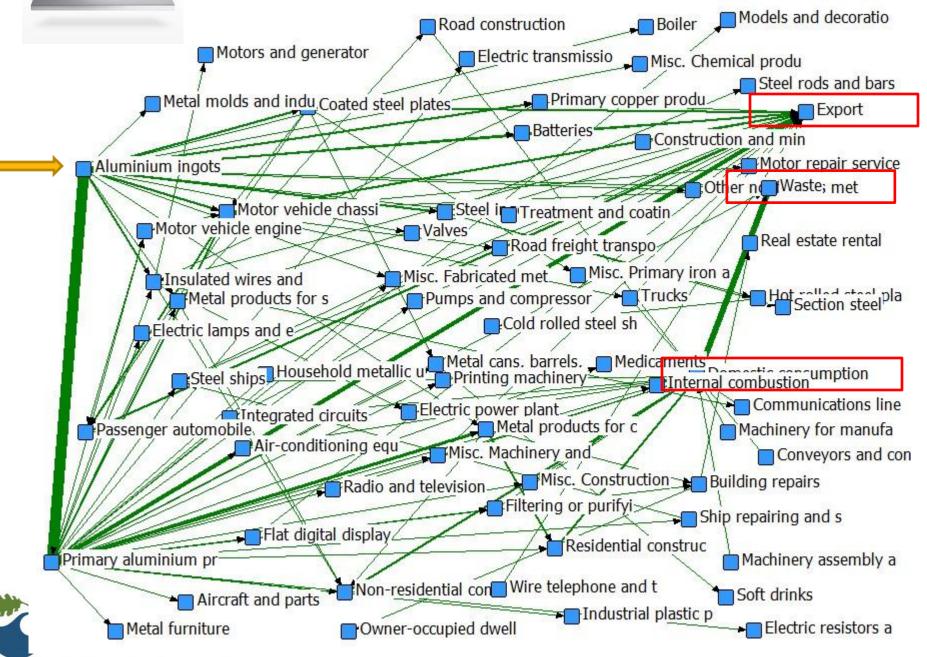


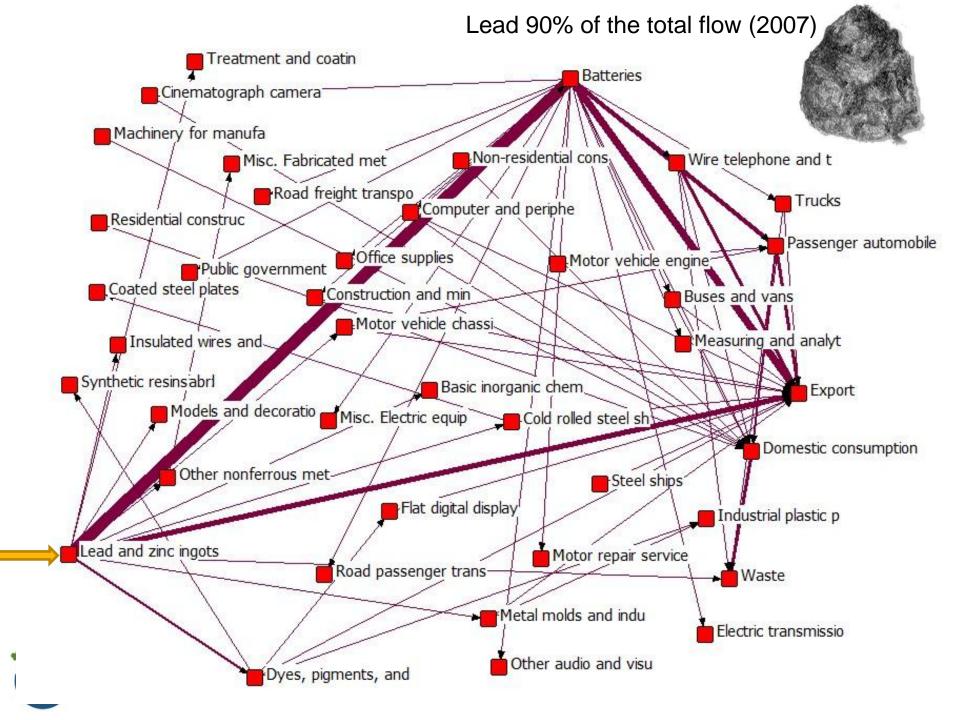
Year 2

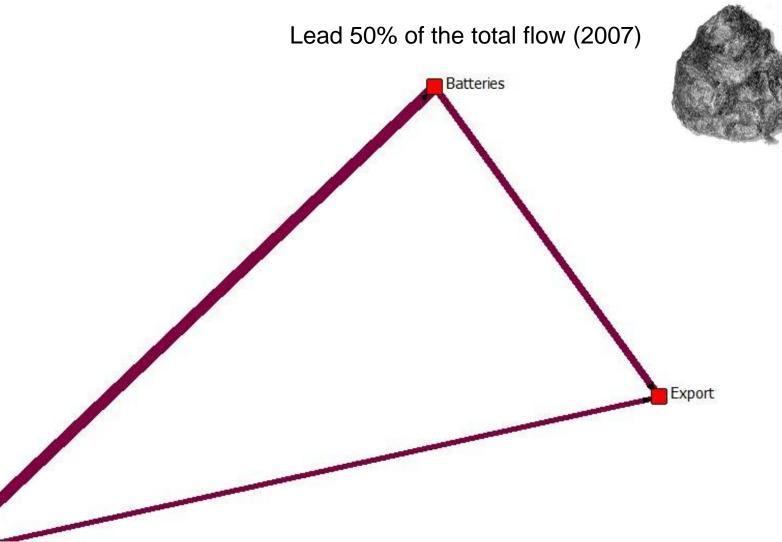

Year 3



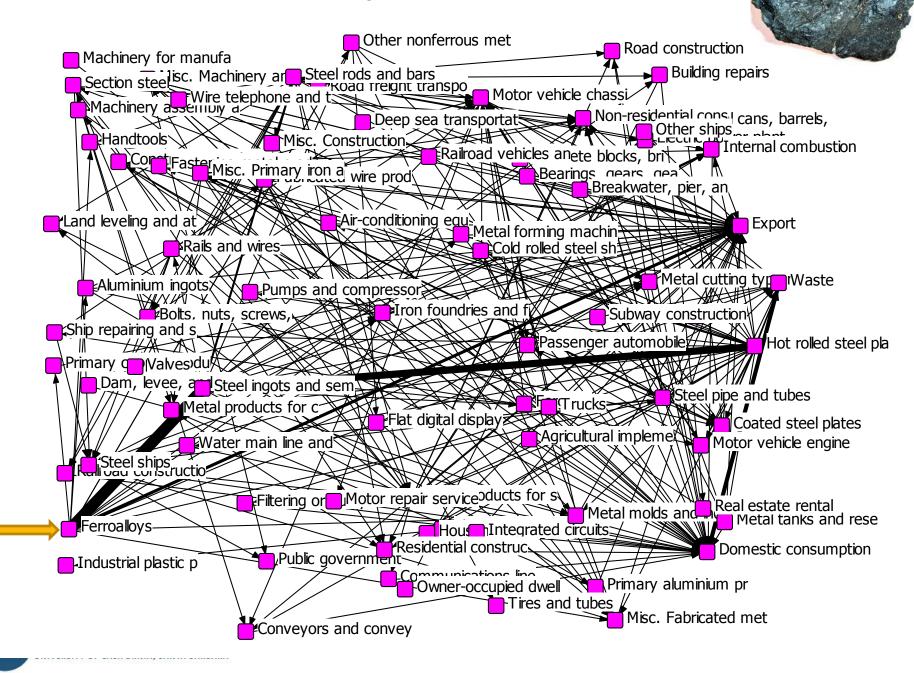
