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Abstract5

In this paper we apply a Bayesian approach to the reconciliation6

of conflicting data in Input-Output (IO) tables. In a Bayesian context7

IO transactions are treated as nonnegative random variables of trun-8

cated Gaussian distribution with known best guess and uncertainty.9

From the Maximum Entropy Principle we derive an analytical expres-10

sion that obtains a consistent set of posteriors from a set of conflicting11

priors. We report a numerical approximation of the general solution12

and compare this Bayesian algorithm to conventional techniques (least13

squares and biproportional update methods) using an empirical exam-14

ple.15
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1 Introduction19

Input-Output (IO) Analysis is the field that deals with the compilation of20

macro-economic transaction data in IO tables and with the use of those tables21

to compute indirect effects, such changes in employment or carbon emissions22

embodied in final consumption (Miller and Blair, 2009).23

In the compilation of an IO table it is often the case that the data is24

inconsistent (i.e., row and column sums do not add up) and the informa-25

tion quality of the data is different (e.g., a row or column sum is known for26
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the target year while a matrix element is known from another year). Many27

methods exist for the IO estimation problem, in which numerical constraints28

are used to balance data of lower information quality, such as the bipropor-29

tional or least-squares families (Mesnard, 2004). Within this subject, there30

has been recent attention devoted to the problem of reconciling numerical31

constraints that are themselves mutually inconsistent (Lenzen et al., 2009;32

Rampa, 2008). These problems are usually addressed by taking into account33

only the best (available) guess of a given value, and not its uncertainty. The34

uncertainty of source data is sometimes but not often reported in IO analysis35

(Lenzen, 2001; Lenzen et al., 2010; Oosterhaven et al., 2008).36

The goal of the present paper is to present a method to reconcile incon-37

sistent entries in an IO table, taking into account conflicting information of38

arbitrary form and the uncertainty of the source data. We achieve this goal39

by applying a Bayesian approach (Jaynes, 1983) to uncertainty in IO analysis40

(Weise and Woger, 1992).41

The elements of an IO table are aggregate economic transactions, non-42

negative quantities of which a best guess and an associated uncertainty are43

known. Under these conditions, the Maximum Entropy Principle (MEP) of44

Jaynes (1957) imposes that IO transactions are random variables of truncated45

Gaussian distribution. In a Bayesian context, the problem of reconciling46

conflicting constraints consists in moving from a set of mutually inconsistent47

priors to a set of mutually consistent posteriors, where the IO transactions48

are connected to one another through topological constraints (such as row49

and column sums).50

We present the general solution, which does not allow for an explicit51

formula, and a numerical algorithm, which takes the form of an iterative52

weighted least square method. We make use of invariance considerations53

(Jaynes, 1973) to derive the sequence in which the MEP algorithm is ap-54

plied. The Bayesian method thus derived allows for an information hierar-55

chy, in which the number of IO entries which can be adjusted is progressively56

increased, until a solution is found.57

We present a numerical example using the symmetric IO tables of Portu-58

gal. We use this example to compare the Bayesian method with the recently59

proposed KRAS (Lenzen et al., 2009) and SWLS (Rampa, 2008) methods.60

We also use this example to examine the behaviour of the MEP solution and61

the validity of the numerical algorithm.62

The structure of this paper is as follows. In Section 2 we review current63

methods for IO estimation and present the background Bayesian theory. In64

Sections 3 to 5 we derive the Bayesian theory of IO uncertainty. In Section65

6 we report the numerical algorithms. In Section 7 we present a real-world66

example and in Section 8 we draw conclusions.67
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2 Literature review68

Estimation occurs in IO Analysis under different circumstances, of which the69

most thoroughly explored is the case of known numerical constraints (row70

and column sums for the current year) and an initial guess (from a previous71

year) for the economic transaction.72

The most popular strategy to address this problem is the use of bipro-73

portional methods in which the original matrix is iteratively multiplied by74

a left and a right perturbation diagonal matrices, until the row and column75

sums are satisfied. The first such technique to be used in IO analysis was the76

RAS method (Stone et al., 1942), which has been extended in many ways,77

as reviewed in Lahr and Mesnard (2004). An important step was taken by78

Bacharach (1970), which noted that RAS is the solution of a maximum en-79

tropy (MEP) problem, the minimization of relative entropy (Kullback and80

Leibler, 1951). In this context a transaction is viewed as a probability, and81

thus the IO table as a whole is viewed as a probability distribution.82

A recent development of a transaction-as-probability method is Lenzen83

et al. (2009), whose purpose is to solve conflicting constraints, and which84

works by first running an RAS-like method adjusting only transactions, and85

then, when no further improvement can be performed, by adjusting the con-86

straints. This adjustment is additive and proportional to the product of87

these constraints’ initial uncertainty and its current inconsistency. One char-88

acteristic of this method, which derives from the transaction-as-probability89

approach, is that there is no way to use information on the relative un-90

certainty of the transactions in the adjustment process (since it makes no91

sense to talk about the uncertainty of a probability). In fact, there is no92

theoretical sound technique to reconcile constraints in such a case, although93

a combination of entropy maximization for the unknowns and least square94

(LS) minimization for the constraints have been proposed (Lieu et al., 1987;95

Lieu and Hicks, 1994).96

However, there are alternative formulations to entropy maximization (Jack-97

son and Murray, 2004) and one such popular approach is least square (LS)98

minimization. Rampa (2008) presents a subjective weighted LS method, in99

which the uncertainty of each constraint is used as a weight, and the practi-100

tioner should specify subjectively the uncertainty of constraints for which no101

baseline information is available. This paper introduces an important con-102

cept into the problem of IO estimation: the idea of a topological constraint,103

which links the numerical constraint and the aggregated transactions, in such104

a way that both can be adjusted simultaneously. The topological constraints105

are rows of an aggregation matrix, which can have an arbitrary shape - as106

opposed to strict row and column sums or more complex intermediary cases107
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(Gilchrist and Louis, 2004).108

