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Abstract 
This paper proposes a method for estimating a multi-regional input-output (MRIO) model for China 

under the limitations and constraints of trade flow data over the regions. The MRIO model proposed 

here is the Chenery-Moses-type column model, in which an interregional trade coefficient is 

estimated using the Leontief-Strout Gravity (LSG) model. It is important to estimate the spatial 

friction parameter Q of LSG. Thus, in this paper, we tested parameter Q, estimated with random 

variables and distance data. We concluded that we can construct an MRIO model using the LSG 

model with random variables and distance data as the information on spatial friction of trade flows. 
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1. Introduction 
Since the start of the twenty-first century, macroeconomic issues on regional disparity have become 

a focal point among scholars both in and outside of China. In order to clarify the spatial structure in 

the vast territory of China, regional economists and input-output specialists began studying the 

interregional input-output accounts of China . As a result, interregional input-output tables or data 

were developed by a few research groups, such as Ichimura and Wang (2003), the Institute of 

Developing Economies-JETRO (2003) in collaboration with the State Information Center (SIC 

2005), Miyagawa et al. (2008), and Li (2010). 

 It is well known that an interregional input-output approach to analyze regional 

development and the interdependency of regional economies is very useful, but it is not easy to 

construct input-output data or tables, especially in developing countries such as China. If there was a 

shortcut or an easy method to estimate interregional input-output tables in China, it might have led to 

researchers entering the fields of spatial structure and regional development and contributing to the 

understanding of China’s regional economy. 

 Thus, I would like to propose a shortcut method to estimate the interregional input-output 

model using the existing data of China. The method proposed in this paper is a multi-regional 
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input-output (MRIO) model in which interregional commodity flows are estimated using the 

Leontief-Strout Gravity (LSG) model. The key point of the LSG model is how to estimate the spatial 

friction of the Q parameter. In order to estimate the Q parameter in our model, we test the random 

variables data with some kind of probability distribution or distance data and conclude that this 

method is useful. 

 The paper consists of three parts. First, in section 2, we introduce the MRIO model with 

interregional commodity flows estimated using the LSG model. Section 3 discusses the meanings of 

the Q parameter, which shows spatial friction of commodity transport between regions. In the next 

part, section 4, we analyze the results of the Q parameter estimated using the data of random 

variables with two kinds of probability distribution and the Trade Distribution Index of distance. 

Finally, in section 5, we conclude that the MRIO model estimated using distance data could be 

practically useful for analyzing interregional interaction among regions. 

 

2. Multi-regional Input-Output Model and the Q Parameter 
2-1 Previous research 

Interregional input-output models are of two types (Miller and Blair 2009, 76-77): the interregional 

input-output table or the so-called Isard type (Isard 1951), which shows the input commodities 

recorded differently by region of origin, and the multi-regional input-output model or the so-called 

Chenery-Moses type (Chenery 1953, Moses 1955), which shows the commodities by region, 

although we do not know which sector uses it. 

 Usually, it is very difficult for researchers to construct an Isard-type interregional 

input-output model, because it requires a lot of data related to interregional commodity flows among 

regions. On the other hand, there are two merits of constructing the Chenery-Moses-type MRIO 

model: first, it requires less data, and second, it is easy to update the model because interregional 

trade coefficients and technical coefficients are independently estimated. According to Polenske 

(1970), the column model of the MRIO table and the Leontief-Strout model (Leontief and Strout 

1963) are highly reliable. 

A few methodologies have been used to develop interregional input-output models in 

China. Akita, Kawamura, and Xie (1999) constructed the model using the location quotient; Ando 

and Shibata (1996) and Okuda et al. (2004) estimated the model using the RAS or entropy method; 

and Miyagawa et al. (2008) tried to construct the model using the LSG model. However, the problem 

with the location quotient approach is that cross-hauling is not allowed, and the problem with the 

matrix convergence approach, such as RAS and entropy, is that it lacks economic sense because it is 

used for balancing row and column figures mathematically. Miyagawa et al. (2008) estimated the 

interregional commodity flows using the LSG model. Although we also use the LSG model, it is 

different in terms of estimating the Q parameter. Our proposed methodology is simpler than that of 
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Miyagawa et al. (2008), while maintaining data accuracy. 