4. Results

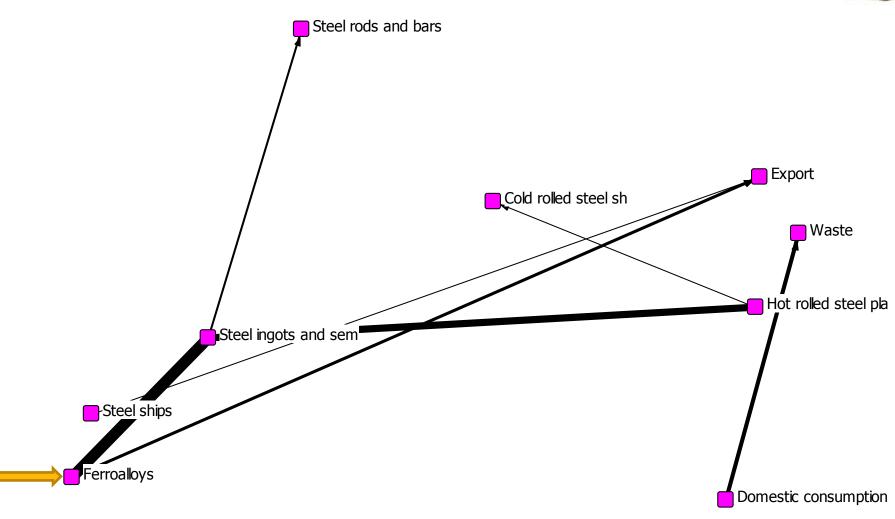





Aluminum 80% of the total flow (2007)

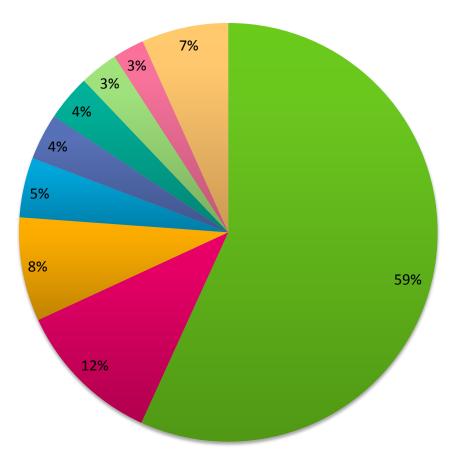