The choice of the weights and uncertainties in Rampa (2008) is arbitrary.109

We consider that there should be some scope for the practitioner to use his110

knowledge about the quality of the data, but also that his discretion should111

be bounded by plausibility. That is, a set of default assumptions should be112

available to deal with incomplete information.113

As Rampa (2008) shows, LS minimization is a second order Taylor ap-114

proximation to the maximum entropy maximization and, therefore, its results115

should not be very different from RAS. However, in LS the objective function116

is symmetric around the initial guess, and thus there is no guarantee of sign117

preservation, an issue that is addressed by Junius and Oosterhaven (2003)118

in the context of biproportional methods. Another difference is that LS is119

direct while RAS is an iterative method.120

In this paper we shall contribute to this literature by providing a method121

to compile an IO table that can take into account inconsistent priors, aggre-122

gations of arbitrary shape and that uses the uncertainty of the source data123

to reconcile conflicting information.124

According to the Bayesian paradigm, a probability is a degree of belief125

about the likelihood of an event, and should reflect all relevant available infor-126

mation about that event (Lee, 1989). Therefore, an unknown probability dis-127

tribution should be assumed to have the minimum information (or maximum128

entropy) that is consistent with the available information (Jaynes, 1983). The129

entropy of a discrete probability distribution {pi}Ni=1 is −
∑N

i=1 pi ln pi and in130

our case the available information are the j-th moments of the distribu-131

tion
∑N

i=1 i
jpi = Mj. If a prior probability distribution {πi}Ni=1 is available,132

then the posterior probability distribution is obtained by minimizing relative133

entropy
∑N

i=1 pi ln(pi/πi), subject to the available information in the form134

j-th moments,
∑N

i=1 i
jpi = Mj, through the method of Lagrange multipliers135

(Shannon, 1948). (Notice that entropy is maximized while relative entropy136

is minimized, because the former is defined with a minus sign and the latter137

not).138

Entropy maximization is familiar in IO analysis. However, what is not so139

familiar is the context in which we shall apply maximum entropy. Following140

Weise and Woger (1992) we shall treat every entry in an IO table, which141

represents an economic transaction, as a non-negative random variable whose142

expectation is the best guess and whose standard-deviation is the uncertainty.143

This is different from the standard approach in which a transaction is a144

probability and the whole IO table is a probability distribution.145

Transactions are connected to one another through topological constraints,146

or equations that state how transactions sum up. In a Bayesian context, the147
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numerical constraints of biproportional methods (row and column sums) are148

just like other transactions, which can be naturally adjusted (if we so wish).149

All input data to the estimation problem consist in the properties (expec-150

tation and standard-deviation) of the prior distribution of the transactions151

(if they are known) and the aggregation rules of the topological constraints.152

The prior distribution of the set of transactions is obtained using additional153

considerations. Recall that according to the Bayesian paradigm all relevant154

information should be used, and the structure of the system under consid-155

eration may also be relevant information. An invariance consideration is156

a method to make use of information that does not conform to the MEP157

paradigm.158

We briefly look at Jaynes’ solution to the Bertrand paradox to show how159

invariance considerations work. Consider that long thin needles are dropped160

randomly over a small circle. What is the probability that a chord (i.e.,161

the line segment defined by a needle touching the circle in two points) will162

have a given length? This question poses a paradox because there are differ-163

ent ways of choosing a chord at random, leading to different distributions.164

Jaynes (1973) solved this paradox by noting that in the original problem165

there is no reference to the position or size of the circle, and thus the result-166

ing distribution should be invariant to the rescaling or displacement of the167

circle. Imposing invariance solves the paradox, leading to a unique solution.168

In the context of IO analysis, geometric transformations do not make169

sense, since we are not dealing with spatial objects. However, it makes170

sense to talk about the information quality of the data. In the table update171

problem, for example, the initial guess from the previous year is of lower172

quality than the row and column sums, which are known for the current173

year. The table update itself is a transformation of the data, in which the174

topological transactions incorporate information from the initial best guesses.175

In order to determine the missing priors we consider that data of higher176

information quality should remain unaffected if combined with data of lower177

information quality in the topological constraints.178

3 Maximum entropy priors179

If an IO quantity is known with some degree of uncertainty, then its true180

(unknown) value can take different realizations, which are described by a181

probability distribution. In this Section our goal is to determine the proper-182

ties of the probability distribution describing such an IO quantity.183

According to the Bayesian paradigm (Jaynes, 2003), the probability distri-184

bution of an unknown quantity is obtained by using all available information185
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and no other.186

All available information, in this context, means both numerical and log-187

ical information. The numerical information we possess usually takes the188

form of a best guess and some estimated degree of uncertainty (related, for189

example, to the sample size of a survey). The logical information is related to190

the physical properties of the object considered. In this case, an IO quantity191

represents an economic transaction which is a nonnegative real number.192

In an IO table, transactions sometimes appear as negative quantities (e.g.,193

services provided by margins in supply tables) but these quantities can be194

simply reallocated as positive values in another region of the table. Balancing195

items, such as a change in stocks or net taxes, on the other hand, can indeed196

take both positive and negative values. We address this situation again in197

Section 6.198

In a Bayesian context, using no other information besides the one that is199

available means the application of the Maximum Entropy Principle (MEP).200

That is, we search for the least informative (or maximally entropic) distri-201

bution that is consistent with the available information.202

We follow the example of Weise and Woger (1992) and interpret the pos-203

itive real-valued best guess, µ, and uncertainty, σ, of the source data as the204

expected value, E(θ) = µ, and standard deviation, Var(θ) = σ2, of an yet205

unspecified random variable Θ, with probability π(q), which represents an IO206

quantity that takes values in the range [0, qmax]. We used the conventional207

notation E(f(θ)) =
∫ qmax

0
dqπ(q)p(q) and Var(θ) = E(θ2) − E(θ)2. Through-208

out this and the following Section we shall use q to represent an event or209

realization of a random variable.210

An important assumption we make is that the possibility of a negative211

transaction is zero because it is economically meaningless, but the possibility212

of a very large transaction is not zero, although it may be very small. That is,213

although transactions must take a finite value, the maximum possible value214

may be much larger than the best guess, where µ� qmax.215

The Maximum Entropy Principle (Jaynes, 1983), states that a posterior216

distribution is obtained by minimizing the entropy of the posterior relative to217

the prior distribution subject to the known constraints (recall that entropy218

maximization implies relative entropy minimization). By the end of this219

Section our goal is to obtain a prior distribution π(q). However, at this stage220

we treat π(q) as a posterior, considering a more “fundamental” prior ψ(q).221

Notice that the distinction between a prior and a posterior is positional.222

A posterior is obtained by combining a prior and some other information.223

Under this light the same distribution can be both a prior and posterior,224

depending on the context.225

Under the above conditions the Hamiltonian or objective function is:226
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H =

∫ qmax

0

dqπ(q) ln

(
π(q)

ψ(q)

)
+ λ0(E(1)− 1)+ (3.1)

λ1(E(Θ)− µ) + λ2

(
E(Θ2)− E(Θ)2 − σ2

)
.

