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Abstract The problem of finding groups of industries particularly con-
nected to each other and relatively disconnected from the rest of the inter-
industry network is not new in input-output literature — starting from Leon-
tief (1986[1963]), who translated it into the problem of block-partitioning
the inter-industry transactions table in order to isolate blocks of non-zero
elements.

Since an inter-industry transactions table can be seen as a weighted, di-
rected graph representing a network, network theory can be very useful in
providing efficient techniques for the identification of groups of industries —
or, using network theory terminology, for the detection of communities. A
wide range of community detection algorithms have been developed which
allow to isolate clusters. However, typically different algorithms lead to dif-
ferent partitions.

The great majority of these algorithms have been developed with no ref-
erence to specific real networks. Moreover, different algorithms rely on the
translation into mathematical terms of different operational definitions of
what a cluster is. Some of these definitions might be appropriate for certain
kinds of networks but not for others. The definition of a cluster might be very
different in the context of a biological network than within a social network.

In order to define an appropriate method for partitioning I-O networks,
contributions coming from traditional I-O and network theory need to be
synthesised. The present paper aims first at giving a precise definition of
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1 Introduction

a cluster of industries. In the second place, the possible economic interpre-
tation of the community detection algorithms most commonly used in I-O
applications will be scrutinised, in order to assess their appropriateness for
I-O networks. Finally, they will be related to the ideas at the basis of earlier
attempts coming from traditional I-O clustering literature. All these issues
will be illustrated with an empirical application.

1 Introduction

The problem of identifying groups of industries conforming strongly con-
nected economic ‘sub-systems’ is at least as old as Leontief’s (1986[1963])
pioneering contribution. Many attempts have been made at answering this
question, though without settling a common ground as a point of departure.
In fact, no shared definition of what these ‘sub-systems’ actually are has been
given; as a consequence, no unitary, and sometimes not even comparable, an-
swer has been provided.

Analytically, the problem emerged as a way of making the intermediate
transaction matrix block diagonal, or triangular, in order to make its in-
version easier. As a by-product, a relation between the form took by such
modified matrix and the structure of the economic system was singled out:

It was the labor of computation that prompted the first systematic stud-
ies of the structural characteristics of an economy as they are displayed in
an input-output table. During the late 1940s [. . . ] the U.S. Air Force un-
dertook to rearrange the rows and columns in a table of the U.S. economy
in such a way as to minimize the computation required to yield numerical
solutions. Such rearrangement brought into sharper relief the interindustry
and intersectoral transactions that tie industries and sectors together in the
subunits of the total structure of the ecomomy.

(Leontief 1986[1963], p. 166), our italics

It is quite clear that Leontief seeks subunits of the total structure of the
ecomomy as emerging from their absolute direct intermediate transactions;
a problem distinct from that of finding subsystems in the sense of Sraffa
(1960), as it was sometimes stated. In fact, some approaches define the kind
of linkages for individuating industry clusters as direct and indirect ones, as
emerging from the power series of the input coeficient matrix, from industries
closely connected to final demand backwards to industries basically playing
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1 Introduction

the role of intermediate inputs providers.1

An important difference with respect to Leontief’s analysis is the level
of disaggregation of the tables he used to consider. Tables with that same
disaggregation are nowadays provided by a very small number of countries.2

The immediate consequence is that it is quite unlikely to have zero entries;
to use Leontief’s words, such economies will result completely interdepen-
dent, and no triangularisation or block-diagonalisation of the intermediate
deliveries table can e performed. In such a context, it is necessary to find a
different procedure for the identification of industry clusters, or subunits of
the complete economic system.

A common solution in the literature has been that of defining some crite-
rion on the basis of which to identify significant relations, and then of trans-
forming the corresponding table into a binary, or boolean, matrix where ones
indicate the existence of a significant flow, while zeros its absence. In this
way, the transaction table is forced to display zero entries, and some rear-
rangement of rows and columns can be performed in order to isolate groups.
Of course, such a procedure suffers from arbitrariness as regards the chosen
criterion.

Another possible solution is that of performing a hierarchical clustering
of the activities, consisting in building a tree whose ‘roots’ are the system as
a whole and whose tips are the individual industries. Branches consecutively
connect the most closely connected tips down to the roots. This procedure,
though considering the magnitude of all intermediate flows, and not the mere
existence of significant ones, still include some degree of arbitrariness; in fact,
clusters can be individuated starting from sections of the tree that can be cut
at different heights. Different choices of course induce different partitions of
the IO network. Moreover, there are many ways of performing hierarchical
clustering, the difference basically consisting in the way in which connections
between agglomerated activities are updated. The choice of the method to
follow is of course not trivial and generally leads to different results.

In what follows, different approaches to significant linkages or industry
clusters detection will be considered, both from a theoretical and from an

1Though being distinct, the two problems are closely related, and interesting to be
analysed in their connection. They can be referred to as the singling out of the horizontal
and vertical structure of an economic system, respectively. Both perspectives, and their
interactions, are fundamental for the purpose of the proper definition of industrial, labour
and fiscal policies.

2For example: UK (123 activitiews), India (), Japan (190 activities) and US ().
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empirical point of view, by applying each of them to the case of Italy for
the year 2008. In particular, section 2 introduces Slater’s (1977) hierarchical
clustering methodology. Section 3 deals with an approach which had, and
still have, great fortune: Qualitative IO Analysis (QIOA); in particular, we
will focus on Aroche-Reyes Important Coefficients (ICs) analysis (section
3.1), and Schnabl’s Elasticity Coefficient (EC, section 3.2) and Minimal Flow
Analysis (MFA, section 3.3). Section 4 analyses the approach proposed by
Oosterhaven, Eding & Stelder’s (2001) for the detection of regional clusters
in the Netherlands. Finally, section 5 describes Hoen’s (2002) attempt at
block-diagonalising a boolean matrix built based upon a set of restriction
on the intermediate direct and indirect flows. This last method will also be
applied starting from binary adjacency matrix as obtained with all the other
procedures.

Sections 6 and 7 introduce concepts coming from recent developments of
network theory, analysing their connection with traditional IO approaches
and singling out their economic interpretations, along with their appropri-
ateness or not for the study of IO networks. Section 8 provides an alternative
interpretation of the second method and a reformulation of the first one in-
cluding the developed hints.

In the last section, some very brief concluding remarks are followed by an
essential sketch of possible further lines of research. compares the outcomes
of different approaches and singles out their advantages and drawbacks. On
the basis of this, conclusions are drawn on the methodology which is consid-
ered more appropriate and dealing to the most satisfactorily results. As a
way of conclusion, some remarks on possible further lines of research taking
advantage of network theory will be outlined.

2 Hierarchical clustering based on Functionally Inte-
grated Industries

Slater’s (1977) paper proposes an agglomerative hierarchical clustering crite-
rion based on what he calls Functionally Integrated Industries (FII). Trans-
lated into graph-theoretical terms, Slater’s (1977) procedure consists in ob-
taining a symmetric flows matrix F = [fij] s.t.:

fij = max{xij, xji}, i, j = 1, 2, . . . , n

and then computing, on the basis of it, a distance matrix to be used to
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2 Hierarchical clustering based on Functionally Integrated Industries

get a spanning tree where hierarchical clustering is performed on the basis
of the single linkage, or minimum distance, criterion. In a few words, this
criterion consists in picking the two nodes i and j corresponding to max{F}
and merging them; then, the second greatest element of the flow matrix is
considered, and the two corresponding nodes merged. If one of the nodes
already belongs to a merge, the whole group is merged. The procedure
continues up to the point where all the original nodes are connected. The
resuting spanning tree, or dendrogram, can in pronciple be cut at different
heights, each corresponging to a successive merge — alternatively, the cut
can correspond to a pre-defined number of clusters; the sections obtained in
this way from the roots of the tree up to the tips would identify an increasing
number of clusters: from one big cluster including all nodes in corresponence
of the root, to n clusters, one for each distinct node, in correspondence of
the tips.

The dendrogram obtained by applying this procedure to the Italian case
in year 2008 is shown in Figure 1a.

As stated in the Introduction, choosing a different criterion for hierar-
chical clustering would lead to very different results. As a way of example,
consider Figure 1b, which displays the results of clustering based on the
complete, rather than single, linkages method.

The difference between two methods consists of the way in which the flow
matrix is updated after each successive merge. The first two industries to
be merged in both cases are i=A01 and j=DA15. With the single linkages
method, the flows, to be considered for further merges, between this newly
formed group and any other industry k 6= i, j is given by max{fik, fjk}; on
the contrary, with the complete linkages method it is given by min{fik, fjk}.
The two procedures are summarised in Table 1.

While the first procedure, adopted by Slater (1977), does not lead, in
the Italian (2008) case, to the identification of well-defined industry clusters
— neither at any height nor correspondingly to any pre-defined number of
clusters — the complete linkages procedure does, at least to some extent.
Tables 2 and 3 show the results of cutting the corresponding trees in order
to isolate 15 industry clusters.

The single linkages method leads to the identification of one big cluster,
including 44 industries; the remaining ones stand isolated, each conforming
a separated cluster. Increasing/decreasing the pre-defined number of cluster
to be identified would lead to a decrease/increase of the number of industries
entering the ‘mega cluster’, with the others still being separated.
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2 Hierarchical clustering based on Functionally Integrated Industries

(a) Single linkages method

(b) Complete linkages method

Figure 1: Hierarchical clustering of Italian FII, 2008
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3 Qualitative Input-Output Analysis (QIOA)

Single linkages method Complete linkages method
(1) Pick fij = max{F} (1) Pick fij = max{F}
(2) Group 1: G1 = {i, j} (2) Group 1: G1 = {i, j}
(3) Merge rows/columns (i, j)

of matrix F: fG1k =
max{fik, fjk}

(3) Merge rows/columns (i, j)
of matrix F: fG1k =
min{fik, fjk}

(4) Go through steps (1)-(3) until
the last group found includes
all nodes in the network

(4) Go through steps (1)-(3) until
the last group found includes
all nodes in the network

Table 1: Single and complete linkages methos for hierarchical clustering

On the contrary, the complete linkages method leads to identifying some
meaningful clusters. Cluster 7 in Table 3 includes Stone-sand-clay-minerals,
Glass-clay-cement-ceramic, and Construction; Cluster 10 Wood, Furniture-
Sports-Toys, Renting-equipment and Personal-services; Cluster 11 Office-
machinery-computer, ICT-equipment, Medical-precision-equip. and R-D; fi-
nally, Cluster 12 includes Ships-railway-aircrafts, Transport-water, Transport-
air and Storage-travel-agencies.