Aluminum 20% of the total flow (2007)



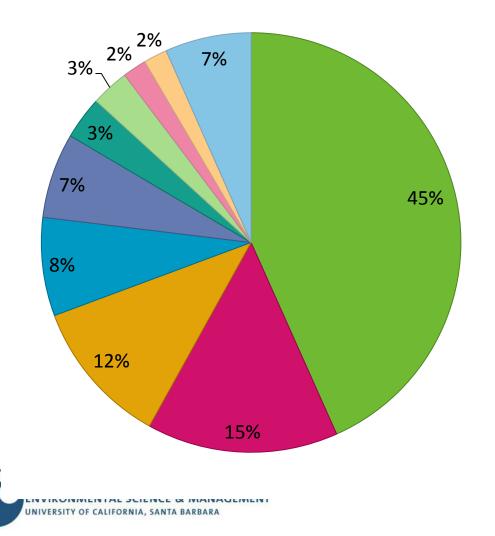

Lead and zinc ingots

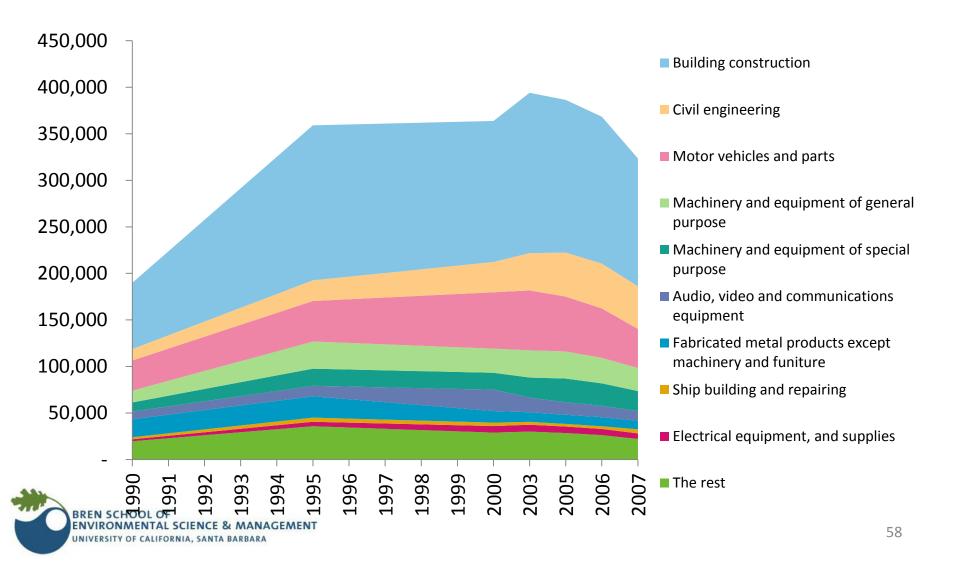
Manganese 80% of the total flow (2007)