The first term in the right hand side of Eq. 3.1 is the differential entropy227

of the unknown distribution. The remaining terms in the right hand side228

of Eq. 3.1 are the set of known constraints: the zeroth order constraint is229

the normalization, the first order constraint is the expected value and the230

second order constraint is the variance. The λ’s are the respective Lagrange231

multipliers.232

At this stage assume that the prior distribution ψ(q) is uniformly dis-233

tributed in the range [0, qmax]. At the end of the Section we review this234

assumption. Differentiation of Eq. 3.1 with respect to π(q) leads to:235

0 = − ln

(
π(q)

ψ(q)

)
− 1 + λ0 + λ1q + λ2

(
q2 − 2µq

)
. (3.2)

Since Eq. 3.1 defines a concave function, differentiation yields a unique236

maximum. Now let us consider three cases. First, if we only know the zero-237

th order constraint, λ1 = λ2 = 0, Eq. 3.2 leads to a uniform distribution,238

p(q) = 1/qmax. That is, the zero-th order maxent posterior is identical to239

the prior: we have introduced no information and, as expected, no further240

information was gained.241

Second, if we also know the first order constraint, only λ2 = 0, and Eq. 3.2242

leads to a truncated exponential distribution, p(q) = (λe−λq)/(1 − e−λqmax).243

The parameter λ is determined by the best guess µ.244

Finally, if we also know the second order constraint, we need to solve the245

full Eq. 3.2 and obtain a truncated Gaussian distribution:246

π(q) =
1

Z0

1√
2πσ̃2

exp

(
−(q − µ̃)2

2σ̃2

)
, (3.3)

with the substitution 2λ2 = 1/σ̃2 and λ1 − 2µλ2 = −µ̃/σ̃2, where Z0247

is a normalization constant. Note that since this distribution is truncated,248

the Gaussian parameters µ̃ and σ̃2 are not the observable expectation and249

variance of the distribution, µ and σ2.250

The forms of the zeroth, first and second order maxent solutions are well251

known (Cover and Thomas, 1991) but the following observations are not.252

First, although the solutions of different orders are qualitatively different,253

there is a smooth transition between them. A first order solution for which254

µ = qmax/2 has uniform solution, and is therefore equivalent to the zeroth255
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order solution. In essence, knowing an expectation that lies exactly in the256

middle of the range without knowing the variance is equivalent to not know-257

ing that expectation.258

At this point it is convenient to remember that the observable best guess259

is much lower than the maximum economically possible value, µ� qmax, and260

so the first order solution is well approximated by an exponential without261

truncation, qmax ' ∞ and π(q) = exp(−q/µ)/µ. An important property262

of the nontruncated exponential distribution is that the expected value and263

the standard deviation are identical, µ = σ. So, if we only know the best264

guess of an IO quantity, but we do not know its uncertainty, we are in the265

same condition of knowing that its uncertainty is exactly identical to the best266

guess. Therefore, there is an upper bound of one for the relative uncertainty,267

ν, defined as ν = σ/µ, such that 0 ≤ ν ≤ 1.268

We expect a smooth transition from the second to the first order solu-269

tion, just as we found a smooth transition from the first order to the zeroth270

order solution. Unfortunately, there is no closed form analytical expression271

to connect the observables, µ and σ, and the Gaussian parameters, µ̃ and272

σ̃ in the truncated Gaussian distribution (Tallis, 1961). However, we can273

perform numerical simulations and observe that such a smooth transition274

exists. Making use of the assumption that µ � qmax and its implication275

that qmax ' ∞, we can study the Gaussian distribution truncated on the276

left side at 0, and nontruncated on the right side. If relative uncertainty is277

small, ν < 0.3, the truncated and the nontruncated Gaussian distributions278

are indistinguishable. As the relative uncertainty increases, the peak of the279

distribution slides to the left, until after ν ' 0.75 the distribution becomes280

monotonically decreasing. And in the limit of ν > 0.98 the truncated Gaus-281

sian becomes indistinguishable from the exponential distribution.282

The limit behaviour when relative uncertainty approaches unity can be283

deduced analytically. We observed that in this case µ̃ → −∞ and σ̃ → ∞.284

We now perform the expansion of Eq. 3.3 under these conditions:285

π(q) = C1 exp

(
−(q − µ̃)2

2σ̃2

)
= C1 exp

(
− q2

2σ̃2
+

2qµ̃

2σ̃2
− µ̃2

2σ̃2

)
'

' C1 exp

(
0 +

2qµ̃

2σ̃2
− C2

)
= C3 exp

(
−|µ̃|
σ̃2
q

)
,

where the C’s are appropriately chosen constants. That is, as expected286

the tail of a truncated Gaussian distribution tends to the exponential dis-287

tribution and we have found an explicit expression that links the Gaussian288

parameters to observables |µ̃|/σ̃2 = 1/µ = 1/σ.289
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In this Section we have observed that starting from a uniform prior and290

introducing information on the zeroth, first and second moments we obtained,291

respectively, a uniform, an exponential and a truncated Gaussian distribu-292

tion. After that we observed that there is a smooth transition between these293

distributions. If the second moment is known, the shape of the distribution294

can be approximated by a nontruncated Gaussian, in the limit of low relative295

uncertainty, or by an exponential, in the limit of high relative uncertainty.296

Furthermore, relative uncertainty itself is bounded by zero and one. These297

are the properties of the priors use in the data reconciliation problem of the298

next Section.299

At this point, the interested reader can repeat the derivation of Eq. 3.1300

with the prior ψ(q) having either exponential or truncated Gaussian form.301

In either case, if the first and second moment are known, the posterior is also302

a truncated Gaussian. That is, the transformation from prior to posterior303

implies either an increase in or the maintenance of the level of information, in304

the sense that a truncated Gaussian is more informative than an exponential305

that in turn is more informative that a uniform distribution.306

This observation is important because in the data reconciliation problem307

to be dealt with in the following Section we expect that all best guess priors308

are available and at least some best guess uncertainties. Under these con-309

ditions we know a priori that all posteriors will have a truncated Gaussian310

distribution, even if some of them fall on the exponential limit.311

4 Maximum entropy posteriors312

In this Section we want to calculate an analytical expression that links a set313

of conflicting priors and a corresponding set of balanced posteriors.314

The properties of priors were determined in Section 3, that is, they are315

positively valued continuous random variables with MEP distributions with316

known best guess and uncertainty. We now consider multiple random vari-317

ables so it is necessary to consider covariances. For the purpose of this Section318

we assumed that the covariance of each pair of priors is known. In Section 6319

we discuss covariances again.320

The transactions are connected to one another and to numerical con-321

straints through topological constraints, i.e., rules that indicate how trans-322

actions are linked to one another. The simplest example of a topological323

constraint is a row sum of an IO table. In this case the numerical value of324

the sum is the numerical constraint and the topological constraint is the rule325

specifying which transactions are summed.326

The set of balanced posteriors is obtained using the MEP, as in the pre-327
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vious Section, but we now consider that both the prior and the posterior are328

multivariate instead of univariate random variables. The posterior configu-329

ration is obtained by minimizing entropy relative to the prior configuration,330

subject to the constraint that both first and second moments must be bal-331

anced via the topological constraints.332

We consider that the prior transactions are the components of a nT -333

dimensional truncated multivariate normally distributed random variable,334

θ with probability density π, best guess vector µ and covariance matrix335

Σ, where σjj = σ2
j is the variance and σjk = σkj. Likewise, the posterior336

transactions are the components of a nT -dimensional multivariate truncated337

normally distributed random variable, t with probability density p, observ-338

able mean vector m and observable covariance matrix S, where sjj = s2
j is339

the variance and sjk = skj. Whenever one of the previous symbols is rep-340

resented with a tilde, ,̃ it means it is not an observable quantity but the341

corresponding Gaussian parameter.342

Furthermore, we consider that there is a total of nK topological con-343

straints, summarized in an aggregation matrix G that satisfies:344

0 = Gt + k, (4.1)

