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Abstract

This paper proposes a method for estimating a multi-regional input-output (MRIO) model for China
under the limitations and constraints of trade flow data over the regions. The MRIO model proposed
here is the Chenery-Moses-type column model, in which an interregional trade coefficient is
estimated using the Leontief-Strout Gravity (LSG) model. It is important to estimate the spatial
friction parameter Q of LSG. Thus, in this paper, we tested parameter Q, estimated with random
variables and distance data. We concluded that we can construct an MRIO model using the LSG

model with random variables and distance data as the information on spatial friction of trade flows.
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1. Introduction

Since the start of the twenty-first century, macroeconomic issues on regional disparity have become
a focal point among scholars both in and outside of China. In order to clarify the spatial structure in
the vast territory of China, regional economists and input-output specialists began studying the
interregional input-output accounts of China . As a result, interregional input-output tables or data
were developed by a few research groups, such as Ichimura and Wang (2003), the Institute of
Developing Economies-JETRO (2003) in collaboration with the State Information Center (SIC
2005), Miyagawa et al. (2008), and Li (2010).

It is well known that an interregional input-output approach to analyze regional
development and the interdependency of regional economies is very useful, but it is not easy to
construct input-output data or tables, especially in developing countries such as China. If there was a
shortcut or an easy method to estimate interregional input-output tables in China, it might have led to
researchers entering the fields of spatial structure and regional development and contributing to the
understanding of China’s regional economy.

Thus, 1 would like to propose a shortcut method to estimate the interregional input-output

model using the existing data of China. The method proposed in this paper is a multi-regional



input-output (MRIO) model in which interregional commodity flows are estimated using the
Leontief-Strout Gravity (LSG) model. The key point of the LSG model is how to estimate the spatial
friction of the Q parameter. In order to estimate the Q parameter in our model, we test the random
variables data with some kind of probability distribution or distance data and conclude that this
method is useful.

The paper consists of three parts. First, in section 2, we introduce the MRIO model with
interregional commodity flows estimated using the LSG model. Section 3 discusses the meanings of
the Q parameter, which shows spatial friction of commaodity transport between regions. In the next
part, section 4, we analyze the results of the Q parameter estimated using the data of random
variables with two kinds of probability distribution and the Trade Distribution Index of distance.
Finally, in section 5, we conclude that the MRIO model estimated using distance data could be

practically useful for analyzing interregional interaction among regions.

2. Multi-regional Input-Output Model and the Q Parameter

2-1 Previous research

Interregional input-output models are of two types (Miller and Blair 2009, 76-77): the interregional
input-output table or the so-called Isard type (Isard 1951), which shows the input commodities
recorded differently by region of origin, and the multi-regional input-output model or the so-called
Chenery-Moses type (Chenery 1953, Moses 1955), which shows the commodities by region,
although we do not know which sector uses it.

Usually, it is very difficult for researchers to construct an Isard-type interregional
input-output model, because it requires a lot of data related to interregional commodity flows among
regions. On the other hand, there are two merits of constructing the Chenery-Moses-type MRIO
model: first, it requires less data, and second, it is easy to update the model because interregional
trade coefficients and technical coefficients are independently estimated. According to Polenske
(1970), the column model of the MRIO table and the Leontief-Strout model (Leontief and Strout
1963) are highly reliable.

A few methodologies have been used to develop interregional input-output models in
China. Akita, Kawamura, and Xie (1999) constructed the model using the location quotient; Ando
and Shibata (1996) and Okuda et al. (2004) estimated the model using the RAS or entropy method,;
and Miyagawa et al. (2008) tried to construct the model using the LSG model. However, the problem
with the location quotient approach is that cross-hauling is not allowed, and the problem with the
matrix convergence approach, such as RAS and entropy, is that it lacks economic sense because it is
used for balancing row and column figures mathematically. Miyagawa et al. (2008) estimated the
interregional commodity flows using the LSG model. Although we also use the LSG model, it is

different in terms of estimating the Q parameter. Our proposed methodology is simpler than that of



Miyagawa et al. (2008), while maintaining data accuracy.