Manganese 50% of the total flow (2007)



Cumulative results (1995 – 2007)


Composition of urban Pb stock


- Motor vehicles and parts
- Audio, video and communications equipment
- Electrical equipment, and supplies
- Building construction and repair
- Civil engineering
- Machinery and equipment of special purpose
- Precision instruments
- Computer and office equipment
- The rest

Composition of urban Al stock (c.a. 2008)

- Building construction and repair
- Civil engineering
- Motor vehicles and parts
- Machinery and equipment of general purpose
- Machinery and equipment of special purpose
- Audio, video and communications equipment
- Fabricated metal products except machinery and funiture
- Ship building and repairing
- Electrical equipment, and supplies
- The rest

Aluminum stock trend

Software tool development

AL 물질 흐름 도 54,888 345,408 107,013 447 사용 후 제품발생량 1,074,188 1,214,158 9,490 자들차 50.533 원료 및 생산 중간제품 최종제품 1차가공 일만목적종 기계 및 장비 27,839 알루이놀과 알루미뉼1차제품 46.3% 자동차부문플 11.1% 비주락건축 35.5% 특수목적용 기계 및 장비 1B.700 25.5% 10.5% 34.2% 18,361 알루미뉼쾨 건물용글속게품 <u>푸텔권 출</u> 영상, 물랑 및 통신기기 5.5% 6.2%5.2% 주먹건충 주거서비스 글속계품 17,607 포면처리강개 5.225.62 4.6¥ 자동차부분품 도록 및 특수건설 1D.889 비즈덕건욱 기타건설 등1차게풀 3.0%승용차 5.2% 전력사실 3.7% 건축건설 7,234 2.8% 3.9% 3.7% 7,139 건선및케이블 기타글속제품 통상사실 가정은 전기기기 조감 2.32건선맞케이물 3.0% 도로시설 3.4¥ 전기기게 및 장치 5.86B 1.0%2.9% 3.1% 글속처리 글속포장용기 기계조립설치 기타 수출장비 5.844 1.022.6%1.5% 기타 비월급송과 건충분수 도시트를 컴퓨터및사루기기 5,479 1.3% 기타비월금속1자제품 0.9% 열간암면강개 2.1%월도시설 5.091 가구 1,386,197 2,630,186 517,316 281,233 콜릴기기 4,995 신만 4,111 누적비뮬 : 93.6 % 누적비율 : 53.0 % 누적비율 : 96.1 % 기타 제조업제품 2,739 55.335 5.444 재자원회

단위 : TON

Verification

- Point data on material flows from South Korean National Institute of Geology and Resources, International Trade Association and various on-site survey.
- Material composition data from

鉱物資源マテリアルフロー

2008

平成21年8月

独立行政法人 石油天然ガス·金属鉱物資源機構

BREN SCHOOL OF ENVIRONMENTAL SCIENCE & MANAGEMENT UNIVERSITY OF CALIFORNIA, SANTA BARBARA

Statistical inference (samples)

- Carried out for 15 data points
- Ex) the amounts of Al in "Primary Aluminum Products"; Pb in "Motor vehicle"

	Min	Standard Deviation	Maximum	Model results
Al	714,800	53,092	861,965	758,323
Pb	15,254	170	15,639	15,447

- Within 95% confidence interval
- (Almost too good)

Summary and conclusions

- Modified supply-driven model provides useful information on material flows (<u>not embodied</u> <u>material inputs).</u>
- A case study carried out for 5 metals in South Korea showed remarkable reproducibility.
- Application of the model for bulk metals is expected to provide reasonable estimates.
- Application to rare metals would be more difficult.

Summary and conclusions

- Motor vehicles, buildings, electronics, civil engineering infrastructure, and machinery are the major sources of metal stock.
- Materials are often finely distributed along the supply-chain and then often re-aggregated before arriving at the absorbing states.
- Small number of key industry nodes are important conduits of metal stocks and flows.

Discussion

- Supply-driven model works well for *ex-post* analysis of physical stocks and flows.
- Absorbing Markov chain v.s. physical supplydriven model.
- Theories outside the IO literature may provide useful insights for the questions in IO frameworks and vise versa.

Thank you!