3 Qualitative Input-Output Analysis (QIOA)

QIOA is based on obtaining, by adopting some — arbitrary — definition of
‘significant’ edges, a boolean adjacency matrix from either A or X, and then
applying a multi-layer approach looking for the shortest-path ‘significant’
connections between industries.

More specifically, after defining significant edges and thus some criterion
for their identification — usually fixing the minimum value of a significant
edge and denoting it by F — a boolean adjacency matrix W 0 = [w0

ij] is built
s.t. w0

ij = 1 iff aij > F and w0
ij = 0 otherwise. Subsequent layers are then

obtained as:
Wk = W×̇Wk−1, k = 1, 2, . . . , n− 2

where ×̇ denotes boolean multiplication and n−2 is the last layer — since n−
1 is the maximum possible length of a shortest-path between two industries.

The Wks are then condensed, through boolean summation, in a single
matrix W = [wij], s.t. wij = 1 if at least a path of length λ ∈ [1, n− 1] exists
between industries i and j. As a last step, the so-called connectivity matrix
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3 Qualitative Input-Output Analysis (QIOA)

Single linkages method
cluster 1 Construction Coal Mining
Agriculture Sale-repair-vehicles cluster 5
Petroleum-gas-extraction Wholesale-trade Metal-mining
Stone-sand-clay-minerals Retail-trade cluster 6
Food-beverages Hotel-restaurant Tobacco
Textiles Transport-land cluster 7
Clothing Transport-water Leather
Wood Storage-travel-agencies cluster 8
Paper Post-telecomm. Office-machinery-computer
Publishing-printing Finance cluster 9
Petroleum-refinery Insurance ICT-equipment
Chemicals-pharma Brokerage-credit-cards cluster 10
Rubber-plastics Real-estate Transport-air
Glass-clay-cement-ceramic Computer-services cluster 11
Iron-steel-aluminium-tubes Business-services Renting-equipment
Structural-metal-products Public-admin. cluster 12
Mechanical-machinery Education R-D
Electrical-machinery Health cluster 13
Medical-precision-equip. Refuse-disposal Membership-organisations
Motor-vehicles Arts-entertainment cluster 14
Ships-railway-aircrafts cluster 2 Personal-services
Furniture-Sports-Toys Forestry cluster 15
Recycling cluster 3 Household-services
Electricity-gas Fishing
Water cluster 4

Table 2: Single linkages method; 15 clusters level
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3 Qualitative Input-Output Analysis (QIOA)

Complete linkages method
cluster 1 Tobacco Arts-entertainment
Agriculture cluster 9 cluster 10
Food-beverages Textiles Wood
Petroleum-refinery Clothing Furniture-Sports-Toys
Chemicals-pharma Leather Renting-equipment
Transport-land Paper Personal-services
Insurance Publishing-printing cluster 11
Brokerage-credit-cards Rubber-plastics Office-machinery-computer
Health Iron-steel-aluminium-tubes ICT-equipment
Membership-organisations Structural-metal-products Medical-precision-equip.
cluster 2 Mechanical-machinery R-D
Forestry Electrical-machinery cluster 12
cluster 3 Motor-vehicles Ships-railway-aircrafts
Fishing Electricity-gas Transport-water
cluster 4 Sale-repair-vehicles Transport-air
Coal Mining Wholesale-trade Storage-travel-agencies
cluster 5 Retail-trade cluster 13
Petroleum-gas-extraction Hotel-restaurant Recycling
cluster 6 Post-telecomm. cluster 14
Metal-mining Finance Water
cluster 7 Real-estate Education
Stone-sand-clay-minerals Computer-services cluster 15
Glass-clay-cement-ceramic Business-services Household-services
Construction Public-admin.
cluster 8 Refuse-disposal

Table 3: Complete linkages method; 15 clusters level
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3 Qualitative Input-Output Analysis (QIOA)

H is computed as:
H = W + W̃ = [hij]

s.t. hij = 2 if there is at least one direct or indirect path both between i
and j and between j and i; hij = 1 if at least one path exists in only one
direction; and hij = 0 otherwise.

Different approaches to QIOA basically consist of different definitions of
significant edges, and thus of different ways of computing the filter value F
— but also, as we will see in a moment, of different ways of consolidating
successive layers.

The main drawback of QIOA is the fact of disregarding the magnitude of
the flows once the minimum threshold for edges to be deemed as significant is
defined and the boolean adjacency matrix is consistently obtained. However,
as Leontief himself noticed,

[t]he triangulation of a real input-output table — that is, the discovery
of its peculiar structural properties — is a challenging task. It is complicated
by the fact that one must take into account not only the distinction between
zero and nonzero entries but also the often more important difference between
their actual numerical magnitudes.

(Leontief 1986[1963], p. 169, our italics)

A similar argument has been put forwrd by Mesnard:

Boolean methods lead to lost of information and to a larger volume of
computation than do quantitative methods. With regard to layers-based
methods, [. . . ] I have demonstrated that one layer provides the same infor-
mation as the next, proving that such an approach is not informationally
discerning. The above developments prove that if the aim of structural anal-
ysis is to detect the paths of influence, quantitative analysis is preferable to
qualitative analysis.

(Mesnard 2001, p. 278)

In the remainder of the section, we will consider three different approaches
to QIOA: Important Coefficients (ICs) analysis, Elasticity Coefficients (ECs)
analysis, and Minimal Flow Analysis (MFA).

3.1 Important Coefficients (ICs) Analysis

Aroche-Reyes (1996) adopts the ICs approach to the definition of significant
edges. Such an approach originates from a seminal work by Jilek (1971),
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3 Qualitative Input-Output Analysis (QIOA)

extending a contribution by Sherman & Morrison (1950) — dealing with
the issue of how a change ∆mij in one cell of a matrix M induces changes
in all elements of the inverse M−1 — by including the concept of tolerable
limits. In a few words, a coeteris paribus change in a technical coefficient aij
modifies, via the direct and indirect linkages of both industries i ad j (i.e. via
the induced modifications in the Leontief inverse), the gross output vector
g. The greater the ‘importance’ of the paths connecting industries i and j,
the smaller the variation rij, or ‘tolerable limit’, able to induce a percentage
change p change in gi and/or gj. After defining a filter value F for the rijs,
the aijs associated to a rij ≤ F are deemed as ICs. The rij are computed
according to the formula:

rij = aij

(
ljip+ ljj

gj
gi

1

p

)
Aroche-Reyes choose the tolerable limit as 0.2. Accordingly, a boolean

adjacency matrix W = [wij] is computed by setting wij = 1 if rij ≤ 0.2,
wij = 0 otherwise. Subsequent layers are obtained as detailed above, i.e. by
computing boolean powers of matrix and W and then through boolean sum-
mation of such powers.

The same procedure has been here applied for Italy (2008); results are
shown in Figures 2 and 3, displaying the first layer and all the cumulated
layers, respectively. Figures 2a and 3a graphically organise ICs in the same
way as Aroche-Reyes (1996) did, while Figures 2b and 3b organise them as
structured graphs, in order to single out particularly connected groups of
industries.

As it was straightorward to expect, significant connections in the first
layer only are much less numerous than in the consolidated figure. How-
ever, the general picture does not change dramatically. Construction (F45),
Wholesale-trade (G51), Retail-trade (G52) an Business-services (K74) are in
both cases collecting many inflows, showing their ‘centrality’ in the inter-
industry network, while Sale-repair-vehicles (G50) appears as much more
central in the multi-layer picture than in the direct-layer one; Textiles (DB17)
and Clothing (DB18) stand isolated as closely connected to each other and
to no other industry in both cases. Agriculture (A01), Fishing (B05), Food-
beverages (DA15) and Hotel-restaurant (H55) display significant connections
in both figures, and the same holds for Finance (J65), Insurance (J66),
Brokerage-credit-cards (J67), Real-estate (K70) and for Chemical-pharma
(DG24), Medical-precision-equip. (DL33), Health (N85).

11



3 Qualitative Input-Output Analysis (QIOA)

(a)

(b)

Figure 2: ICs for Italy (2008). First layer only
12



3 Qualitative Input-Output Analysis (QIOA)

(a)

(b)

Figure 3: ICs for Italy (2008). Cumulated layers
13



3 Qualitative Input-Output Analysis (QIOA)

The ICs method is based upon a definition of significant edges explic-
itly relying on direct input coefficients as appearing in matrix A. In other
words, the very definition is based on the relative importance of each indi-
vidual element of matrix A in determining the magnitude of the elements
of the Leontief inverse. Given such definition, extending it to accordingly
identify singificant ICs in the indirect layers of the (boolean) power series
does not seem very consistent; the analysis of the direct layer only seems
much more appropriate from this point of view. Of course, there still is the
issue of arbitrariness in the choice of the threshold for the tolerable limit; the
choice is influenced by the need of identifying a number of ICs big enough to
single out a structure, or a complex path, linking the different nodes of the
network, but at the same time small enough to keep the picture readable.
The identification of industry clusters is then somewhat arbitrary too, since
there is not a criterion for partitioning the network into communities. In
order to find a possible way to overcome such difficulty, after introducing, in
Section 5, Hoen’s (2002) block-diagonalisation method, we will apply it to
Aroche-Reyes boolean matrix to see whether it leads to identifying consistent
industry clusters.

3.2 Elasticity Coefficient (ECs) Analysis

The ECs method was originally developed by Maaß (1980) and then applied
by Schnabl (1995a) in comparison to the ICs method.