 

2-2 The model 

Okamoto and Zhang (2003) and Okamoto et al. (2005) construct the MRIO model as follows, 

matrix-partitioning by region: 
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Here, 

𝑋𝑟 = [𝑥𝑖𝑟]: the total output of industry i in region r. 

𝑇�𝑟𝑠 = �
𝑡1𝑟𝑠 0

⋱
0 𝑡𝑖𝑟𝑠

�: the interregional trade coefficient between regions r and s. 

We assume that we apply the column model, so ∑ ∑ 𝑡𝑖𝑟𝑠𝑛
𝑖

𝑚
𝑟 = 1 holds. 

𝐴𝑟 = �𝑎𝑖𝑗𝑟 � : the technical coefficient matrix in region r. 

𝐹𝑟 = [𝑓𝑖𝑘𝑟 ] : the final-demand items in region r. 

Further, 𝑟, 𝑠 = 1,2,⋯ ,𝑚,; this shows the number of region, 𝑖, 𝑗 = 1,2,⋯ ,𝑛, in the number of 

sector, 𝑘 = 1,2,⋯ , 𝑙, for the number of final-demand items. 

Equation (1) will be transformed by the matrix equation: 

 

𝑋 = 𝑇𝐴𝑋 + 𝑇𝐹       (2) 

 

Then, we can derive its analysis form: 

 

𝑋 = (𝐼 − 𝑇𝐴)−1𝑇𝐹       (3) 

 

In this paper, we propose to construct not an input-output table, but a model for analyzing the 

economic impact of interregional interdependence. In order to satisfy our analysis requirements, we 

need to estimate the interregional output multiplier, or the Leontief inverse matrix (𝐼 − 𝑇𝐴)−1, 

including the regional technical coefficient and interregional trade coefficient. Hereafter, when we 

refer to constructing a “model,” we mean the estimation of the multiplier and other exogenous data 

such as final-demand items. 

From the column model condition, we derive 

𝑡𝑖𝑟𝑠 = 𝑥𝑖
𝑟𝑠

∑ 𝑥𝑖
𝑟𝑠𝑚

𝑟
       (4) 

Here, 𝑥𝑖𝑟𝑠 represents the outflow of commodity i from region r to region s (or inflow from region s 
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to region r). This interregional inflow/outflow of a commodity between regions can be represented 

in the form of the famous LSG model: 

𝑥𝑖𝑟𝑠 = 𝑥𝑖
𝑟𝑥𝑖

𝑠

∑ 𝑥𝑖
𝑟𝑚

𝑟
𝑄𝑖𝑟𝑠       (5) 

 

Here, 𝑥𝑖𝑟 represents the total output of region r, and 𝑥𝑖𝑠 represents the total output of region 

s; ∑ 𝑥𝑖𝑟𝑚
𝑟 = ∑ 𝑥𝑖𝑠𝑚

𝑠  holds. Further, 𝑄𝑖𝑟𝑠 gives the spatial friction of commodity flows. 

We substitute the LSG model (5) for the column model (4), and get 

𝑡𝑖𝑟𝑠 = 𝑥𝑖
𝑟𝑄𝑖

𝑟𝑠

∑ (𝑥𝑖
𝑟𝑄𝑖

𝑟𝑠)𝑟
       (6) 

From this equation, we derive the interregional coefficient matrix of model (1) (or [2], [3]) from the 

total output of each region and the Q parameter. 

 The original MRIO table of the LSG model estimates the transactions between industries 

among the region as follows: 

𝑥𝑖𝑗𝑟𝑠 =
𝑥𝑖
𝑟𝑥𝑗

𝑠

∑ 𝑥𝑖
𝑟𝑚

𝑟
𝑄𝑖j𝑟𝑠       (7) 

As the difference between equations (5) and (7) is very clear, our model estimates the interregional 

trade coefficient matrix by using the LSG model, and not each transaction between industries located 

in each region.1

 

  

2-3 Discussion on the Q parameter 

It is essential that our model defines or estimates the Q parameter. According to the LSG model, the 

Q parameter gives the transportation cost of one unit of a commodity when it is moved, or the 

relative economic position of region r/s to the whole nation (the outflow power of the supply side or 

inflow power of the demand side). Although it is very difficult to estimate the Q parameter, this is 

possible by substituting the alternative information on interregional flow data such as transportation 

data. If so, we should be able to estimate the Q parameter as the Transport Distribution Index (Ihara 

1996, Miller and Blair 2009, pp. 356-366).  