where t (the vector of posteriors) and k (the vector of numerical con-345

straints) have length nT and nK and every entry Gij is either 1 or −1 if the346

constraint i aggregates transaction j or 0 otherwise. Vectors are in column347

format by default and 0 is a vector of zeros.348

We consider that every topological constraint (i.e., a row of G) connects349

at least one disaggregate transaction (an entry with a positive sign) and at350

least an aggregate transaction (an entry with a negative sign) or a numerical351

constraint. This is a logical requirement because a topological constraint352

is a link between two quantities. If a topological constraint has only one353

nonzero entry, then that transaction must be set to zero and removed from354

the reconciliation problem.355

The numerical constraints are random variables with known best guess356

and uncertainty that are not allowed to be adjusted by the maximum en-357

tropy method. Unless stated otherwise, in the remainder of Section 4 any358

expression with subscript i is valid in the range i = 1, . . . , nK and every ex-359

pression with subscript j is valid in the range j = 1, . . . , nT . All the partial360

information to be used in the estimation method is summarized in G, µ, Σ361

and m̄ and s̄2, where the latter two are the vectors of the best guess and362

variance of the numerical constraints, respectively. In Section 5 we introduce363

the concept of information hierarchy and clarify the role of the numerical364

constraints.365
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A topological transaction i states that a partial sum of the components366

of the jointly distributed posterior subtracted to another such partial sum367

must be identical to the numerical constraint. If the random variables thus368

defined are identical, their first and second moments must also be identical.369

The constraint on best guesses is:370

0 = Gm + m̄. (4.2)

If diag denotes the main diagonal of a matrix and ′ denotes transpose,371

the constraint on uncertainties is:372

0 = diag (GSG′) + s̄2. (4.3)

We introduce the information about the first two moments into the Hamil-373

tonian of the system in scalar form as:374

H = −
∫

Ω

dq p(q) ln

(
p(q)

π(q)

)
+ λ

(∫
Ω

dq p(q)− 1

)
+ (4.4)

+

nK∑
i=1

αi

(
nT∑
j=1

Gij

∫
Ω

dq p(q)qj + m̄i

)
+

+

nK∑
i=1

β∗i

(
nT∑
j=1

Gij

∫
Ω

dq p(q)(qj −mj)
2+

+ 2

nT∑
j=1

j−1∑
k=1

GijGik

∫
Ω

dq p(q)(qj −mj)(qk −mk) + s̄2
i

)
.

In Eq. 4.4 the expression
∫

Ω
dq is a shorthand for the product

∏nT

j=1

∫∞
0
dqj.375

Each qj is the realization of the random variables tj and θj. The first term in376

Eq. 4.4 contains the entropy of all unknown distributions, the second term377

contains the normalization constraint, the third term contains the best guess378

constraints, and the fourth term the uncertainty constraints. Note that mj379

is the marginal expectation of tj, defined as mj =
∫

Ω
dq qjp(q). The λ, α’s380

and β∗’s are, respectively, the Lagrange multipliers of the normalization, best381

guess and uncertainty constraints. Derivation of Eq. 4.4 with respect to p(q),382

yields:383
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0 =− (ln p(q) + 1)
1

lnπ(q)
+ λ+

nT∑
j=1

(
nK∑
i=1

Gijαi

)
qj+

+

nT∑
j=1

((
nK∑
i=1

Gijβ̃i

)(
q2
j − 2qjmj

))
+

+

nT∑
j=1

j−1∑
k=1

(
2

(
nK∑
i=1

GijGikβ̃i

)
(qjqk − qjmk − qkmj)

)
+ C.

The C’s in the previous and subsequent expressions denote different ap-384

propriately chosen constants. The previous expression can be rewritten in385

the form:386

p(q) = π(q)C exp

(
nT∑
j=1

(
nK∑
i=1

Gijβ̃i

)
q2
j +

nT∑
j=1

j−1∑
k=1

2

(
nK∑
i=1

GijGikβ̃i

)
qjqk+

+

nT∑
j=1

(
nK∑
i=1

Gijαi − 2

nT∑
k=1

mk

(
nK∑
i=1

GijGikβ̃i

))
qj

)
.

Notice that the exponent in the previous expression is a polynomial whose387

coefficients are linear combinations of Lagrange multipliers. If the prior is a388

multivariate truncated Gaussian and the constraints are of second order, the389

posterior is also a truncated multivariate Gaussian whose probability density390

is:391

p(q) = C exp

(
−1

2
(q̃− m̃)′S̃−1(q̃− m̃)

)
. (4.5)

The exponent of the prior and posterior probability densities can be ex-392

panded in a polynomial form. In particular, Eq. 4.5 becomes:393

p(q) = C1 exp

(
−

nT∑
j=1

s̃−1
jj

2
q2
j − 2

nT∑
j=1

j−1∑
k=1

s̃−1
jk

2
qjqk

+2

nT∑
j=1

(
nT∑
k=1

s̃−1
jk

2
m̃k

)
qj + C2

)
,
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and the polynomial expansion of the prior distribution displays a similar394

pattern. In the previous expression s̃−1
jk is the (i, j) entry of matrix S̃−1.395

An explicit expression for the parameters of the posterior can be obtained396

by solving expressions of the form Cpost = Cprior + Cconstraint, where each397

constant is the coefficient of the corresponding polynomial expansion for the398

posterior and prior distributions and the expressions containing the Lagrange399

multipliers that result from differentiating the Hamiltonian, Eq. 4.4. We400

therefore obtain:401

S̃−1 = Σ̃
−1

+ (G)′β̂(G); (4.6)

S̃−1m̃ = Σ̃
−1
µ̃ + G′α +

(
S̃−1 − Σ̃

−1)
m, (4.7)

where we have made the substitution βi = −2β∗i and ˆ denotes a diagonal402

matrix. Equations 4.6-4.7 and Eqs. 4.2-4.3 define the solution of the max-403

imum entropy problem. Note however that Eqs. 4.6-4.7 contain Gaussian404

parameters (denoted with )̃ and an observable on the left hand side of 4.7405

while Eqs. 4.2-4.3 contain only observables.406

As desired, we have obtained analytical expressions that define the con-407

figuration of mutually consistent posteriors that is obtained by adjusting a408

configuration of mutually conflicting priors so that all relevant topological409

constraints are satisfied.410

The properties of the truncated multivariate Gaussian distribution are411

not arbitrary. As in the univariate case, the observable relative uncertainty,412

uj = sj/mj, is bounded by unity, 0 ≤ uj ≤ 1, and the observable best guess413

is strictly positive, mj > 0. This occurs despite the fact that the mean and414

variance of the non-truncated distribution can take any value. When the415

relative uncertainty is high, the mean of the non-truncated distribution lies416

deep in the negative range, m̃j ' −∞.417

If the relative uncertainty of the pair of transactions (j,k) is small, then418

the probability isoquants in the positive (j,k)-hyperquadrant are ellipses,419

which can be stretched in any direction. Therefore the correlation, rjk =420

sjk/sjsk, can take any value in the range −1 < rjk < 1. However, if the421

relative uncertainty of either of the transactions is high, then the isoquant422

is an ellipse seen from a long distance, i.e., a straight line. This means423

that the correlation is itself bounded, rmin < rjk < rmax. In the limit case424

in which both transactions have unitary observable relative uncertainty, if425

uj = uk = 1, the transactions must be uncorrelated, rjk = 0. Therefore, if426

only first order information is known about a particular transaction (its best427

guess), then the prior of that transaction must be uncorrelated with all other428

transactions.429
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5 Information hierarchy430