The procedure consists in computing the elasticity of each single element
lij of the Leontief inverse with respect to each single element akl of input-
coefficient matrix A, given a change dakl = akl(1 + p):

εlijakl =
dlij
dakl

akl
lij

=
dlij

akl(1 + p)

akl
lij
, i, j, k, l = 1, 2, . . . , n

and then taking, as an index of the significance of the connection between
industries k and l, the maximum of all such elasticities:

Ec(p)kl = max
ij
{εlijakl}

As Schnabl (1995a) pointed out, Maaß (1980) showed that the maximum is
attained in correspondence of lkl, and thus the correspondent value of ECkl
is given by:

Ec(p)kl =
lkkakllll

lkl(1− paklllk

14



3 Qualitative Input-Output Analysis (QIOA)

(see Schnabl 1995a, p. 497, equation (8))
As a second step, to introduce a measure more easily comparable to ICs,

the the effect on gross output of a change dakl = akl(1 + p), k, l = 1, 2, . . . , n
is computed as:

Ec(p)?kl =
lkkakl

∑n
j=1 dj

(1− paklllk)gk
(see Schnabl 1995a, p. 498, equation (10))

The problem remains of choosing a filter level for the identification of
singificant ECs; Schnabl (1995a) chose F ? = 0.05 — as they pointed out
(p. 501), value practically identical to the one normally adopted by ICs anal-
ysis. No reference is made to the value they chose for F ;3 the choice we
made here is that of chosing a threshold leading to the identification of a
number of ECs as close as possible to that of ICs. Since in the previous
exercise we identificated, in the first layer alone, 87 such ICs, corresponding
to 97.4% of total edges, we fixed F at the level of the corresponding quantile,
i.e. F ∼= 0.89.

The results obtained for the case of Italy (2008) for ECs and EC?s are
shown in Figures 4 and 5, respectively.

Let us look first at EC? in order to compare them to ICs. Construc-
tion (F45) and Retail-trade (G52) does not display particularly numerous
significant ECs nor EC?s anymore. On the contrary, both Wholesale-trade
(G51) and Business-services (K74) are still the center of many important
EC?s (but not ECs), but interestingly such edges are now principally out-
going rather than in-going, as it was for ICs. Textiles (DB17) and Clothing
(DB18) are still closely connected to each other, but they are not isolated
anymore: they are now connected to the rest of the network via their con-
nection to Electricity-gas (E40) when we consider EC?s; they appear as be-
ing much more connected to the whole inter-industry network when ECs are
considered. Agriculture (A01), Food-beverages (DA15) and Hotel-restaurant
(H55) also continue being significantly connected, but their EC?s with Fish-
ing (B05) are now unsignificant (while ECs are significant), being the lat-
ter now strongly connected to Petroleum-refinery (DF23) and Electricity-gas
(E40). Significant EC?s survive between Finance (J65), Insurance (J66) and
Brokerage-credit-cards (J67) — Real-estate (K70) being also included in the

3“As in ICA, this is in the end a deliberate choice that can be made by taking some
average that provides a reasonable pattern, somewhat similar to the endogenized structure
of the MFA with respect to the number of depicted sectors” (Schnabl 1995a, p. 499).
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(a)

(b)

Figure 4: ECs for Italy (2008)
16
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(a)

(b)

Figure 5: EC?s for Italy (2008)
17



3 Qualitative Input-Output Analysis (QIOA)

case of ECs while being excluded from the group, and significantly con-
nected to Retail-trade (G52), Hotel-restaurant (H55), Education (M80) and
Personal-Services (O93), if we consider EC?s. In its turn, Chemical-pharma
(DG24) is here significantly connected to Recycling (DN37) and Rubber-
plastics (DH25) in the case of EC?s; to Personal-services (O93), Rubber-
plastics (DH25), etroleum-refinery (DF23), Forestry (A02) and Recycling
(DN37) in the case of ECs.

The ECs approach shares with the ICs one the basic idea of finding sifi-
cant flows between industry according to their relative influence on the mag-
nitude of the elements of the Leontief inverse. In the introduction to Schnabl
(1995a), it is stated that

Aroche-Reyes (1996) introduced a new type of formal cutting rule in
order to differentiate important/unimportant links, respectively sectors, and
thus to determine intertemporal structural changes [. . . ]. According to his
arguments he looked for a simpler solution than MFA or QIOA [. . . ] that
had to solve the problem of deliberateness in choosing an adequate filter
threshold.

(Schnabl 1995a, p. 495)

The objection was however risen that

Aroche-Reyes with his escape into IC-Analysis (ICA) and threshold-
fixing did not really solve the problem of deliberateness, but only shifted
it to the question, why 5.0 (∼ rij = 0.2) should be the appropriate filter
value, besides the feature of being ‘conventional’, which explains nothing.
The convention may well have practical use but lacks any theoretical reason
so far.

(Schnabl 1995a, p. 496)

Though being a consistent objection, the alternative procedure based on
ECs does not solve the problem neither. A specular choice is necessary, and
Schnabl’s (1995a) solution was that of choosing a threshold equivalent to
that chosen by Aroche-Reyes himself. Moreover, the rational at the basis
of choosing ECs or EC?s in order to single out significant connetions is not
clearly stated. This is not at all a trivial issue, since the two procedures have
different theoretical, as well as practical, implications. In particular, it seems
necessary to clearly state whether or not the connections of the inter-industry
network to the boundaries, i.e. to final demand, needs to be considered when
attempting at singling out the basic structure of intermediate flows.
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3.3 Minimal Flow Analysis (MFA)

As mentioned above, QIOA was harshly criticised by Mesnard (Mesnard
1995, Mesnard 2001) on the basis of the argument that applying the multi-
layer approach by using as the terms of the power series the powers of the
boolean adjacency matrix induce to single out significant edges that turn
out not to be so. Imagine to have two significant direct flows aik > F and
akj > F . Then the standard procedure would conclude that a significant
indirect path of length two does exist between sectors i and j, even though
the corresponding element of matrix A2 might in fact be below the filter
level.

Schanbl’s MFA (Schnabl 1994, Schnabl 2001) overcome this limitation by
using, as the terms of the power series, a matrix Wk = [wij] for each layer k
built in such a way as to make wkij = 1 iff tkij ≥ F 4 and wkij = 0 otherwise
(i, j = 1, 2, . . . , n). The relevant flow matrix for each layer, Tk, is built s.t.:

T0 = T; Tk = ATk−1, k = 1, 2, . . . , n− 2

and the corresponding boolean power series is computed in the dependency
matrix:

D = [dij] =
•n−2∑
k=0

Wk

where

W0 = W0, W1 = W1W
0 = W1W0, . . . , WK = WKWK−1 =

•K∏
k=0

Wk

dij = 1 if at least one (directed) path of length λ ≤ n−2 exists from industry
i to j; hij = 0 otherwise.

Finally, the connettivity matrix is obtained as:

H = [hij] = D + D̃

where hij = 2 if the connection between i and j is bidirectional; hij = 1 if it
is unidirectional; hij = 0 if no connection exists.

4T = [tij ] = {A,Ad̂} according to the initial choice made on which IO flows to use for
the analysis.
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3 Qualitative Input-Output Analysis (QIOA)

As to the choice of the flows to consider, or equivalently of the structure
to uncover, Schnabl (2001) talks about actual structure when the influence of

final demand is considered, and therefore T = Ad̂; of technological structure
if only input coefficients are considered and therefore T = A.

In both cases, the boolean matrices Wk are obtained with reference to the
chosen filter value F . In order to reduce the arbitrariness associated to the
choice of the threshold, Schnabl (2001) endogenises it in the following way.
First, the whole procedure is carried out with increasing filter values; in this
way, the number of bilateral significant connections progressively decreases.
Fmax is found when no bilateral significant connections exist anymore.

Secondly, the exercise is performed again for a sequence of 50 equidistant
filters values ∈ [0, Fmax]. For each of them, the frequency of 2, 1 and 0
entries in the connectivity matrix is computed. The optimal filter, F ?, is that
element of the sequence in correspondence of which the three frequencies are
as similar as possible.

By applying the procedure above to the case of Italy (2008) we get F ? ∼=
0.0087 for the technological structure, and F ? ∼= 273.99 for the technological
stucture. However, adopting such filter values would by definition lead to
identify a very high number of significant connections.5 This makes it hard
to represent the associated graph as we did above for ICs and ECs. In order
to be able to do so, we updated the procedure choosing the optimal filter
value as the one leading to a number of non-zero entries in the dependency
matrix as close as possible to 80.

Results of the updated MFA analysis of Italian 2008 IO flows are shown
in Figure 6 for the technological structure and 7 for the actual structure.

Let us have a look at Figures 6 and 7. By looking at the technologi-
cal structure, the ‘centrality’ of Wholesale-trade (G51) and Business-services
(K74) and, to a smaller extent, Sale-repair-vehicles (G50), Structural-metal-
products (DJ28) and Construction (F45). Textiles (DB17) and Clothing
(DB18) are also in this case closely connected to each other and to the
rest of the network via the edge between the former and Electricity-gas
(E40). The latter is also significantly connected to Glass-clay-cement-ceramic
(DI26), Stone-sand-clay-minerals (CB14) and Construction (F45). Agricul-
ture (A01), Food-beverages (DA15), Tobacco (DA16) and Hotel-restaurant

5More precisely, we found 798 unidirectional and 984 bidirectional edges in the case of
actual structure; 800 unidirectional and 1020 bidirectional edges in the case of technological
structure.
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3 Qualitative Input-Output Analysis (QIOA)

(a)

(b)

Figure 6: MFA for Italy (2008). Technological structure. Filter: F ? ∼= 0.0539
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3 Qualitative Input-Output Analysis (QIOA)

(a)

(b)

Figure 7: MFA for Italy (2008). Actual structure. Filter: F ? = 1795.635
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4 Clusters, Linkages and Interregional Spillovers

(H55) also conform a quite interconnected group of industries. The same
holds for Finance (J65), Insurance (J66), Brokerage-credit-cards (J67) and
for Real-estate (K70), Education (M80), Personal-services (O93) and Retail-
trade (G52).

The actual structure displays a somewhat more intricated structure, with
many industries in the centre of a quite intricated web6 and some others
more marginally connected to the rest of the network: Post-telecomm. (I64)
via the flow to Public-admin. (L75); Medical-precision-equip. (DL33) via its
deliveries to Health (N85); Rubber-plastics (DH25) delivering to Mechanical-
machinery (DK29); Furniture-Sports-Toys (DN36) through it purchase to
Wood (DD20), which in its turn sells intermediate inputs to Construction
(F45); Education (M80) through its purchases from Real-estate (K70). Fi-
nally, we again observe Textiles (DB17) and Clothing (DB18) standing iso-
lated from the rest of the network as an independent group.

The same criticisms raised at the end of the previous section to the ICs
and ECs approach hold in the case of MFA; the same attempt at exploiting
Hoen’s (2002) block-diagonalisation will be performed in Section 5.

4 Clusters, Linkages and Interregional Spillovers

Oosterhaven et al.’s (2001) paper advances a method for singling out ‘which
direct linkages are important enough to be considered as potentially cluster-
building’ (Oosterhaven et al. 2001, p. 813); in particular, clusters are defined
as

industries [. . . ] most closely tied together, in the sense that changes
in any industry in a certain cluster are most likely to be passed to other
industries in the same cluster instead of being passed on to industries in
other clusters.