2-2 The model
Okamoto and Zhang (2003) and Okamoto et al. (2005) construct the MRIO model as follows,
matrix-partitioning by region:
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Here,
X" = [x]]: the total output of industry i in region r.
t1® 0
T7s = : the interregional trade coefficient between regions r and s.
0 t7®

We assume that we apply the column model, so Y7*>7't/* =1 holds.

A" = [a];] : the technical coefficient matrix in region r.

F" = [f;;] :the final-demand items in region r.

Further, r,s = 1,2,---,m,; this shows the number of region, i,j = 1,2,---,n, in the number of
sector, k =1,2,---,1, for the number of final-demand items.

Equation (1) will be transformed by the matrix equation:

X =TAX +TF @)
Then, we can derive its analysis form:

X=U-TA™TF (3)

In this paper, we propose to construct not an input-output table, but a model for analyzing the
economic impact of interregional interdependence. In order to satisfy our analysis requirements, we
need to estimate the interregional output multiplier, or the Leontief inverse matrix (I — TA)™%,
including the regional technical coefficient and interregional trade coefficient. Hereafter, when we
refer to constructing a “model,” we mean the estimation of the multiplier and other exogenous data
such as final-demand items.
From the column model condition, we derive

x°

t® = 5w (4)
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Here, x/° represents the outflow of commodity i from region r to region s (or inflow from region s



to region r). This interregional inflow/outflow of a commodity between regions can be represented
in the form of the famous LSG model:
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Here, x] represents the total output of region r, and x; represents the total output of region
s; 2t x] = Yt x? holds. Further, Q7* gives the spatial friction of commodity flows.
We substitute the LSG model (5) for the column model (4), and get
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From this equation, we derive the interregional coefficient matrix of model (1) (or [2], [3]) from the
total output of each region and the Q parameter.
The original MRIO table of the LSG model estimates the transactions between industries

among the region as follows:
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As the difference between equations (5) and (7) is very clear, our model estimates the interregional
trade coefficient matrix by using the LSG model, and not each transaction between industries located

in each region.*

2-3 Discussion on the Q parameter

It is essential that our model defines or estimates the Q parameter. According to the LSG model, the
Q parameter gives the transportation cost of one unit of a commodity when it is moved, or the
relative economic position of region r/s to the whole nation (the outflow power of the supply side or
inflow power of the demand side). Although it is very difficult to estimate the Q parameter, this is
possible by substituting the alternative information on interregional flow data such as transportation
data. If so, we should be able to estimate the Q parameter as the Transport Distribution Index (lhara
1996, Miller and Blair 2009, pp. 356-366).

The Transportation Distribution Index is defined as follows:
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where h[® is the amount (value) of interregional commodity flow,
RI® =¥, hl* is the total amount of commodity outflow from region r,

RS = ¥ h!S is the total amount of commodity inflow to region s, and

1 This is different from Miyagawa et al. (2008). The detailed process of their estimation is shown in
Wang (2003).



RY® =% ¥ RIS is the total amount of commodity transportation of all regions.

The Transport Distribution Index shows the ratio of the observed interregional transportation data
hi® to the transportation data proportionally distributed from total transportation. The transportation
data are in proportion to both the supply and demand pools, and the distributed transportation data
become larger when the amount of goods transacted in the region increases. When the observed
transportation data is larger than the distributed transportation data, other factors besides the amount
of supply and demand pools are involved. In other words, this indicates that the spatial friction in
commodity transportation between regions, for example, physical distance, time, and cost, would be
small. In this case, Q7° will be bigger than a unit. On the other hand, when the observed
transportation data is smaller than the distributed transportation data, it indicates some sort of
difficulty in commodity transportation and larger spatial friction. Thus, the value of Q;® shows the

following:

7% > 1: less spatial friction and more interregional transactions
7® = 1: interregional transactions are independent of spatial friction

7® < 1: more spatial friction and less interregional transactions

From the above, we conclude that Q;° is the friction resisting the smooth interregional
transportation of commodities based on distance, transportation costs, and so on, other than the

supply side’s push factor and demand side’s pull factor.