In this Section we depart from the line of inquiry developed in Sections 3431

and 4 to clarify the nature of numerical constraints, introduced in the previ-432

ous Section.433

In principle, all IO data is subject to empirical error and should be sub-434

ject to adjustment, if it conflicts with other data. However, indepedently of435

the uncertainty assigned to a data point, it is reasonable to consider that436

source data has multiple vintages of information quality. Consider for exam-437

ple that we construct a multi-regional table using both survey data from na-438

tional statistical offices and secondary data obtained by a non-survey method439

(Oosterhaven et al., 2008).440

Irrespective of the uncertainty reported in the priors, we consider that the441

information quality of the survey data is better than that of the non-survey442

data. In this case, it is reasonable to impose that the survey data be adjusted443

only if by adjusting the non-survey it was not possible to find a consistent444

table.445

A hierarchy of information quality arises naturally in the compilation of446

IO tables. In the conventional table update problem the row and column447

sums have higher quality than the previous year estimate. Data collected448

from a national statistical office is likely to have higher quality than data449

processed by an international organization. And so forth.450

The information hierarchy is distinct from the uncertainty level and more451

fundamental. We believe that in the presence of two priors of different infor-452

mation quality, the one of highest quality must be considered, irrespectively453

of the uncertainty values of either one. That is to say, in the presence of454

higher quality information, the lower quality one is irrelevant.455

We can formulate the general principle that the estimation method should456

be invariant to the incorporation of irrelevant information. The vector of457

numerical constraints introduced in Section 4 is a tool to operationalize this458

principle: data of higher information quality is held fixed while we try to459

reconcile data of lower information quality. If there is no solution because460

the numerical constraints are inconsistent, we relax the following level of461

information quality.462

Consider that we know all priors and that no topological constraint has463

an associated numerical constraint. That is, k = 0. Consider also that there464

is a hierarchy of information quality, such that among the nT transactions465

there is a hierarchy of H levels of information quality, and the data are466

indexed by increasing level of information quality. That is, all points in the467

range (nL−1 + 1, nL) have information quality of level L, where n0 = 0 and468

nH = nT .469
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We look for a consistent solution of information quality L, by holding470

fixed all data points i > nL, and the best guess and variance of the numerical471

constraints, µ̄ and σ̄2, are:472

µ̄i =

nT∑
j=nL+1

Gijµj; (5.1)

σ̄2
i =

nT∑
j=nL+1

Gijσ
2
j + 2

nT∑
j=nL+1

j∑
k=1

GijGikσjσkρjk+ (5.2)

+ 2

nT∑
j=nL+1

nL∑
k=1

GijGikσjσkρjk.

Notice that not only covariance σjk, where j, k > nL is held fixed, but473

covariance σjk, where j > nL and k ≤ nL is also held fixed. Since only474

the first nL transactions are being adjusted it is necessary to truncate the475

dimension of all relevant vectors and matrices from nT to nL.476

Below the highest information level (H) there may be no solution, due to477

higher order inconsistencies. That is there may be no posterior configuration478

for which all best guess and covariance topological constraints are satisfied.479

In this case it is necessary to remove the inconsistencies, and one way to480

achieve this goal is to perform a LU factorization to the aggregation matrix481

G (Golub and Van Loan, 1996). For the sake of clarity let:482

G = PLUQ,

where P and Q are (row and column) permutation matrices, L is a lower483

triangular matrix and U is an upper trapezoidal matrix. That is, matrix484

U is triangular, and if its rank is nR, with nR < nK (nK is the number of485

topological constraints), then the first nR entries along the main diagonal486

are nonzero and its last nK − nR rows are zero. If we introduce the LU487

factorization in Eq. 4.1:488

UQt = −L−1P−1k.

Permutation and triangular matrices are special matrices that are easy489

to invert. Now let L−1∗ be the last nK − nR rows of L−1. The system is490

consistent at information level L if, at that level,491

L−1∗ P−1k < |ε|,
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where ε is the cutoff value (typically the lowest nonzero source data point).492

If the system is inconsistent, it is necessary to ignore the last nK − nR topo-493

logical constraints in order to obtain a consistent solution for the current494

information level. Let L∗−1 and U∗ be the first nR rows of L−1 and U, and495

apply the following substitutions:496

G := U∗Q;

k := L∗−1P−1k.

It is now possible to determine the best guess and uncertainty of the497

posterior distribution for the current information level. Since this procedure498

involves losing some topological information, it is convenient to permute the499

original data so that the most informative topological constraints are kept.500

In the absence of additional information, this can be guaranteed if they are501

ordered by decreasing best guess magnitude.502

6 Numerical approximation503

In this Section we derive a numerical approximation of the general solution504

reported in Section 4 in two steps. First, we obtain a generalized least square505

solution by making assumptions about the relative uncertainty of the priors.506

Second, we obtain a weighted least square solution by making assumptions507

about the topology of typical IO data.508

There is no analytical explicit solution to the maximum entropy problem509

(Eqs. 4.2-4.3 and Eqs. 4.6-4.7). The difficulties lie in the absence of an510

analytical conversion from the multivariate truncated Gaussian parameters511

to observables (Horrace, 2005; Sharples and Pezzey, 2004), the need to invert512

matrices (Raveh, 1985) and the presence of the posterior best guess vector513

in the right hand side of Eq. 4.7. However, it is possible to obtain a simple514

numerical approximation for the best guess posteriors.515

Using the results of Section 3, if all data points have a small relative516

uncertainty (u < 0.3), the truncated Gaussian parameters are observable517

best guesses and uncertainties. Under these conditions, Eq. 4.7 simplifies to:518

m = µ + ΣG′α. (6.1)

Combining Eq. 6.1 and Eq. 4.2 we determine the best guess Lagrange519

multipliers as the solution of:520
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(GΣG′)α = − (Gµ + m̄) . (6.2)