(Oosterhaven et al. 2001, p. 812)

In order to identify such particularly strong direct linkages, three quan-
titative criteria are adopted, taking into account the magnitude of both ab-
solute and relative intermediate flows, with the explicit aim of capturing

6Agriculture (A01), Food-beverages (DA15), Petroleum-refinery (DF23), Structural-
metal-products (DJ28), Mechanical-machinery (DK29), Construction (F45), Sale-repair-
vehicles (G50), Wholesale-trade (G51), Retail-trade (G52), Hotel-restaurant (H55),
Transport-land (I60), Storage-travel-agencies (I63), Finance (J65), Real-estate (K70) and
Business-services (K74).
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4 Clusters, Linkages and Interregional Spillovers

differences between dependency and interdependency, which means that the
direction of such flows is taken into account too.

More specifically, the three criteria concern the absolute size of interme-
diate flows, which must be a factor α larger than the average intermediate
transaction between any two ibdustries; the relative size of intermediate sales,
which must be a factor βr larger than the average; finally, the intermediate
sales, which must be a factor βc larger than average. Formally, industries i
and j are candidate to enter the same cluster when:

xij >αeTXe

aij >βre
TAe

bij >βce
TBe

Oosterhaven et al. (2001) also state the secondary importance of the last
two criteria, being them imposed upon relative rather than absolute inter-
mediate flows; moreover, the threshold α is ‘set as low as possible, subject to
the requirement that the information may still be summarized and plotted
visually’ (Oosterhaven et al. 2001, p. 813). In order to do so, a natural break
in the rank-size of the entries of matrix X around 40-60 linkages is looked for;
α is then set equal to the ratio between such break and the average of matrix
X entries. Linkages also satisfying the additional requirement of being at
least a factor βr = 10 or βc = 10 larger than average in relative terms are
deemed as specially significant and thus distinguished from those satisfying
the main requirement only.

The exercise has been performed for the Italian case (2008).7 Results are
plotted in Figure 8.

Before looking at the results, it is worth stressing first that the natural
break we looked for was around 60-80 linkages rather than 40-60, since the
disaggregation adopted includes 10 industries more than those considered by
Oosterhaven et al. (2001); this lead to setting, α = 9.04, while in the case
of Netherlands it has been set equal to 20 — which probably means that
absolute intermediate flows are smoother in Italy than in the Neterlands. 74
linkages has been thus singled out as being α times larger than average; 27
linkages are also above average in relative terms.

7The procedure followed by Oosterhaven et al. (2001) is slightly different due to the
fact that they use regional data and therefore set up a multiregional I-O matrix whose
blocks correspond to the 13 Dutch regions. On the contrary, here we are solely using
national data.
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4 Clusters, Linkages and Interregional Spillovers

Figure 8: Grey arrows display linkages above average in absolute terms only;
black ones linkages above average in relative terms too.

25



5 Block-diagonalisation (B-D) of adjacency matrix

We can now inspect Figure 8. The feature worth beig stressed is that
only 31 out of 58 industries display above average deliveries/purchases. Tex-
tiles (DB17) and Clothing (DB18) on the one side and Wood (DD20) and
Furniture-Sports-Toys (DN36) on the other stand isolated from the rest of
the network, their interrelations being above the average both in absolute
and in relative terms. Insurance (J66) and Brokerage-credit-cards (J67) are
connected to the rest of the network via the deliveries from the latter to Fi-
nance (J65); in the same way, Health (N85) and Chemicals-pharma (DG24)
are connected to the rest of the network through the purchases of the for-
mer from Business-services (K74); Agriculture (A01) via its bilateral inter-
mediate flows from and to Food-beverages (DA15). Iron-steel-aluminium-
tubes (DJ27) sells intermediate inputs to Mechanical-machinery (DK29) and
Structural-metal-products (DJ28); (DM34) buys from the latter and sells
to Sale-repair-vehicles (G50). (I64) buys from (F45) and sells to (K74).
Public-admin. (L75) is connected to the rest of the network through it pur-
chases from Business-services (K74), while Education (M80) via its purchases
from Real-estate (K70). Finally, Computer-services (K72) shows bilateral
exchanges with Business-services (K74) and then sells its output to Finance
(J65).

5 Block-diagonalisation (B-D) of adjacency matrix

This procedure has been introduced by Hoen (2002) as a way of identifying
industry clusters starting from a boolean adjancency matrix W obtained by
imposing certain restrictions on the connections in order to deem them as
significant.

More specifically, wij = 1 iff P (akl ≤ aij) ≤ 0.95 ∪ P (xkl ≤ xij) ≤
0.95 ∪ P (lkl ≤ lij) ≤ 0.95; wij = 0 otherwise. Rows and columns of the
adjcency matrix are then permuted in order to block-diagonalise it; blocks
correspond to industry clusters.

This methodology is explicitly inroduced by Hoen (2002) overcome the
typical drawbacks of other methodologies, which he describes in the first part
of the article. In particular, he deals with maximisation procedures which
basically consist in hierarchical clustering successively selecting the maximum
off-diagonal element, along the same lines as Slater (1977). By using Hoen’s
(2002) words,

[t]he method continues in this way until an exogenously specified num-
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5 Block-diagonalisation (B-D) of adjacency matrix

ber of clusters has been found, after which it terminates. Obviously, this
general method has two important drawbacks: the method uses only one
data source (i.e. the matrix of intermediate deliveries, the input matrix, the
output matrix, or the Leontief inverse) and the number of clusters has to be
specified in advance.

(Hoen 2002, pp. 134-5)

According to Hoen (2002), some authors8 implemented a ‘restricted max-
imisation procedure’ in order to overcome such drawbacks, consisting in im-
posing a set of restrictions on a set of IO matrices, and more specifically:

(1) The intermediate delivery itself has to be larger than a constant α
multiplied by the average of all intermediate deliveries.

(2) The input coefficient has to be larger than a constant β multiplied by
the average of all input coefficients.

(3) The output coefficient has to be larger than a constant β multiplied
by the average of all output coefficients.

(Hoen 2002, p. 135)

However, this last method can still e criticised for the need of specifying
in advance the desired number of clusters, and for the excessive dependence
of the choice of the threshold values. Moreover, all the above mentioned
methods lead to the identification of either mega clusters or mini clusters
(groups of two industries only), which is not a desirable outcome.

Figure 9 shows the graph corresponding to the significant edges as emerg-
ing from Hoen’s (2002) restriction matrix, as emerging from the Italian case
for year 2008. 78 elements of the boolean restriction matrix are non-zero.
Paper (DE21) and Publishing-printing (DE22) on the one side, and Finance
(J65), Insurance (J66) and Brokerage-credit-cards (J67) on the other stand
isolated in a separated group — and in fact Hoen’s (2002) procedure identi-
fies them as two (mini) clusters. Textiles (DB17) and Clothing (DB18) are
still significantly connected to each other, but they are also connected to
the rest of the network via the purchases of the latter from Electricity-gas
(E40), which in its turn sells intermediate inputs to Rubber-plastics (DH25)
and Glass-clay-cement-ceramic (DI26) as well. Wood (DD20) and Furniture-
Sports-Toys (DN36) are still stronlgy connected to each other, the latter
purchasing inputs from Transport-land (I60) and Wholesale-trade (G51).

8Hoen (2002) cites Eding, Oosterhaven & Stelder (1999). In fact, the three restrictions
are equivalent to those chosen by Oosterhaven et al. (2001) in selecting the potential
clusters-building intermediate flows.
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5 Block-diagonalisation (B-D) of adjacency matrix

Figure 9: Hoen block diagonalisation method, significant linkages
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5 Block-diagonalisation (B-D) of adjacency matrix

Business-services (K74) and Construction (F45) are also in this case central
activities in the network. The latter provides inputs to Post-telecomm. (I64)
and Water (E41), which are ‘terminal nodes’ in this connection. Real-estate
(K70) sells to Education (M80) and Retail-trade (G52), whose purchases
from Business-services (K74) represent the connection of this group of in-
dustries to the rest of the network. It is still possible to identify as a group
of closely connected activities Agriculture (A01), buying from and selling to
Food-beverages (DA15), the latter then providing inputs to Hotel-restaurant
(H55).

By looking at the corresponding column of table 4, and as anticipated
above, 30 out of 58 activities are grouped in a ‘megacluster’. Then we have
two small clusters including Paper (DE21) - Publishing-printing (DE22) and
Finance (J65) - Insurance (J66) - Brokerage-credit-cards (J67), respectively.
The remaining 23 industries stand isolated.

Hoen (2002)
cluster 1 Textiles Real-estate
Agriculture Clothing Computer-services
Food-beverages Rubber-plastics Education
Wholesale-trade Construction Refuse-disposal
Glass-clay-cement-ceramic Water Arts-entertainment
Iron-steel-aluminium-tubes Sale-repair-vehicles cluster 2
Structural-metal-products Hotel-restaurant Paper
Mechanical-machinery Transport-land Publishing-printing
Electrical-machinery Petroleum-refinery cluster 3
Motor-vehicles Storage-travel-agencies Finance
Furniture-Sports-Toys Post-telecomm. Insurance
Wood Business-services Brokerage-credit-cards
Electricity-gas Retail-trade

Table 4: Block-diagonalisation, Hoen’s procedure

We can now apply the same methodology to the boolean adjacency ma-
trices as obtained following the approaches described above.

Table 5 shows the results of block-diagonalising Aroche-Reyes’s adjacency
matrix (direct layer only). 50 activities are grouped in one single megacluster;
Textiles (DB17) and Clothing (DB18) conform an independent (mini) cluster,
and the remaining six industries stand isolated.