3. How to Estimate Q Parameter

Since it is very difficult to obtain data on the interregional flow of goods and services, we are unable
to estimate the Q parameter using equation (8). However, in the case of China, we have data on the
transportation of goods by railway transport (hereafter, the railway origin-destination [OD] table),
published by the Ministry of Transportation, but this is published only for the total goods and coal
transportation, and not detailed by commodities. Further, there are various modes of transportation,
such as water, road, and air transport, besides railway transport. In China, road transport is the main
mode, covering 72% of the total transportation, with railway transport covering only 13.8% (2007
figures).

In the following section, we discuss the estimation of the Q parameter based on the above
data.



3-1 Random variable

As mentioned above, the Q parameter is the key point of estimation of interregional commodity
flows. In case there is data limitation, this would serve as one method to estimate the preliminary
figures for spatial friction by engineering methods.

First, we assume that interregional commaodity flows among regions occur uniformly in a
geographical range and that uniform distribution is the random variable. For example, imagine that a
kind of fish has its own territory and is uniformly distributed in the river. We regard interregional
commodity flows as the above fish. Trade between regions spreads uniformly at random in a certain
geographic area. This assumption is slightly different from the reality of interregional commodity
flows, but it is set to contrast with the following random variables.

Second, we assume that interregional commodity flows concentrate in some geographical
areas while random variables mainly concentrate in some ranges. This is somewhat close to the
reality of interregional commodity flows. The commodity flows between neighboring provinces
might become larger than those between provinces located at very far distances. In this case, in what
form does a random variable distribute? We check the interregional flow data of railway
transportation (railway OD table) in China and the interregional transactions in the interregional
input-output table of Japan, which is in the frequency distribution, shown in Figures 1 and 2,
respectively. From these figures, we find that (1) the form of distribution is very similar regardless of
volume or amount; China or Japan, (2) transactions of small amounts (volume) are mostly in
interregional trade, whereas those of large amounts (volume) are relatively few; and (3) the places of
transactions become fewer or decrease in an exponential manner as the transaction amounts

(volume) increase. Here, the random variable is assumed to be exponential distribution.

Insert Figure 1 and 2

Figure 1. Distribution of Trade between Provinces in China (2007) Figure 2. Distribution of Trade between Prefectures in Japan (2005)
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3-2 Distance
In China, the outflow of goods data by region can be obtained from statistical yearbooks, but we
would not know where the goods go. In fact, Okamoto and Zhang (2003) and Okamoto et al. (2005)
used these data to estimate the interregional commodity flow matrix with a supply-constrained
gravity model. This estimated commaodity flow matrix was used as the Transport Distribution Index
to estimate the Q parameter.

Here, we would like to clarify and develop the estimation methods of Okamoto and Zhang
(2003) and Okamoto et al. (2005). In these studies, the outflow of commodities in region r is
assumed to be distributed to each region on the basis of the demand pool of region s and the distance

between regions r and s. Therefore, a supply-constrained gravity model was used as follows:

hirs — AYirYiS(drs)a €)]
constraint h!® = ¥  h!S
drhys
ad; = —
L h‘{'()

where Y, is the total outflow of region r; Y, is the demand pool of region s; ad; gives the average
distance of good i, which is obtained from the statistics data; and o is determined by holding a
constraint condition. Using the interregional commodity data estimated from this supply-constrained
gravity model, Okamoto and Zhang (2003) and Okamoto et al. (2005) estimated the Q parameter by
commaodity.