 The Transportation Distribution Index is defined as follows:  

𝑄𝑖𝑟𝑠 = ℎ𝑖
𝑟𝑠

ℎ𝑖
𝑟0ℎ𝑖

0𝑠

ℎ𝑖
00

       (8) 

where ℎ𝑖𝑟𝑠 is the amount (value) of interregional commodity flow, 

ℎ𝑖𝑟0 = ∑ ℎ𝑖𝑟𝑠𝑟  is the total amount of commodity outflow from region r, 

ℎ𝑖0𝑠 = ∑ ℎ𝑖𝑟𝑠𝑠  is the total amount of commodity inflow to region s, and 

                                                        
1 This is different from Miyagawa et al. (2008). The detailed process of their estimation is shown in 
Wang (2003). 
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ℎ𝑖00 = ∑ ∑ ℎ𝑖𝑟𝑠𝑠𝑟  is the total amount of commodity transportation of all regions. 

 

The Transport Distribution Index shows the ratio of the observed interregional transportation data 

ℎ𝑖𝑟𝑠 to the transportation data proportionally distributed from total transportation. The transportation 

data are in proportion to both the supply and demand pools, and the distributed transportation data 

become larger when the amount of goods transacted in the region increases. When the observed 

transportation data is larger than the distributed transportation data, other factors besides the amount 

of supply and demand pools are involved. In other words, this indicates that the spatial friction in 

commodity transportation between regions, for example, physical distance, time, and cost, would be 

small. In this case, 𝑄𝑖𝑟𝑠 will be bigger than a unit. On the other hand, when the observed 

transportation data is smaller than the distributed transportation data, it indicates some sort of 

difficulty in commodity transportation and larger spatial friction. Thus, the value of 𝑄𝑖𝑟𝑠 shows the 

following: 

 

𝑄𝑖𝑟𝑠 > 1: less spatial friction and more interregional transactions 

𝑄𝑖𝑟𝑠 = 1: interregional transactions are independent of spatial friction 

 𝑄𝑖𝑟𝑠 < 1: more spatial friction and less interregional transactions 

 

From the above, we conclude that 𝑄𝑖𝑟𝑠  is the friction resisting the smooth interregional 

transportation of commodities based on distance, transportation costs, and so on, other than the 

supply side’s push factor and demand side’s pull factor. 

 

 

3. How to Estimate Q Parameter 
 

Since it is very difficult to obtain data on the interregional flow of goods and services, we are unable 

to estimate the Q parameter using equation (8). However, in the case of China, we have data on the 

transportation of goods by railway transport (hereafter, the railway origin-destination [OD] table), 

published by the Ministry of Transportation, but this is published only for the total goods and coal 

transportation, and not detailed by commodities. Further, there are various modes of transportation, 

such as water, road, and air transport, besides railway transport. In China, road transport is the main 

mode, covering 72% of the total transportation, with railway transport covering only 13.8% (2007 

figures).  

 In the following section, we discuss the estimation of the Q parameter based on the above 

data. 
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3-1 Random variable  

As mentioned above, the Q parameter is the key point of estimation of interregional commodity 

flows. In case there is data limitation, this would serve as one method to estimate the preliminary 

figures for spatial friction by engineering methods. 

 First, we assume that interregional commodity flows among regions occur uniformly in a 

geographical range and that uniform distribution is the random variable. For example, imagine that a 

kind of fish has its own territory and is uniformly distributed in the river. We regard interregional 

commodity flows as the above fish. Trade between regions spreads uniformly at random in a certain 

geographic area. This assumption is slightly different from the reality of interregional commodity 

flows, but it is set to contrast with the following random variables. 

 Second, we assume that interregional commodity flows concentrate in some geographical 

areas while random variables mainly concentrate in some ranges. This is somewhat close to the 

reality of interregional commodity flows. The commodity flows between neighboring provinces 

might become larger than those between provinces located at very far distances. In this case, in what 

form does a random variable distribute? We check the interregional flow data of railway 

transportation (railway OD table) in China and the interregional transactions in the interregional 

input-output table of Japan, which is in the frequency distribution, shown in Figures 1 and 2, 

respectively. From these figures, we find that (1) the form of distribution is very similar regardless of 

volume or amount; China or Japan, (2) transactions of small amounts (volume) are mostly in 

interregional trade, whereas those of large amounts (volume) are relatively few; and (3) the places of 

transactions become fewer or decrease in an exponential manner as the transaction amounts 

(volume) increase. Here, the random variable is assumed to be exponential distribution. 