Table 6 and 7 show the results for ECs and EC?s approaches, respec-
tively. In the first case, all industries are grouped into one mega cluster, with
the exception of Electrical-machinery (DL31), Renting-equipment (K71),
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5 Block-diagonalisation (B-D) of adjacency matrix

Aroche-Reyes (1996)
cluster 1 Structural-metal-products Storage-travel-agencies
Agriculture Mechanical-machinery Post-telecomm.
Forestry Office-machinery-computer Finance
Fishing Electrical-machinery Insurance
Coal Mining Medical-precision-equip. Brokerage-credit-cards
Petroleum-gas-extraction Motor-vehicles Real-estate
Metal-mining Ships-railway-aircrafts Renting-equipment
Stone-sand-clay-minerals Furniture-Sports-Toys Computer-services
Food-beverages Recycling R-D
Leather Electricity-gas Business-services
Wood Construction Public-admin.
Paper Sale-repair-vehicles Health
Publishing-printing Wholesale-trade Refuse-disposal
Petroleum-refinery Retail-trade Membership-organisations
Chemicals-pharma Hotel-restaurant Arts-entertainment
Rubber-plastics Transport-land cluster 2
Glass-clay-cement-ceramic Transport-water Textiles
Iron-steel-aluminium-tubes Transport-air Clothing

Table 5: Block-diagonalisation, Aroche-Reyes’s procedure

Schnabl’s ECs
cluster 1 Mechanical-machinery Transport-water
Agriculture Medical-precision-equip. Transport-air
Coal Mining Motor-vehicles Storage-travel-agencies
Food-beverages Ships-railway-aircrafts Post-telecomm.
Fishing ICT-equipment Finance
Tobacco Furniture-Sports-Toys Insurance
Textiles Wood Brokerage-credit-cards
Clothing Recycling Real-estate
Leather Electricity-gas Public-admin.
Petroleum-refinery Water Education
Forestry Construction Health
Petroleum-gas-extraction Glass-clay-cement-ceramic R-D
Paper Stone-sand-clay-minerals Refuse-disposal
Publishing-printing Sale-repair-vehicles Membership-organisations
Chemicals-pharma Wholesale-trade Business-services
Metal-mining Office-machinery-computer Arts-entertainment
Rubber-plastics Retail-trade Personal-services
Iron-steel-aluminium-tubes Hotel-restaurant
Structural-metal-products Transport-land

Table 6: Block-diagonalisation, Schnabl’s ECs
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5 Block-diagonalisation (B-D) of adjacency matrix

Schnabl’s EC?s
cluster 1 Textiles Transport-air
Agriculture Transport-water Storage-travel-agencies
Coal Mining Clothing Post-telecomm.
Food-beverages Paper Finance
Tobacco Publishing-printing Metal-mining
Leather Petroleum-refinery Insurance
Iron-steel-aluminium-tubes Glass-clay-cement-ceramic Brokerage-credit-cards
Structural-metal-products Water Real-estate
Mechanical-machinery Construction Retail-trade
Electrical-machinery Sale-repair-vehicles Computer-services
Motor-vehicles Wholesale-trade Business-services
Ships-railway-aircrafts Office-machinery-computer Renting-equipment
Recycling ICT-equipment Education
Chemicals-pharma Medical-precision-equip. Refuse-disposal
Rubber-plastics Furniture-Sports-Toys Membership-organisations
Electricity-gas Wood Arts-entertainment
Fishing Hotel-restaurant Personal-services
Stone-sand-clay-minerals Transport-land

Table 7: Block-diagonalisation, Schnabl’s EC?s

Computer-services (K72) and Household-services (P95) standing isolated.
In the second case, the megacluster involves 52 activities; those standing
isolated are Forestry (A02), Petroleum-gas-extraction (CA11), R-D (K73),
Public-admin. (L75), Health (N85) and Household-services (P95).

The results are not different when looking at the clusterisation obtained
through MFA (Schnabl 1994, Schnabl 2001), presented in Tables 8 and 9. In
the case of the technological structure, we find a megacluster including all
activities, with the exception of Household-services (P95) — which of course
does not have any linkage with any other activities, since it uses as an input
direct labour only. Similarly, the actual structure shows Fishing (B05) , Coal
Mining (CA10), Metal-mining (CB13), Tobacco (DA16), Office-machinery-
computer (DL30) and Household-services (P95) as isolated industries, all the
others being grouped together.

Finally, Table 10 shows the results of applying Hoen’s (2002) procedure
to Oosterhaven et al.’s (2001) approach. As already appearing from Fig-
ure 8, the 27 industries constituting the core of the network are grouped
together in one mega cluster. Outside this group, we find Wood (DD20)
and Furniture-Sports-Toys (DN36) on the one side and Textiles (DB17) and
Clothing (DB18) constituting two separate (mini) clusters.
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5 Block-diagonalisation (B-D) of adjacency matrix

Schnabl’s MFA (Technological structure)
cluster 1 Structural-metal-products Storage-travel-agencies
Agriculture Mechanical-machinery Post-telecomm.
Coal Mining Electrical-machinery Finance
Petroleum-gas-extraction ICT-equipment Metal-mining
Food-beverages Medical-precision-equip. Insurance
Fishing Motor-vehicles Brokerage-credit-cards
Tobacco Ships-railway-aircrafts Real-estate
Textiles Furniture-Sports-Toys Renting-equipment
Clothing Recycling Computer-services
Leather Electricity-gas R-D
Wood Office-machinery-computer Business-services
Paper Water Public-admin.
Publishing-printing Construction Education
Petroleum-refinery Sale-repair-vehicles Health
Forestry Wholesale-trade Refuse-disposal
Stone-sand-clay-minerals Retail-trade Membership-organisations
Chemicals-pharma Hotel-restaurant Arts-entertainment
Rubber-plastics Transport-land Personal-services
Glass-clay-cement-ceramic Transport-water
Iron-steel-aluminium-tubes Transport-air

Table 8: Block-diagonalisation, Schnabl’s MFA, Technological Structure

Schnabl’s MFA (Actual structure)
cluster 1 Electrical-machinery Post-telecomm.
Agriculture ICT-equipment Finance
Petroleum-gas-extraction Medical-precision-equip. Insurance
Stone-sand-clay-minerals Motor-vehicles Brokerage-credit-cards
Food-beverages Ships-railway-aircrafts Real-estate
Textiles Furniture-Sports-Toys Renting-equipment
Clothing Recycling Computer-services
Leather Electricity-gas R-D
Wood Water Business-services
Paper Construction Public-admin.
Publishing-printing Sale-repair-vehicles Education
Petroleum-refinery Wholesale-trade Health
Chemicals-pharma Retail-trade Refuse-disposal
Rubber-plastics Hotel-restaurant Membership-organisations
Glass-clay-cement-ceramic Transport-land Arts-entertainment
Iron-steel-aluminium-tubes Transport-water Personal-services
Structural-metal-products Transport-air
Mechanical-machinery Storage-travel-agencies

Table 9: Block-diagonalisation, Schnabl’s MFA, Actual Structure
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6 Spectral Bisection (SB)

Oosterhaven et al. (2001)
cluster 1 Retail-trade Public-admin.
Agriculture Hotel-restaurant Education
Food-beverages Transport-land Health
Electricity-gas Petroleum-refinery Chemicals-pharma
Glass-clay-cement-ceramic Storage-travel-agencies cluster 2
Construction Post-telecomm. Textiles
Structural-metal-products Finance Clothing
Iron-steel-aluminium-tubes Brokerage-credit-cards cluster 3
Mechanical-machinery Insurance Wood
Motor-vehicles Real-estate Furniture-Sports-Toys
Sale-repair-vehicles Computer-services
Wholesale-trade Business-services

Table 10: Block-diagonalisation, Oosterhaven et al.’s (2001) procedure

The main drawback of Hoen’s (2002) procedure is that it seeks for groups
of industries having significant connections among themselves only, while be-
ing totally disconnected from the rest of the network; this is the indirectly
provided definition of an industry cluster. However, it is much more reason-
able to expect the presence of relevant flows between different clusters too;
or at least, a procedure for community detection should not rule out such a
possibility. In other words, we are going to provide a definition of industry
clusters different than Hoen’s (2002), in order to allow for interdependence
between industries belonging to different clusters.

6 Spectral Bisection (SB)

The SB algorithm for unweighted, directed graphs was presented by Leicht
& Newman (2008) as a generalisation of Newman’s (2006) algorithm for
unweighted, undirected graphs, and can be straightforwardly generalised to
take weighted flows into account. In all three cases, the logic at the basis of
the algorithm is the same, and runs as follows.9

The starting point is the optimal partition of a network, which is de-
fined as a division into indivisible subgraphs. In other words, the ‘true’
partition of a network into communities is found when all distinct communi-
ties have been detected, and thus none of them can be further divided into

9For analytical details on the most simple case and on the extension to the most general
case, see Appendix A.1.
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6 Spectral Bisection (SB)

sub-communities. We are therefore indirectly provided with a definition of
community as an indivisible subgraph. A quantitative measure of how good a
division of a network into communities is is given by the associated modular-
ity — a measure of ‘statistical surprise’ — its maximum value being attained
in corresponding of the optimal partition.

Take a network with n nodes (industries) and k communities (indus-
try clusters) and represent it with a transaction (square, industry by in-
dustry I-O) matrix F; each cell fij represents the flows going from node i
to node j (commodities evaluated at current prices sold by industry i to
industry j) in the actual network. Now, imagine we have some limited in-
formation describing such network: the totals by row sout = Fe — i.e. to-
tal intermediate deliveries by industry of origin, or industries’ out-strength;
the totals by column sT

in = eTF — i.e. total intermediate purchases by in-
dustry of destination, or industries’ in-strength; total inter-industry flows
m = eTFe =

∑
i si,out =

∑
i si,in.

On the basis of such information, we can compute the expected value f eij
of each inter-industry flow fij:

f eij = mP (i, j) = mP (i, ·)P (·, j) = m
si,out
m

sj,in
m

=
sj,outsj,in

m

f eij is given by the monetary value of total deliveries times the probability
P (i, j) that one of such monetary units flows from industry i to j.10

The idea at the basis of modularity maximisation is that purchases and/or
deliveries will be in general11 greater than average within industries in the
same cluster, and below average otherwise. The modularity matrix B = [bij]
is given by the difference between actual and expected flows:

B = F− souts
T
in

m

10P (i, ·) and is the probability that one unit of total intermediate production is delivered
by industry i, and P (·, j) that one unit of total intermediate production is purchased by
industry j. The resulting matrix of probabilities is not a transition matrix, whose rows
sum to 1; here it is the sum of all the elements of the matrix that is equal to 1. In fact,
the element tij of a transition matrix T is the probability of going to node j given the fact
that we are starting from node i.