However, this estimation is the same as the Transport Distribution Index of distance. If we
substitute (8) with (9), we get the following relation:
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As we know, the Q parameter is determined on the distance d and «, independent of the outflow of
commodity and the demand pool of each region. Based on this, we consider the Q parameter of the
LSG model as the Transportation Distribution Index, and it is not necessary to use the commodity

outflow or demand pool data of each province published by the Chinese authorities.

4. Empirical Test
4-1 Data and comparison method



In case of lack of data on the “real” or “true” interregional commodity flow, we can consider the
effectiveness of the result estimated using the alternative data proposed above. In order to estimate
the Q parameter, we prepare the following alternative data in line with the previous section:

(1) Two types of random variables (with uniform distribution and exponential distribution)

(2) Two types of physical distance (based on railway and road transport)

To examine the effectiveness of the estimated data, we construct a simple MRIO model and compare
it with the survey-based input-output table. However, we have to overcome two problems.

First, we have to construct the MRIO model. As seen in equation (3), we can make an
impact analysis if we get the technical coefficient A of each province and the interregional trade
coefficient matrix T. So, in order to examine the model effectiveness, it would be enough to estimate
the Leontief inverse (multiplier), with no need to estimate the full MRIO data set. Although it would
be better if we could get the technical coefficient matrix A of each province, we can use the technical
coefficient A of the 2007 national input-output table for each province and construct a one-sector
model in order to evaluate the interregional coefficient matrix estimated by our method. We can then
calculate the total output of these two models and check the overall percentage error (OPE)
established by Miller and Blair (2009).

Second, we do not have a survey-based interregional input-output table with regard to
China. Further, we are not able to compare a non-survey model with a survey-based one. Therefore,
we can evaluate the accuracy of the estimated model using the following two methods. First, the
MRIO model estimated from the 2007 railway OD table across the provinces published by the
Chinese authorities is assumed to be a survey-based input-output table, so we can compare it with
our MRIO model estimated from random variables or distance. Second, we calculate the total output
induced by one unit final demand of each province (the row sum of the Leontief inverse) and
compare it with the Gross Regional Product (GRP) of each province. We check the correlation
coefficient of the two data sets. Based on the interregional input-output table in Japan, the total
output of each prefecture induced by one unit final demand (I — TA)~1i and the GRP data of each
province are highly correlated?.

For comparison of the estimated and original data sets, we will study various aspects of
evaluation such as the correlation coefficient and the OPE established by Miller and Blair (2009), as
mentioned above. The standard total percentage error (STPE) and mean absolute difference (MAD)

developed by Lahr (2000) will be used in the modified version as follows:

YilX: — X
STPE = 100——=——
XiX;

2 This idea came from Dr. Pongsun Bunditsakulchai (Central Research Institute of Electric Power Industry) at the
24th Annual Meeting of the Applied Regional Science Conference held in Nagoya University on Dec 4-5, 2010.
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MAD = 100—le — i
n
STPE gives the output error that will be induced by final demand and MAD, the output error per

region.

4-2 Empirical test: random variable

In case the interregional commodity flows are regarded as random variables, we have to generate
two types of random variables, one with uniform distribution and the other with exponential
distribution, and these should be regarded as the origin-destination table; the Q parameter was
estimated as the Transport Distribution Index in equation (8), and then compiled as the MRIO
model.

Random variables generate different values each time. So, we generate 30 different values
and calculate the total output of each MRIO model, using 30 different random variables. We then
compare their mean and standard deviations with the original values (total output induced by one
unit final demand of each province in the MRIO model with the railway OD table).

Insert Table 1

When we consider the Q parameter as the Transport Distribution Index of a random variable, the
uniform distribution is 3.186 and exponential distribution 3.078 in terms of the average of total
output induced by final demand. The correlation coefficient of our data estimated by uniform
distribution with both GRP and the railway transport data is higher than that estimated by
exponential distribution. Our data estimated by uniform distribution fits better in terms of both STPE
and MAD.