Equations 6.1-6.2 represent a generalized least square (LS) solution, which521

is rigorous when relative uncertainties are moderately small. We do not522

expect all data points to fulfill these conditions, but we believe that most of523

them will. We therefore consider that this approximation can be used in any524

real-world IO application.525

At this point it is convenient to expresss the covariances as a product of526

uncertainties and correlations. That is, σjk = ρjkσjσk, where ρjk is the prior527

correlation between j and k, ρjj = 1 and ρjk = ρkj. The prior correlation528

matrix is P, such that Σ = σ̂Pσ̂, where ˆ denotes diagonal matrix. Like-529

wise, rjk and R are, respectively, a posterior correlation and the posterior530

correlation smatrix.531

If all prior uncertainties and correlations are known, Eqs. 6.1-6.2 define532

the solution, keeping in mind that it is only an approximation when uncer-533

tainties are high. Although we can make an educated guess of what the prior534

uncertainties are, it is highly unlikely that we possess information on prior535

correlations.536

We do not wish to discuss correlations here because the matter is non-537

trivial and we discuss it at length in a forthcoming paper. Here we shall only538

consider the effect of considering two extreme cases, zero and unitary corre-539

lations, and we argue that, in the absence of further information, correlations540

should be assumed to have maximal value, i.e., to be close to one.541

If all correlations are zero, then Eqs. 6.1-6.2 define a weighted least square542

solution, in which the weights are covariances. If all correlations are one,543

then Eqs. 6.1-6.2 define a generalized least square solution, which is compu-544

tationally much more complex. However, if we take into account the typical545

topology of IO tables, a substantial simplification can be obtained.546

A typical IO table contains many sectors and therefore most constraints547

(row or column sums) aggregate many transactions. However, each trans-548

action is only affected by few constraints (typically only two, the row and549

column sum). Under these conditions (many transactions per constraint, few550

constraints per transaction and correlations different from zero) we can make551

simplifications.552

Consider a dense IO matrix, such that every entry (ij) is affected by the553

row and column constraints. The expansion of G′α becomes a vector where554

each entry is the sum of two Lagrange multipliers, αRi + αCj , corresponding555

to the constraints of the i-th row and j-th column. For simplicity we shall556

use (ij) to denote a single transaction. The expansion of an entry of Eq. 6.1557

becomes:558
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mij = µij + σij

(
αRi

(
σij +

∑
k 6=j

ρ(ij,ik)σik

)
+ αCj

(
σij +

∑
k 6=i

ρ(ij,kj)σkj

)

+
∑
k 6=j

αRk ρ(ij,ik)σik +
∑
k 6=i

αCk ρ(ij,kj)σkj

)
.

If all correlations are unitary we find that:559

mij = µij + σij

(
αRi
∑
k

σik + αCj
∑
k

σkj +
∑
k 6=j

σikα
R
k +

∑
k 6=i

σkjα
C
k

)
.

If we make the substitutions αR∗i = αRi
∑

k σik and αC∗j = αCj
∑

k σkj the560

previous expression becomes:561

mij = µij + σij

(
αR∗i + αC∗j +

∑
k 6=j

αR∗k
σik∑
l σil

+
∑
k 6=i

αC∗k
σkj∑
l σlj

)
.

If there are many transactions per constraint, it is reasonable to consider562

that σik �
∑

l σil and that σkj �
∑

l σlj. Introducing these considerations563

in the previous expression we find that:564

mij = µij + σij
(
αR∗i + αC∗i

)
.

In the above example we considered a particular (but typical) setting565

(dense matrix and only row and column constraints), but the result obtained566

holds in the general conditions considered (many transactions per constraint,567

few constraints per transaction, and most correlations close to unity). Gen-568

eralizing the previous expression to matrix format we find the numerical569

solution of the best guess posteriors:570

m = µ + σ̂G′α, (6.3)

and:571

(Gσ̂G′)α = − (Gµ + m̄) . (6.4)
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The solution is a weighted least square method in which the weights are572

prior uncertainties.573

Care must be taken to ensure that the solution is meaningful, which means574

it cannot change sign. We suggest to constrain the adjustment α, so that575

|mj−µj| < µj for all entries, iterating until a consistent solution is obtained.576

That is, we make the minimal requirement that that the relative displacement577

from prior to posterior must be smaller than 100% at every iteration, not578

allowing an entry to change sign or to double in magnitude. Of course, the579

reader can implement more stringent requirements, (for example to impose580

relative displacement to be smaller that 10% or 1%) but we do not expect581

this to alter results significantly. Each intermediate posterior uncertainty582

must also be adjusted, so that the solution remains meaningful (i.e., relative583

uncertainties remain between zero and one). The simplest option is to impose584

that relative uncertainty does not change, sj = mjσj/µj.585

At this point we must address the problem of IO entries that are not586

economic transactions but balancing items. Such terms are described by a587

non-truncated Gaussian distribution, which means that relative uncertainty588

has no upper bound and that the quantities can change sign. The simplest589

way to introduce balancing items in the framework described above is to590

separate the balancing item into an input and an output component, each of591

which is positive.592

For example, to distinguish taxes from subsidies, the former may be de-593

scribed as an outflow of currency from a company, and the latter as an inflow.594

Consider for example that taxes exceed subsidies. The relative uncertainty595

assigned to the taxes flow is either the relative uncertainty (if provided by596

the source data with value smaller than one) or is unitary otherwise. The597

best guess of the subsidies flow should be a nonzero residual value, e.g., a few598

orders of magnitude smaller than the smallest best guess prior, with unitary599

relative uncertainty. Following this approach it is possible for the balancing600

item to change sign, if consistency so requires. Of course, the requirement601

that the relative displacement should be smaller than 100%, |mj − µj| < µj,602

is not required for these quantities. In this case what is necessary is to per-603

form the necessary adjustment, for example transferring the negative taxes604

to the subsidies entry.605

In Section 7 we shall compare the Bayesian approximation with two re-606

lated methods. Rampa (2008) suggested a subjective weighted least square607

(SWLS) method, in which the solution is:608

m = µ + âµ̂G′α;

(Gâµ̂G′)α = − (Gµ + m̄) .
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In this method, a is a vector of inverse reliability indexes, such that if the609

practicioner considers entry 1 more reliable than entry 2, then a1 < a2. The610

choice of indexes is completely arbitrary. This method should be applied in611

a single step and therefore best guesses can become negative (or be set to612

zero). No information hierarchy is considered, although a similar result can613

be achieved by an appropriate choice of reliability indexes, forcing higher614

quality data to adjust very little compared to lower quality data.615

We shall also consider the recently proposed KRAS method (Lenzen et al.,616

2009), which incorporates the uncertainty of numerical constraints (i.e., IO617

row and column sums). With minor adjustments, Equations 13 and 23 of618

that article become:619

mj = µj

nK∏
i=1

α
Gij

i ;

m̄i = m̄i − aεiσi,

where αi is a biproportional adjustment parameter and a should be cho-620

sen by the user. That is, using this method the RAS technique is applied621

to interior points of an IO table and, alternately, the row and column sums622

are linearly adjusted in proportion to uncertainties and the error of the cor-623

responding topological constraint.624

According to Rampa (2008) a second order Taylor expansion of the RAS625

method yields a weighted least square method in which the weights are pro-626

portional to the best guess. Therefore, this method allows for the incorpora-627

tion of the uncertainty of numerical constraints, but assumes that all interior628