11There might be exceptions, especially for industries with exceptionally low or excep-
tionally high purchases/deliveries. The industries providing business services, for example,
might deliver higher-then-average flows of inputs even to industries not belonging to their
communities. On the contrary, industries with very few inter-industry connections can
display lower-than-average exchanges even with industries in their same cluster.
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6 Spectral Bisection (SB)

Each element bijs will be positive if flows between industry i and j are above
average, and negative otherwise. In the case of directed graphs, B is not
symmetric and each element bij only takes into account deliveries from in-
dustry i to j ad not viceversa. To overcome this limitation, we compute the
generalised modularity matrix

B̃ = B + BT

whose elements b̃ij = b̃ji = bij + bji correctly take into account flows going in
both directions.

Take now an initial (tentative) subdivision of the network in two commu-
nities α and β, and the membership vector m = [mi], with mi = 1 for i ∈ α
and mi = −1 for i ∈ β. Modularity can then be computed as a weighted sum
of the b̃ij’s

Q = mT B̃m

the weights being mimj, where mimj = +1 if industries i and j are assigned
to the same community, mimj = −1 otherwise. Therefore, correctly assign-
ing i) to the same group two industries which actually belong to the same
cluster and ii) to different groups industries actually belonging to different
clusters improve modularity; on the contrary, incorrectly i) separating indus-
tries belonging to the same cluster and ii) grouping industries belonging to
different clusters reduces modularity.12

It can be shown (see Appendix A.1) that each industry can be assigned
to community α or β according to the sign of the corresponding element
of the leading eigenvector of matrix B̃. After the first subdivision, the al-
gorithm proceeds by further bisecting each resulting community, as long as
such bisections lead to positive contributions to modularity.

After each consecutive bisection, a fine tuning of the result is performed;
it consists in moving each node, one at a time and only once, to the other
group; then, within the set of intermediate states occupied by network, the
one associated to the maximum value of modularity is chosen. The procedure
of repeatedly moving nodes from one group to the other is then repeated until
no increase in modularity can be reached.

12Consider the case of three industries i, j and k connected by strong linkages between
i and j and between i and k, while those between j and k are weak. Then, b̃jk < 0.

However, if b̃ij > |b̃jk| separating j and k would increase modularity, but at the cost of a
decrease greater than such increase due to separating i and j. In such a case, SB would
group the three industries together, due to both their direct and indirect linkages.
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6 Spectral Bisection (SB)

McNerney (2009) stresses the fact that the SB algorithm gets a partition,
in the mathematical sense of the word, of the network: overlapping commu-
nities are not allowed. It is our contention that this is not a drawback, at
least for the case of I-O networks. There might be industries closely con-
nected to all the others, which would fall in more than one community if
overlaps were allowed. However, they are particularly connected to none of
them. SB would identify them as isolated nodes. This does not necessarily
mean that they have weak connections with all the others, but also that they
are strongly connected with industries belonging to different communities.
Moreover, a partition of the network is useful in order to make it possible to
take advantage of the applications of linear operators — e.g. to compute the
subsystems corresponding to different clusters.

SB
cls 1, Agri-Food cls 4, Transport Serv. Glass-clay-cement-ceramic
Agriculture Petroleum-gas-extraction Construction
Fishing Petroleum-refinery cls 7, Fashion-Arts
Food-beverages Office-machinery-computer Textiles
Tobacco Ships-railway-aircrafts Clothing
Hotel-restaurant Sale-repair-vehicles Retail-trade
cls 2, Printed Media Transport-land Real-estate
Forestry Transport-water Business-services
Leather Transport-air Education
Paper Storage-travel-agencies Membership-organisations
Publishing-printing Renting-equipment Arts-entertainment
Wholesale-trade cls 5, Financial Services cls 8, Wood Products
cls 3, Heavy Machinery Metal-mining Wood
Coal Mining ICT-equipment Furniture-Sports-Toys
Rubber-plastics Post-telecomm. cls 9, Bio-Tech
Iron-steel-aluminium-tubes Finance Chemicals-pharma
Structural-metal-products Insurance Medical-precision-equip.
Mechanical-machinery Brokerage-credit-cards Electricity-gas
Electrical-machinery Computer-services Water
Motor-vehicles R-D Health
Recycling Public-admin. Personal-services

cls 6, Construction
Stone-sand-clay-minerals

Table 11: SB

Table 11 shows the results of applying SB to the Italian case for 2008.
Two industrie, namely Refuse-disposal (O90) and Household-services (P95),
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6 Spectral Bisection (SB)

stand isolated; the others are grouped into 9 clusters.
The same results are presented graphically in Figures 10 — showing the

whole web of above average connections between nodes, each cluster being
assigned a different colour — and 11, showing the internal structure of each
cluster found.

Figure 10: Above-average connections, spectral bisection
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6 Spectral Bisection (SB)

(a) Cluster 1 (b) Cluster 2 (c) Cluster 3

(d) Cluster 4 (e) Cluster 5 (f) Cluster 6

(g) Cluster 7 (h) Cluster 8 (i) Cluster 9

Figure 11: Clusters’ graphs, SB. Italy (2008)
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7 Random walks and Markov chains

Piccardi’s (2011) approach is based on a LMC model of a random walk. The
definition of a community is based on the concept of persistence probability,
i.e. the probability that a random walker currently in a node of a cluster
remains in the cluster itself in the following step. Calling α such a probability,
an α-community is a group of nodes whose persistence probability is not less
than α. The partition of a network into α-communities is an α-partition.
Given a certain partition of a network into communities and a level of α
which is considered significant, computing the persistence probability of each
community and comparing it to α is a way of testing the significance of each
community. Based on this idea, Piccardi (2011) also proposes an algorithm
for optimal partition of a network.

The basic idea is that a group of industries can be considered as a clus-
ter when there is a high relatively probability that a flow of money, once
it reaches the group, iteratively goes from one industry to the others in a
relatively persistent loop. Notice that this definition implies a particular
topology that a group of industries must show in order to be defined as a
cluster; more specifically, all the industries must have a relatively symmetric
role. A vertically integrated production chain might be seen as a scarcely sig-
nificant community: industry i at the top of the chain, in fact, might display
a close relation with those at the bottom as input providers, but no relations
in the opposite direction, delivering all its output to other industries/clusters
as inputs or to the final sector as final demand. In this case, a flow reaching
industry i would immediately leave the community, thus lowering its persis-
tence probability. On the contrary, it might be recognised as a community
by other approaches, such as SB, which simply defines a cluster as a group
of industries with above-than-average connections in either direction.

First, we have to compute the transition matrix MT . Define:

W ≡
[

X d
zT 0

]
Then

M = WŴ−1

Formally, matrix MT is a Markov — i.e. row-stochastic13 — matrix: it
is the transition matrix associated to an N -state Markov chain, and its LHS

13By construction, the sums of the rows are all equal to one, and thus the dominant
eigenvalue is unitary.
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7 Random walks and Markov chains

leading eigenvector πT is the stationary Markov chain state probability dis-
tribution.14

Based on this intermediate result, and given a certain candidate partition
of the network, Piccardi (2011) then proposes a methodology for providing a
quantitative measure of how significant each community of the partition —
consistent with his own definition of significant community — and thus the
partition itself, is. Such a methodology is then crucial for the community
finding algorithm which he proposes in the second part of the paper.

First of all, define a candidate partition Pm, partitioning the network in
m communities, and the corresponding (n×m) collecting matrix H = [hiγ],
(i = 1, . . . , n, γ = 1, . . . ,m), where hiγ = 1 if node i belongs to community γ,
and hiγ = 0 otherwise. It is therefore possible to define a meta-network com-
posed by m meta-nodes given by the m communities; such a meta-network
is characterised by a transition, or Lumped Markov, matrix, U defined as:

U = (π̂TH)−1HT π̂MTH s.t. ΠT = ΠTU

where ΠT is the stationary LMC state probability distribution.
The elements of matrix U = [uγβ] can be written as:

U = [uγβ] =

∑
i∈γ πi

∑
j∈βmji∑

i∈γ πi

i.e. the probability that a random walker currently in community γ finds
itself in community β in the following step. In other words, and recalling
the interpretation of the random walker and of probabilities πi given above,
uγβ is the fraction in in a stationary state — i.e. after a number of identical
repetitions of the production process such that the weighted inter-industry
transaction matrix finally converges — of the monetary value, at current
prices, of cluster γ’s total purchases which are paid as the counterpart of
purchases from cluster β.

Morover, each element uγγ (γ = 1, . . . ,m) of the main diagonal of matrix
U is the persistence probability associated to the corresponding community.
By comparing it with the benchmark value attributed to α, it is possible
to assess whether the communities are α-communities and thus whether the

14Since MT is non-negative — and irreducible, by construction, being our network
strongly connected — for Perron-Frobenius Theorems (PFTs) the dominant eigenvector
is not repeated and strictly positive.
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7 Random walks and Markov chains

partition is an α-partition. Moreover, it is possible in this way to assess
the significativity of the single communities rather than that of the whole
partition, which means that it is possible to conclude that some communities
are actually significant while some others are not.

Let us now see how this methodology can be applied in order to detect
communities in a network. The basic idea is that of iteratively grouping the
closest nodes of a network in order to get a tree — called dendrogram —
which has the single nodes at one extreme and the whole network at the
other. Each possible section of the dendrogram is a candidate partition of
the network, and the above described methodology can be useful in choosing
the most significant one.15

It is therefore necessary to define a measure of the distance between nodes
consistent with the initial definition of a community. Piccardi (2011) provides
a definition according to which, given an arbitrarily short RW of length T , the
more often the random walker reaches i starting from j and j starting from
i, the closer nodes i and j are. In other words, the greater the proportion
of monetary flows going from industry i and industry j, the closer the two
industries are. Formally, a measure of how close i an j are to each other is
given by

σij = σji =
T∑
t=1

[P ]t(i, j) + [P ]t(j, i) (7.1)

where [P ]t(i, j) = (MT )tij + Mt
ij is the probability that a random walker

starting from i is in j after t steps, and thus the sum in equation (7.1) is the
expected number of total passages from i to j or from j to i during a RW of
length T . Thus, the symmetric closeness matrix Σ is given by:

Σ =
t∑
t=1

(
(MT )t + Mt

)
Starting from matrix σ is then possible to draw the dendrogram and its
optimal section can be picked up by evaluating the persistence probabilities
of the communities in each corresponding partition.

15The usual choice is that of picking the partition with the greatest number of commu-
nities among those considered significant.