 

Insert Figure 1 and 2 
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3-2 Distance 

In China, the outflow of goods data by region can be obtained from statistical yearbooks, but we 

would not know where the goods go. In fact, Okamoto and Zhang (2003) and Okamoto et al. (2005) 

used these data to estimate the interregional commodity flow matrix with a supply-constrained 

gravity model. This estimated commodity flow matrix was used as the Transport Distribution Index 

to estimate the Q parameter. 

 Here, we would like to clarify and develop the estimation methods of Okamoto and Zhang 

(2003) and Okamoto et al. (2005). In these studies, the outflow of commodities in region r is 

assumed to be distributed to each region on the basis of the demand pool of region s and the distance 

between regions r and s. Therefore, a supply-constrained gravity model was used as follows: 

ℎ𝑖𝑟𝑠 = 𝐴𝑌𝑖𝑟𝑌𝑖𝑠(𝑑𝑟𝑠)𝛼          (9) 

constraint ℎ𝑖𝑟0 = ∑ ℎ𝑖𝑟𝑠𝑠  

𝑎𝑑𝑖 =  
𝑑𝑖𝑟𝑠ℎ𝑖𝑟𝑠

ℎ𝑖
𝑟0  

where 𝑌𝑟 is the total outflow of region r; 𝑌𝑠 is the demand pool of region s; 𝑎𝑑𝑖 gives the average 

distance of good i, which is obtained from the statistics data; and α is determined by holding a 

constraint condition. Using the interregional commodity data estimated from this supply-constrained 

gravity model, Okamoto and Zhang (2003) and Okamoto et al. (2005) estimated the Q parameter by 

commodity. 

 However, this estimation is the same as the Transport Distribution Index of distance. If we 

substitute (8) with (9), we get the following relation: 

𝑄𝑖𝑟𝑠 =
𝐴𝑌𝑖𝑟𝑌𝑖𝑠(𝑑𝑟𝑠)𝛼

∑ 𝐴𝑌𝑖𝑟𝑌𝑖
𝑠(𝑑𝑟𝑠)𝛼𝑟 ∑ 𝐴𝑌𝑖𝑟𝑌𝑖

𝑠(𝑑𝑟𝑠)𝛼𝑠
∑ ∑ 𝐴𝑌𝑖𝑟𝑌𝑖𝑠(𝑑𝑟𝑠)𝛼𝑠𝑟

 

=
𝐴𝑌𝑖𝑟𝑌𝑖𝑠(𝑑𝑟𝑠)𝛼

𝐴𝑌𝑖𝑟𝑌𝑖
𝑠 ∑ (𝑑𝑟𝑠)𝛼𝑟 𝐴𝑌𝑖𝑟𝑌𝑖

𝑠 ∑ (𝑑𝑟𝑠)𝛼𝑠
𝐴𝑌𝑖𝑟𝑌𝑖𝑠 ∑ ∑ (𝑑𝑟𝑠)𝛼𝑠𝑟

 

    = (𝑑𝑟𝑠)𝛼
∑ (𝑑𝑟𝑠)𝛼𝑟 ∑ (𝑑𝑟𝑠)𝛼𝑠

∑ ∑ (𝑑𝑟𝑠)𝛼𝑠𝑟

          (10) 

As we know, the Q parameter is determined on the distance d and α, independent of the outflow of 

commodity and the demand pool of each region. Based on this, we consider the Q parameter of the 

LSG model as the Transportation Distribution Index, and it is not necessary to use the commodity 

outflow or demand pool data of each province published by the Chinese authorities. 

 

4. Empirical Test 
4-1 Data and comparison method 
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In case of lack of data on the “real” or “true” interregional commodity flow, we can consider the 

effectiveness of the result estimated using the alternative data proposed above. In order to estimate 

the Q parameter, we prepare the following alternative data in line with the previous section: 

(1) Two types of random variables (with uniform distribution and exponential distribution)  

(2) Two types of physical distance (based on railway and road transport) 

To examine the effectiveness of the estimated data, we construct a simple MRIO model and compare 

it with the survey-based input-output table. However, we have to overcome two problems. 