points have the same relative uncertainty, if viewed from our Bayesian per-629

spective.630

This method also allows for a sort of information hierarchy, but different631

from the Bayesian one. In KRAS, either interior points or numerical con-632

straints are adjusted, so this is a two-tier alternate hierarchy. In our Bayesian633

method, the number of levels in the hierarchy is arbitrary, and whenever a634

higher quality level data point is adjusted all points of lower quality data are635

also adjusted.636

In the typical biproportional problem, in which row and column sums637

are of higher quality than interior points, we expect all these methods to638

deliver similar results. Typical IO data spans several orders of magnitude639

so the scaling of absolute uncertainty to best guess is flat, σj ' νjµj, where640

all data in the same information level has the same (or very similar) relative641

uncertainty νj. Thus, if the the reliability indices of of the SWLS method are642

bound between zero and one, we are in the conditions of the MEP solution,643
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but all data is adjusted in a single step. If all data in the worst information644

level has a similar relative uncertainty, then the first step in the application of645

the MEP method is actually independent of the relative uncertainty, since the646

solution of Eqs. 6.3-6.4 is not affected if the diagonal matrix σ̂ is multiplied647

by a scalar, and so σ̂ can be replaced by µ̂ in Eqs. 6.3-6.4. Therefore, the648

KRAS method (in which interior points are adjusted in proportion to best649

guess and not uncertainty) yields the same solution as the MEP method.650

Thus, the Bayesian method combines features of both SWLS and KRAS,651

but within a more coherent framework. It explicitly considers the uncertainty652

of all data, it provides clear bounds for the relative uncertainty of all data, and653

it allows the usage of an arbitrary information hierarchy. In the conventional654

biproportional problem the results of the three methods are similar, but655

the MEP method can be applied in a wider range of circumstances, such656

as considering multiple relative uncertainties in the same information level,657

having more than two information levels or arbitrary topological constraints.658

7 Case-study659

In this Section we consider a simple case-study to illustrate the behaviour of660

the maximum entropy estimation method. We try to reconcile an inconsis-661

tent table with two information levels. After describing the data we compare662

different estimation methods and study the properties of the Bayesian solu-663

tion.664

We use the 59-sector national symmetric IO tables in current prices for665

Portugal for the years 1995, 1999 and 2005, available from EUROSTAT666

(http://epp.eurostat.ec.europa.eu/portal/page/portal/esa95_supply_use_in-667

put_tables/data/workbooks). We consider three scenarios. In scenario 1 we668

use the original 1995 table, in scenarios 2 and 3 total input/output, factor669

payments and final demand are taken from the year 1995 while the inter-670

industry transactions have the production structure of the years 1999 and671

2005 respectively. That is, the inter-industry tables in scenarios 2 and 3 were672

obtained, respectively, as Z99x̂
−1
99 x̂95 and Z05x̂

−1
05 x̂95, where Z is the inter-673

industry matrix, x is the vector of total output and the subscript denotes674

the year. The global inconsistency in the three scenarios is 0.165, 2014.4675

and 3784.2 ×106 Euro, respectively and the ratio of the inconsistency to to-676

tal output is 0.00005%, 2.5% and 5%. Thus, Scenarios 1-3 pose a problem677

of increasing inconsistency. In all scenarios we consider that the points of678

the inter-industry matrix are of information level 1 (low information quality)679

and the remaining points (final demand, primary inputs and total output)680

are of information level 2 (high information quality), where a higher informa-681
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tion level means that the data is more trusted and is only adjusted if lower682

information data is inconsistent.683

The total of non-empty IO entries in the three scenarios are, respectively,684

2559, 2623 and 3109 (these numbers differ because different cut-off values685

have been used). The total number of topological constraints is 180, ac-686

counting for all row and column sums and the identity between total input687

and total output. There are two constraints per transaction in the inter-688

industry matrix or total input/output, and one constraint per transaction in689

final demand or primary input transactions. Of the topological constraints690

corresponding to row or column sums, 90% aggregate more 20 transactions691

and 72% aggregate more than 40 transactions, so we are under the conditions692

of the application of the Bayesian, described in Section 6.693

According to Lenzen (2001) and Lenzen et al. (2010), the relative uncer-694

tainty of empirical IO data often decreases with the magnitude of the best695

guess in a power-law fashion. Nhambiu (2004) reports that the relative un-696

certainty of the Portuguese 1995 IO table varies from 27% for the smaller697

entries to 13% for the larger entries. Since the magnitude of best guesses698

ranges from 0.001 to 15000 ×106 Euro, the best fit of a power-law function699

to the relation between the prior relative uncertainty, ν, and the prior best700

guess, µ, yields:701

ν = 0.2µ−0.045.

This expression is valid for all data of information level 2. In scenarios702

2 and 3, the entries of the inter-industry matrix must be assigned higher703

uncertainty than in scenario 1, since they have been obtained by a non-704

survey method. We set their uncertainty as the average between the survey705

data uncertainty and the maximum admissible uncertainty. Therefore, we706

consider that the uncertainty of the inter-industry matrices in scenarios 2707

and 3 (data of information level 1) is:708

ν = 0.5
(
1 + 0.2µ−0.045

)
.

It must be checked that 0 < ν < 1 for all priors. Later on we make a709

sensitivity analysis to the choice of relative uncertaity of data of information710

level 1.711

Besides the Bayesian method, which we shall refer to as MEP, we shall712

consider the SWLS and KRAS methods, also described in Section 6. In the713

SWLS method we consider that the data of information level 2 has an inverse714

reliability index of 1, and that the data of information level 1 has an inverse715
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reliabililty index of 10000. We observed empirically that with these index716

values it was possible to simulate the information hierarchy.717

In the KRAS method we set parameter a = 1 and applied the RAS pro-718

cedure to the data of information level 1, with the data of information level719

2 aggregated as numerical constraints. When no further improvement could720

be obtained, data of information level 2 was disaggregated and data informa-721

tion level 1 was aggregated. For each topological constraint the disaggregated722

data (the conflicting numerical constraints in the original problem) were now723

adjusted as:724

mj = µj −Gijaεi
σj∑

k |Gik|σk
,

εi =
∑
j

Gijµj + m̄i.