41
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8 Alternative interpretation

The fact that IO networks are absorbing prevents us from following the pro-
cedure described by Piccardi (2011); using the ‘complete’ transition matrix
MT would not make sense, since the boundaries are not ‘ordinary’ nodes:
they are the entrance (demand) or the exit from (value added) the network.
We are only interested in the submatrix where the last row and column are
eliminated:

M̃ = X
(

̂eTX + zT

)−1
Now the transition matrix is not stochastic anymore; the leading eigenvalue
will be less than one, and the leading eigenvector cannot be given the same
interpretation as Piccardi’s (2011).16

However, it is still possible to give π an economic interpretation. Con-
sider the power method for computing the leading eigenvector of a matrix:
it consists of choosing an arbitrary vector π0 6= 0 and then iteratively com-
puting the product πT

t+1 = M̃πt up to the point where πt+1 = πt = π.
Whatever the initial choice, the resulting vector will always be the same (up
to a scalar multiple): the leading eigenvector of matrix M̃.

In economic terms, each element πi,0 of the chosen initial vector can be
interpreted as an additional flow of money entering industry i as a conse-
quence of an increase in the demand faced by it. This additional flows will
circulate throughout the network; at each successive passage, a part of it will
be absorbed by the final sector in the form of value added, and thus that
remaining in the inter-industry network will become smaller and smaller at
each passage, finally converging to zero. Whatever the industry/industries
facing the shock, and whatever its magnitude, after a certain number of
stages the proportions of the resulting monetary flows going to the different
industries converge; such proportions depend on the particular structure of
the inter-industry relative flows: the more ‘central’ an industry is, i.e. the
more it is connected to the others, the higher its absorption of indirect flows.
This measure of how ‘central’ each industry is in the corresponding network
is known in literature as eigenvector centrality. Table 12 summarises the

16Computing the transition matrix after eliminating the last row and column, thus still
obtaining a stochastic matrix, would not be appropriate, because in that way we would
be disregarding the fact that a part of any monetary flow associated to intermediate
transactions immediately leaves the inter-industry network reaching the boundaries in the
form of value added.
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8 Alternative interpretation

results for Italy in 2008.

Eigenvector Centrality; λM = 0.44
Brokerage-credit-cards 4.12 Petroleum-refinery 2.18 Motor-vehicles 0.95
Computer-services 3.79 Transport-air 2.17 Leather 0.93
Renting-equipment 3.64 Arts-entertainment 2.04 Construction 0.93
Stone-sand-clay-minerals 3.6 Rubber-plastics 2.04 Textiles 0.85
Petroleum-gas-extraction 3.6 Wholesale-trade 1.95 Hotel-restaurant 0.8
Recycling 3.5 Office-machinery-computer 1.92 Furniture-Sports-Toys 0.79
Business-services 3.41 Metal-mining 1.89 Retail-trade 0.74
Paper 3.24 Structural-metal-products 1.72 Insurance 0.73
Storage-travel-agencies 2.97 Membership-organisations 1.68 Fishing 0.65
Electricity-gas 2.87 Iron-steel-aluminium-tubes 1.61 Medical-precision-equip. 0.56
Forestry 2.86 Ships-railway-aircrafts 1.51 Mechanical-machinery 0.55
Publishing-printing 2.84 ICT-equipment 1.39 Clothing 0.36
Post-telecomm. 2.64 Water 1.37 Education 0.25
Transport-land 2.57 Electrical-machinery 1.29 Tobacco 0.09
Finance 2.52 Chemicals-pharma 1.22 Personal-services 0.06
R-D 2.36 Food-beverages 1.11 Health 0.03
Glass-clay-cement-ceramic 2.26 Transport-water 1.1 Public-admin. 0.02
Wood 2.23 Sale-repair-vehicles 1.04 Household-services 0
Refuse-disposal 2.23 Coal Mining 1.02
Agriculture 2.19 Real-estate 0.99

Table 12: Eigenvector centrality

In this context, the dominant eigenvalue also has a specific interpretation:
given the particular structure of the IO network, after a demand shock taking
place in all industries in the same relative proportions as the elements of
the dominant eigenvector, a proportion 1 − λM of the additional monetary
flows would be immediately absorbed by the final sector as value added,
while a proportion λM would continue to flow in the IO network as indirect
flows. The smaller such eigenvalue with respect to 1, the more important
the indirect flows (with respect to direct ones) in the specific IO network
considered.

This interpretation of the dominant eigenvalue of matrix M̃ suggests an-
other measure of industries centrality, based on the variation of the value of
λM associated to the removal of a row and the corresponding column. The
higher the reduction of the dominant eigenvalue following such extraction,
the greater the consequent change in the structure of inter-industry flows, and
thus the greater the importance of the corresponding industry in determining
it. Table 13 shows the measure for the Italian case in year 2008.
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8 Alternative interpretation

A comparison of these two Tables may be helpful in understanding some
characteristics of the Italian inter-industry structure.

As stated above, eigenvector centrality provides a measure of the relative
importance of the monetary flows channeled by inter-industry relations and
reaching each industries; in other words, of the importance of each industry
in (directly and indirectly) providing inputs to the others. On the contrary,
a change in the dominant eigenvalue induced by the removal of each industry
is a measure of the change in the whole structure of inter-industry relations
induced by such removals.

The five most central industries in Table 12 are Brokerage-credit-cards
(J67), Computer-services (K72), Renting-equipment (K71), Stone-sand-clay-
minerals (CB14) and Petroleum-gas-extraction (CA11), attracting, respec-
tively, the 4.12%, 3.79%, 3.64%, 3.6% and 3.6% of the inter-industry money
flows. Among these, only Computer-services (K72) also induce a significant
change in the dominant eigenvalue (2.73%), ranking eigth in the second Ta-
ble. The removal of the others would induce very small changes in the whole
inter-industry structure, λM changing less than 1%.

Let us now look at the first five position in the table concerning maxi-
mum eigenvalue reduction. Here, we find Wholesale-trade (G51), Business-
services (K74), Transport-land (I60), Construction (F45) and Storage-travel-
agencies (I63) — the change in λM being 8.56%, 7.92%, 5.85%, 4.65% and
4.39%, respectively. Business-services (K74), Storage-travel-agencies (I63)
and Transport-land (I60) are also quite central — the corresponding entries
in the first Table being 3.41%, 2.97% and 2.57%, respectively. Wholesale-
trade (G51) and Construction (F45) are much less central (1.95% and 0.93%,
respectively) though shaping in a strong way the structure of inter-industry
relations.

Removing Coal Mining (CA10) or Metal-mining (CB13) would leave the
dominant eigenvalue unchanged; however, they are not totally irrelevant as
to their eigenvector centrality (1.02% and 1.89%, respectively).

Of course, the two measures have a quite distinct nature, since eigenvector
centrality is an ‘absolute’ one, while the second is a ‘relative’ one, stressing
changes rather thn absolute values. This observation suggests the possibility
of getting a relative measure out of eigenvector centrality as well. More
specifically, one could compute the percentage change in components of the
dominant eigenvector resulting form the extraction of each industries. Such
variations could be stored into a square matrix Π = [πij], where πij < 0 if
removing industry i would reduce industry j’s centrality; positive otherwise.
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8 Alternative interpretation

Maximum Eigenvalue Reduction (%) V2
Wholesale-trade 8.56 Rubber-plastics 1.35 ICT-equipment 0.29
Business-services 7.92 Chemicals-pharma 1.32 Insurance 0.29
Transport-land 5.85 Motor-vehicles 1.17 Clothing 0.27
Construction 4.65 Electrical-machinery 1.1 R-D 0.24
Storage-travel-agencies 4.39 Brokerage-credit-cards 0.94 Medical-precision-equip. 0.18
Structural-metal-products 3.13 Refuse-disposal 0.91 Membership-organisations 0.13
Food-beverages 3 Ships-railway-aircrafts 0.89 Office-machinery-computer 0.07
Computer-services 2.73 Arts-entertainment 0.81 Petroleum-gas-extraction 0.07
Post-telecomm. 2.7 Furniture-Sports-Toys 0.78 Health 0.05
Hotel-restaurant 2.61 Real-estate 0.74 Education 0.04
Electricity-gas 2.55 Renting-equipment 0.74 Public-admin. 0.03
Retail-trade 2.34 Petroleum-refinery 0.73 Fishing 0.02
Sale-repair-vehicles 2.23 Transport-air 0.59 Personal-services 0.01
Glass-clay-cement-ceramic 2.1 Wood 0.55 Forestry 0.01
Finance 1.97 Leather 0.51 Metal-mining 0
Mechanical-machinery 1.79 Stone-sand-clay-minerals 0.41 Tobacco 0
Iron-steel-aluminium-tubes 1.75 Textiles 0.4 Coal Mining 0
Publishing-printing 1.59 Transport-water 0.37 Household-services 0
Agriculture 1.58 Water 0.34
Paper 1.46 Recycling 0.33

Table 13: Maximum eigenvalue reduction
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8 Alternative interpretation

The usefulness of such a matrix is straightforward: it could be used clusters
identification, by using it for computing modularity. This means that the
algorithm, instead of running starting from modularity matrix B, would
start from a ‘modified’ modularity matrix defined as:

B? ≡ O−Π

SB based on eigenvector centralities reduction
cls 1, Agri-Food Iron-steel-aluminium-tubes cls 10, Research-ICT
Agriculture Structural-metal-products ICT-equipment
Fishing Mechanical-machinery Post-telecomm.
Food-beverages Electrical-machinery Computer-services
Wholesale-trade Recycling R-D
Hotel-restaurant cls 6, Construction Business-services
Health Stone-sand-clay-minerals Education
cls 2, Printed Media Glass-clay-cement-ceramic cls 11, Vehicles
Forestry Construction Motor-vehicles
Paper Transport-water Refuse-disposal
Publishing-printing cls 7, Clothing cls 12, Air Transp.
cls 3, Energy Textiles Ships-railway-aircrafts
Coal Mining Clothing Transport-air
Electricity-gas Leather cls 13, Equipm. Serv.
cls 4 Transport-HiTech Retail-trade Sale-repair-vehicles
Petroleum-gas-extraction Personal-services Renting-equipment
Petroleum-refinery cls 8, Wood Prods cls 14, Finance
Office-machinery-computer Wood Finance
Medical-precision-equip. Furniture-Sports-Toys Insurance
Transport-land cls 9, Chemicals Brokerage-credit-cards
Storage-travel-agencies Chemicals-pharma Real-estate
cls 5, Heavy Mach. Rubber-plastics cls 15, PA-Arts
Metal-mining Public-admin.