 First, we have to construct the MRIO model. As seen in equation (3), we can make an 

impact analysis if we get the technical coefficient A of each province and the interregional trade 

coefficient matrix T. So, in order to examine the model effectiveness, it would be enough to estimate 

the Leontief inverse (multiplier), with no need to estimate the full MRIO data set. Although it would 

be better if we could get the technical coefficient matrix A of each province, we can use the technical 

coefficient A of the 2007 national input-output table for each province and construct a one-sector 

model in order to evaluate the interregional coefficient matrix estimated by our method. We can then 

calculate the total output of these two models and check the overall percentage error (OPE) 

established by Miller and Blair (2009). 

 Second, we do not have a survey-based interregional input-output table with regard to 

China. Further, we are not able to compare a non-survey model with a survey-based one. Therefore, 

we can evaluate the accuracy of the estimated model using the following two methods. First, the 

MRIO model estimated from the 2007 railway OD table across the provinces published by the 

Chinese authorities is assumed to be a survey-based input-output table, so we can compare it with 

our MRIO model estimated from random variables or distance. Second, we calculate the total output 

induced by one unit final demand of each province (the row sum of the Leontief inverse) and 

compare it with the Gross Regional Product (GRP) of each province. We check the correlation 

coefficient of the two data sets. Based on the interregional input-output table in Japan, the total 

output of each prefecture induced by one unit final demand (𝐼 − 𝑇𝐴)−1𝑖 and the GRP data of each 

province are highly correlated2

 For comparison of the estimated and original data sets, we will study various aspects of 

evaluation such as the correlation coefficient and the OPE established by Miller and Blair (2009), as 

mentioned above. The standard total percentage error (STPE) and mean absolute difference (MAD) 

developed by Lahr (2000) will be used in the modified version as follows: 

𝑆𝑇𝑃𝐸 = 100
∑ �𝑋𝑖 − 𝑋�𝑖�𝑖

∑ 𝑋𝑖𝑖
 

.  

                                                        
2 This idea came from Dr. Pongsun Bunditsakulchai (Central Research Institute of Electric Power Industry) at the 
24th Annual Meeting of the Applied Regional Science Conference held in Nagoya University on Dec 4–5, 2010.  
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𝑀𝐴𝐷 = 100
∑ �𝑋𝑖 − 𝑋�𝑖�𝑖

𝑛2
 

STPE gives the output error that will be induced by final demand and MAD, the output error per 

region. 

 

4-2 Empirical test: random variable 

In case the interregional commodity flows are regarded as random variables, we have to generate 

two types of random variables, one with uniform distribution and the other with exponential 

distribution, and these should be regarded as the origin-destination table; the Q parameter was 

estimated as the Transport Distribution Index in equation (8), and then compiled as the MRIO 

model. 

 Random variables generate different values each time. So, we generate 30 different values 

and calculate the total output of each MRIO model, using 30 different random variables. We then 

compare their mean and standard deviations with the original values (total output induced by one 

unit final demand of each province in the MRIO model with the railway OD table).  

Insert Table 1 

 

When we consider the Q parameter as the Transport Distribution Index of a random variable, the 

uniform distribution is 3.186 and exponential distribution 3.078 in terms of the average of total 

output induced by final demand. The correlation coefficient of our data estimated by uniform 

distribution with both GRP and the railway transport data is higher than that estimated by 

exponential distribution. Our data estimated by uniform distribution fits better in terms of both STPE 

and MAD. 

 However, interregional commodity flows might be overestimated in a uniform distribution, 

and the multiplier estimated by uniform distribution might become larger. The multiplier estimated 

by exponential distribution is 3.078, and it is the same for the data estimated by railway transport 

data. In view of the small difference between the results of the two random variables, we can 

conclude that the Q parameter of the LSG model has a small impact on estimating the MRIO model. 