That is, each numerical constraint is linearly adjusted in proportion to725

the error of the topological constraint, εi, and to its standard-deviation, σj,726

but this weight is now normalized, so that if a = 1 the error of the topological727

constraint is eliminated.728

We considered that a consistent solution had been found when the average729

mean quadratic error, ε, was lower than one Euro:730

ε =
1

nK

√∑
i

ε2i ,

where εi is the error of constraint i and nK is the total number of con-731

straints. The initial best guess average mean quadratic error in the three732

scenarios was, respectively, 866 EUR, 11.7× 106 EUR and 28.5× 106 EUR.733

Notice that ε is defined per constraint, so that it is possible compare the734

results for systems with different numbers of constraints.735

In the following analysis we define the distance between two solutions as:736

δ =
1

nT

√∑
j

δ2
j ,

where δj is the distance between two individual data points and nT is737

the number of data points. Notice that δ is defined per transaction, so738

that it is possible compare the results for systems with different numbers of739

transactions.740
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All programming was made in Octave, with linear algebra performed in741

sparse format. The calculations were performed in a personal computer with742

a dual core CPU at 2.6 GHz and 4 GB of RAM.743

All the methods considered are constructed to deal with potentially in-744

consistent constraints and they all did in fact produced balanced tables. In745

the MEP and KRAS methods the solution is always meaningful (i.e., positive746

best guess and positive and less than unitary relative uncertainty), while in747

the SWLS method such is not guaranteed. In fact, in scenario 3 the SWLS748

method generated 52 negative entries, while in all other scenarios and for all749

other methods no entry changed sign.750

In general the computation time increases with the amount of initial751

inconsistency (i.e, from scenario 1 to 3), and it differs substantially between752

methods. SWLS is the fastest method (0.13 to 0.20 seconds), since it makes753

use of highly optimized routines to solve linear systems and does not require754

any adjustment to data. The computation time of the MEP method is one755

order of magnitude slower (1.3− 1.6s), and most of this time is spent in the756

aggregation or disaggregation of data required by the information hierarchy.757

The computation time of the KRAS method is still an order of magnitude758

slower (17.8 − 45.9s), due to its iterative nature. The RAS routine invoves759

nested FOR statements which are time consuming in a high-level language,760

but would not be so in a low-level one.761

We calculated the distances, respectively, to the target configuration (the762

prior of scenario 1) and to the source configuration (the prior in the cor-763

responding scenario), and found that they exhibited significant differences764

between scenarios but not between methods. In scenario 1 the distances to765

source and target are in the range of 47 to 55 EUR. The distances to target766

are 260.7 to 261.9 ×103 EUR in scenario 2 and 630.5 to 658.3 ×103 EUR in767

scenario 3. The distances to source are 393.1 to 399.1 ×103 EUR in scenario768

2 and 767.4 to 837.6 ×103 EUR in scenario 3. For the sake of comparison the769

initial distance between scenarios 2 and 1 and scenarios 3 and 1 is, respec-770

tively, 497.04 × 103 and 1086.20 × 103 EUR. Therefore, in both scenarios 2771

and 3 the posterior is roughly half as close to the target as the prior was, and772

the distance from prior to posterior is roughly 80% of distance from prior to773

target, for all methods.774

The displacement (from prior to posterior) for an individual entry was775

strongly correlated with the magnitude of the prior. We calculated log-log776

linear regressions for all methods and scenarios, |mj − µj| = aµbj, and found777

that the determination coefficients were high for all methods and scenarios,778

in the case of low quality data, with R2 > 0.6 in scenario 1 and R2 > 0.8779

in scenarios 2 and 3. In the case of high quality data, the displacement was780

overall small and the correlations were somewhat lower, dropping to R2 = 0.4781
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for KRAS in scenario 3. This means that in most cases, more than half of782

the adjustment from prior to posterior can be explained by the magnitude783

of the prior best guess.784

For low quality data the slopes are in the ranges 0.80 < b < 0.85, 0.95 <785

b < 0.97 and 0.93 < b < 0.94, respectively for the three scenarios. The786

corresponding values for high quality data are 0.85 < b < 0.90, 0.82 < b <787

0.91 and 0.72 < b < 0.85. That is, for low quality data all methods yield very788

similar results. For high quality data there is a higher variation in results, but789

we should not forget that overall high quality data was very little adjusted,790

the same as low quality data in scenario 1 – in all these cases the scalar791

coefficient a is very small, a < 10−5, while for low quality data in scenario 2792

we observe that 0.11 < a < 0.12 and in scenario 3 that 0.28 < a < 0.30.793

To check the effect of the relative uncertainty of low quality data in the794

results we considered several cases, in which the median of this data is shifted795

from 20% (identical to high quality data) to 100% (the worst case scenario)796

and the slope is shifted accordingly. We found that the relative difference in797

results, for low quality data in scenarios 2 and 3 was less than 2% while for798

low quality data in scenario 1 it was 60% and for high quality data it was close799

to 12%. The values for low quality data in scenario 1 and high quality data800

must be regarded with caution since the overall adjustment in all these cases801

was very small. When the relative adjustment was meaningful (low quality802

data in scenarios 2 and 3) the difference between results was minimal, as803

we expected from our discussion in Section 6: if the relative uncertainty is804

identical for all data in the first information level to be adjusted, the results805

are independent of that value.806

8 Conclusions807

In this paper we presented a Bayesian estimation method for Input-Output808

(IO) Analysis, which can reconcile possibly conflicting data of arbitrary form,809

taking into account the uncertainty of the source data.810

In a first part of the paper (Sections 3-4) we derived the Bayesian prop-811

erties of IO quantities and an analytical expression of the maximum entropy812

consistent posterior solution, given an inconsistent prior configuration. IO813

quantities are strictly positive quantities, of which only best guess and un-814

certainty may be known. In this circumstance, application of the maximum815

entropy principle (MEP) shows that the underlying distribution of an IO816

quantity is a truncated Gaussian, whose relative uncertainty is bounded by817

zero and one.818

We allow each data point to have a given level of information quality and819
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impose that lower quality inconsistencies should not affect higher quality820

data, if the latter is fully consistent. As discussed in Section 5 the MEP821

method should respect this information hierarchy, and therefore the method822

must be applied recursively, so that at each step the higher quality data is823

held fixed and lower quality data is adjusted. The information quality level824

currently adjusted is relaxed until a consistent solution is obtained.825

In Section 6 we found that the MEP analytical solution has a simple and826

elegant form in the limit of low relative uncertainties given by Eqs. 6.1-6.2.827

This solution is a generalized least square problem that can be applied if all828

prior information is available, including correlations. The latter are unlikely829

to be known so we derive a simple approximation, Eqs. 6.3-6.4 which does830

not involve correlations and it is valid in typical IO situations (correlations831

different from zero, a high number of transactions per constraint and a low832

number of constraints per transaction).833

In Section 7 we considered a typical biproportional problem with mildly834

conflicting row and column sums. We observed that, in this particular con-835

text and as we expected from theoretical considerations, the MEP and cur-836

rently existing methods yielded very similar results. The MEP approximation837

combines and generalizes features of the recently proposed SWLS and KRAS838

methods. The MEP method allows for the specification of the uncertainty839

of each data point within defined bounds, the consideration of a multi-tiered840

information hierarchy and of arbitrary topological constraints.841

The MEP method provides a consistent solution that takes into account842

all available information and whose displacement from the available data is843

minimally informative. However, there is no guarantee that the solution will844

be close to an unknown target solution. If the prior is very different from the845

target, it is likely that the same will happen to the posterior. A good data846

reconciliation method is no substitute for the gathering of accurate source847

data.848
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