Arts-entertainment

Table 14: Clusters based on maximum eigenvalue reduction

The results of applying such procedure to our data for Italy are displayed
in Table 14 and graphically represented in Figures 13 and 12. We are now
in aposition to compare them with those obtained by the standarb SB algo-
rithm.

First of all, besides the four industries standing isolated — Household-
services (P95), Tobacco (DA16), Water (E41) and Membership-organisations
(O91), we can identify 15 clusters, while the standard procedure detected 9
communities.
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8 Alternative interpretation

The former Agri-Food cluster is now larger, also including Health (N85)
and Wholesale-trade (G51). Prited Media becomes smaller, and do not in-
clude anymore Leather (DC19) — which goes into the new Clothing cluster
— and Wholesale-trade (G51). The former Heavy Machinery also becomes
smaller, including Iron-steel-aluminium-tubes (DJ27), Structural-metal-products
(DJ28), Mechanical-machinery (DK29), Electrical-machinery (DL31), Recy-
cling (DN37) with the addition of Metal-mining (CB13). Rubber-plastics
(DH25) conforms the new Chemicals cluster together with Chemicals-pharma
(DG24); Motor-vehicles (DM34) also conforms a new cluster, Vehicles, to-
gether with Refuse-disposal (O90). Cluster 4 Transport Services breaks
too: a core, including Petroleum-gas-extraction (CA11), Petroleum-refinery
(DF23), Office-machinery-computer (DL30), Transport-land (I60) and Storage-
travel-agencies (I63) conform, together with Medical-precision-equip. (DL33),
the new Transport-HiTech cluster; Transport-water (I61) goes into contruc-
tion. Ships-railway-aircrafts (DM35) and Transport-air (I62) on the one side,
and Sale-repair-vehicles (G50) and Renting-equipment (K71) on the other
side, separate from the core constituting two separate clusters: Air Trans-
port and Vehicles, respectively.

Another formerly big cluster, namely Financial Services, also breaks. As
mentioned above, Metal-mining (CB13) is part of the new Heavy Machinery
cluster, while Public-admin. (L75) and Arts-entertainment (O92) form the
new PA-Arts one. Finance (J65), Insurance (J66), and Brokerage-credit-
cards (J67) join Real-estate (K70) in the new Finance cluster; finally, ICT-
equipment (DL32), Post-telecomm. (I64), Computer-services (K72) and R-D
(K73), together with Business-services (K74) and Education (M80), form the
new Research-ICT cluster.

As to Construction, we already mentioned that the eigenvector-based
algorithm finds a bigger cluster than the traditional one, also including
Transport-water (I61). The Fashion-Arts cluster disappears, its components
going into different communities. Textiles (DB17), Clothing (DB18) and
Retail-trade (G52) join Leather (DC19) and Personal-services (O93) into
the new Clothing cluster; as already mentioned, Real-estate (K70) enters
the Finance one, while Business-services (K74) and Education (M80) the
Research-ICT and Arts-entertainment (O92) the PA-Arts one. Membership-
organisations (O91) stands isolated.

The Bio-Tech cluster disintegrates, with Chemicals-pharma (DG24) join-
ing Rubber-plastics (DH25) into a specific Chemicals group; Medical-precision-
equip. (DL33) entering the Heavy Machinery cluster and Electricity-gas (E40)
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the Energy one. Health (N85) goes into the new Agri-Food cluster and
Personal-services (O93) into Clothing, while Water (E41) stands isolated.

The only community that appears the same as a result of both procedures
is Wood Products.

9 Conclusions

Our updated SB method leads to the identification of smaller, and often
more meaningful, clusters than the traditional one. The modified modularity
matrix on which it is based has a clearcut economic meaning, and it somehow
includes many of the ideas at the basis of the methodologies reviewed in the
present paper. It tries to combine approaches coming from traditional IO
literature and graph-theoretical hints and procedures. It takes full advantage
of the magnitude of the direct, absolute inter-industry transactions, but it
also takes into account their circular character.

This last observation leads us back to the Introduction. The goodness of
a method cannot but be evaluated in light of the definition of communities
which one wants to search for. I share Oosterhaven et al.’s (2001) that an in-
dustry cluster should be identified on the basis of direct, rather than indirect
flows, and that absolute transactions rather than input coefficients should
be taken into account. Other procedures, such as Pasinetti’s (1988) verti-
cal hyper-integration, focus on the relation between inter-industry structure
and the composition of final demand for consumption commodities.17 Such
analyses are of outmost importance for the understanding of the structure
of an economic system, and for the implementation of income, labour and
fiscal policies. However, it is my contention that they are complementary to
community detection, not alternative.

In this direction, further lines of research could be oriented to uncover-
ing the possible complementarities between these two levels of analysis. In
particular, spectral decompositions are an essential tools for the analysis of
subsystems, and could provide a bridge between the two approaches.

Another important bridge is the analysis of international trade, which can
nowadays take advantage of an umprecedented data availability, and in which
the interaction of ‘horizontal’ and vertical integration plays an essential role.

17Or final demand as traditionally intended, thinking of Pasinetti (1973).
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(a) Cluster 1 (b) Cluster 2 (c) Cluster 3 (d) Cluster 4

(e) Cluster 5 (f) Cluster 6 (g) Cluster 7 (h) Cluster 8

(i) Cluster 9 (j) Cluster 10 (k) Cluster 11 (l) Cluster 12

(m) Cluster 13 (n) Cluster 14 (o) Cluster 15

Figure 12: Clusters’ graphs, eigenvector-centrality SB. Italy (2008)
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A Appendix

A.1 SB algorithm

Newman’s (2006) original article dealt with unweighted, undirected graphs.
In such case, a complete description of the flows of the network is provided
by the so-called adjacency matrix A = [aij], where aij = k is the number of
connections between node i and j exists. Since we exclude, for simplicity,
multiple connections, aij = {0, 1}. The sums by row (or, equivalently, the
sums by column) of matrix A give the number of connections involving the
corresponding node, or nodes’ degrees k = Ae. The total number of con-
nections is m = (1/2)

∑
i ki (since flows are symmetric, and self-loops are

excluded.)
In this case, the expected number of connections between nodes i and j

is given by twice the total number of connections times the probability of
having a connection between i and j:

aeij = 2mP (i, j) = 2mP (j, i) = 2mP (i, ·)P (j, ·) = 2m
ki

2m

kj
2m

=
kikj
2m

and thus

B = A− kkT

2m

When we consider weighted, though still undirected, flows — as Leicht
& Newman (2008) did — we have to slightly change the above definitions.
Instead of the adjacency matrix we have the (still symmetric) weights matrix
W = [wij] giving the volume of the flows between nodes. The vector of
nodes degrees is given by k = We = (eTW)T , m is defined as above and the
expected value of wij is:

weij = 2mP (i, j) = 2mP (j, i) = 2mP (i, ·)P (j, ·) = 2m
ki

2m

kj
2m

=
kikj
2m

and thus

B = W − kkT

2m

Matrix B is a symmetric matrix where all the rows (and columns) sum to
zero.18 This means that it is singular and therefore that it has an eigenvalue

18In fact, We has been computed starting from We and eTW, and therefore by con-
struction We = Wee.
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λ0 = 0 with associated eigenvector v0 = e. Moreover, being symmetric, its
eigenvectors are orthogonal, thus matrix V = [vi] is orthogonal and it holds
that:

VT = V−1 VTBV = Λ

where Λ is a diagonal matrix whose entries are the eigenvalues λi of matrix
B.

Given the properties of the modularity matrix, Q can be written as:

Q = mTVV−1BVV−1m = mTVVTBVVTm = mTVΛVTm =
∑
i

(uT

i s)2λi

(A.1)
According to equation (A.1) states, modularity can be written as a linear
combination of the eigenvalues of matrix B, the weights being (uT

i s)2. Choos-
ing m in order to maximise modularity thus means maximising the weight
associated to the leading eigenvalue, λM , while minimising the others. The
optimal solution would be that of choosing m proportional to the leading
eigenvector, vM ; in so doing, being the eigenvectors of B orthogonal, all the
other weights would be zero. But since we are subject to the constraint
mi = ±1, the best we can do is choosing m so as to maximise uT

i s.
If B has some positive eigenvalues, λM 6= λ0 and thus vM 6= v0. Being

the wo eigenvectors orthogonal, we are sure that vM has both positive and
negative components, and therefore maximising uT

i s means fixing mi = +1
if vMi > 0, and mi = −1 if vMi < 0.

If, on the contrary, all eigenvalues are non-positive, then λ0 is the leading
eigenvalue, v0 the leading eigenvector, and m = v0 = e: the network is an
indivisible graph, and thus the only community is the whole network itself.

It was therefore proved that the network can be bisected by dividing the
nodes into communities α and β according to te sign of the elements of the
leading eigenvector of the modularity matrix.

The following steps consist in iteratively bisecting the existing groups,
until no bisection can further increase modularity. However, after the first
iteration the procedure needs to be slightly modified. If we treated the sub-
graphs in the same way as we did with the whole network, we would be
disregarding inter-modular flows, and thus we would not be able to com-
pute the modularity if the whole network, which depends on B and thus
on the flows connecting all nodes. Rather, as stressed by Newman (2006),
we compute the additional contribution to modularity ∆Q of each further
bisection.
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Let us take subgraph α as an example. In order to further bisect it into
α1 and α2, define a new membership vector mα and a reduced modularity
matrix Bα extracting from B the rows and columns corresponding to nodes
belonging to subgraph α. Each cell bij in α previously entered the sum in
equation (A.1) with positive sign; with the new bisection, they will have to
keep the positive sign if i and j both belong to α1 or α2; on the contrary,
their sign has to turn negative if i ∈ α1 and j ∈ α2. Therefore, ∆Q only
depends on the flows connecting nodes which were separated by the further
bisection; such nodes have to be subtracted twice from Q: the first time
to annihilate their previously positively accounted contribution; the second
time to correctly consider the corresponding flow with negative sign:

∆Q = mT

αBαmα −mT

α(̂Bαe)mα = mT

α

(
Bα − (̂Bαe)

)
mα = mT

αB
(α)mα

B(α) is symmetric, since the sums by row have been subtracted to the main
diagonal. Therefore, the problem of finding the vector mα which maximises
∆Q — and thus the bisection of α wit maximum contribution to modularity
— is formally the same as that of finding the vector m which maximises Q,
and can be analogously solved by choosing the mα,ij = ±1 according to the

sign of the elements of the leading eigenvector v
(α)
M of matrix B(α).
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