It would be proper to use both the random variables, but it would be better to use the random 

variables with exponential distribution, because it would give a good estimation result of the total 

multiplier, and the exponential distribution might be regarded as nearer the real situation of 

interregional commodity flows. 
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4-3 Empirical test: distance 

We have to prepare the distance data for both railway and road transport for estimating the Q 

parameter of equation (10). The distance by railway transport is calculated using the data of China 
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Info (http://www.china.co.jp/, author accessed 2010/4/22). However, we estimate the distance from 

each provincial capital to Lhasa (Tibet) and Haikou (Hainan) on the assumption that railway 

transportation would be made to Lhasa through Xining and to Haikou through Guangzhou. The 

distance of road transport is estimated as the distance between the provincial capitals from the data 

of China Highway Information Service (http://www.chinahighway.gov.cn/roadInfo/indexNew.do, 

author accessed 2010/7/13). 

 As for the internal distance within provinces, Head and Mayer (2002) discuss several 

methods of estimation, like (1) fractions of distances to the centers of neighboring regions, (2) 

area-based measures trying to capture the average distance between producers and consumers 

located in given territories, and (3) sub-unit-based weighted average methods using actual data on 

the spatial distribution of economic activity within countries. In this paper, we apply the area-based 

measures method (2), 𝑑𝑖𝑖 = 2

3�𝑎𝑟𝑒𝑎𝜋

, to estimate the internal distances within provinces, based on 

Koshizuka (1978). 

 The other point with regard to estimating the Transport Distribution Index of distance is 

how to estimate parameter α, which shows the decayed function with distance: when the distance is 

more, transportation would become less. We estimate the gravity model by using the railway OD 

table between regions; the result is shown in Table 2. 

 

Insert Table 2 

 
 

 

In the gravity model estimation, we use three types of supply (push factor) and demand (pull factor) 

pools: per capita GRP, GRP, and cargo volume. The results show that the cargo volume type fits best 

because the railway OD table of China is shown in cargo volume, and parameter α is between -0458 

and -0.784.  

http://www.china.co.jp/�
http://www.chinahighway.gov.cn/roadInfo/indexNew.do�
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Insert table 3 

 
 

 Based on this result, we move parameter α from -0.1 to -0.7 by 0.1 point and estimate the 

transport distribution coefficient of distance, and construct the MRIO model. As there is no “real” 

OD table for road transport, we compare it with the estimated model by using the railway OD table. 
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The results are shown in Table 3. 

 The Transport Distribution Index of distance depends on parameter α—how much volume 

of the commodity would be transported, and how far. The larger parameter α is, the more distance 

the commodity is transported. If parameter α is small, it means that the commodity would be 

transported to a nearby region, not to a far away region. So, it is very common that parameter α for 

road transport is smaller than that for railway transport, because the average transport distance by 

road is shorter, according to the transportation statistics of China. 

 From Table 3, the average total output induced by one unit of final demand of each 

province (the row sum of the Leontief inverse) is 3.078, which is the same figure as for the model 

estimated using the railway OD table data. Judging from the STPE and MAD indexes, -0.4 for 

parameter α of railway distance and -0.2 for parameter α of road transport distance fit better than 

other α parameter values. 

 As for the correlation coefficient, it fits better when parameter α is increased. It is quite 

natural that the correlation coefficient (1) of the distance by railway compared with the railway OD 

table model is higher than the correlation coefficient of the distance by road. As a result, we can 

conclude that the estimated result would be acceptable for constructing the MRIO model. 

 

 

5. Conclusion 
 

In this paper, we discussed how to estimate an interregional input-output model with limited data, 

and we proposed a model that is both easy and practical: the Chenery-Moses-type MRIO model with 

the interregional trade coefficient stipulated by the LSG model, in which the Q parameter is 

estimated with random variables and distance data.  

We evaluated the model using random variables with uniform/exponential distribution and 

railway/road distance. The results show that we can estimate a reliable interregional input-output 

model with the transport distribution coefficient of distance under the situation of no data of 

interregional transactions. However, this does not mean that we can obtain accurate figures in each 

interregional transaction. It only means that it is possible to construct an interregional input-output 

model with so-called holistic accuracy (Jensen 1980). 

 Even in the absence of data on the distance among the regions, the results suggest that we 

can construct a relatively reliable interregional input-output model with random variables. This 

means that the total output plays an important role in estimating interregional commodity flows in an 

LSG model. 

 However, there is no economic sense in using random variables. We have to consider the 

distance and its exponent reflected in the spatial character of the region in order to construct a model 
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with higher accuracy and economic sense. 
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