However, interregional commodity flows might be overestimated in a uniform distribution,
and the multiplier estimated by uniform distribution might become larger. The multiplier estimated
by exponential distribution is 3.078, and it is the same for the data estimated by railway transport
data. In view of the small difference between the results of the two random variables, we can
conclude that the Q parameter of the LSG model has a small impact on estimating the MRIO model.
It would be proper to use both the random variables, but it would be better to use the random
variables with exponential distribution, because it would give a good estimation result of the total
multiplier, and the exponential distribution might be regarded as nearer the real situation of

interregional commodity flows.



Table 1 Total output induced by a unit of final demand for each sector (random variables)

GDP Railway |Uniformed Distribution Exponential Distribution
(2007) OD Table Averase Difference Standard Average Difference Standard
(a) = from (a)  Deviation = from (a)  Deviation

Beijing 9353 3413 3.261 -0.153 0.148 3.257 -0.157 0.245
Tiangin 5050 2339 2228 -0.111 0.0%90 2.1%90 -0.150 0.147
Hebei 13710 4 480 4396 -0.083 0203 4228 -0.253 0.300
Shanxi 5733 2.542 2417 -0.125 0.086 2.389 -0.153 0.158
Inner Mongoria 6091 2.621 2.512 -0.109 0.081 2.422 -0.199 0.160
Liaoning 11023 3.179 3.748 0.569 0.236 3.604 0.426 0.238
Tilin 5285 2252 2.282 0.029 0.083 2.248 -0.004 0.125
Heilongjiang 70635 2614 2735 0.121 0.104 2.647 0.032 0.192
Shanghai 1218% 3 583 4.040 0.057 0.204 3 568 -0.015 0295
Jiangsu 25741 7.5%0 7.169 -0.421 0544 6.650 -0.940 0.569
Zhejiang 18780 4.896 5.596 0.700 0.279 5.403 0.507 0.31%
Anbui 7364 3.031 2.843 -0.189 0.141 2.811 -0.220 0.200
Fujian 0249 2.892 3.278 0.386 0.164 3.201 0.309 0.263
Jiangxi 5500 2.070 2345 0274 0.076 2304 0233 0.116
Shandong 25966 8.041 7.368 -0.674 0393 6.846 -1.195 0.521
Henan 15012 5074 477 -0.302 0217 4 468 -0.603 0289
Hubei 8231 3.164 3.303 0.139 0.160 3.237 0.073 0.274
Hunan 9200 3.008 3.258 0.249 0.143 3.120 0.112 0.193
Guangdong 31084 6.761 8.605 1844 0.547 7.987 1.226 0.583
Guangxi 5956 2119 2461 0343 0.091 2481 0.362 0188
Hainan 1223 1.000 1.296 0.2%96 0.020 1.295 0295 0.031
Chongging 4123 1.509 1.997 0.088 0.081 1.592 0.083 0115
Sichuan 10505 3.207 3.663 0458 0.203 3.529 0322 0.267
Guizhou 2742 1.599 1.677 0.078 0.042 1.674 0.075 0.062
Yunnan 4741 1.955 2.161 0.206 0.075 2.128 0.173 0.092
Tibet 342 1.065 1.084 0.019 0.006 1.088 0.023 0.009
Shaanxi 5466 2.365 2341 -0.024 0.088 2305 -0.060 0.110
Gansu 2702 1.759 1.6352 -0.107 0.050 1.686 -0.073 0.072
Qinghai 784 1.327 1.1591 -0.137 0.012 1.1%0 -0.137 0.017
Ningxia 889 1.234 1.215 -0.018 0.013 1.218 -0.015 0.024
Kinjiang 3523 1.924 1.839 -0.065 0.049 1830 -0.074 0.103
Average 3.078 3.186 0.108 0.149 3.078 0.000 0.202
STPE 8 48% 8.91%
MAD 27.01% 2742%
Correlation
Coefficient (1) 0971 09716
Correlation 0.9736 |  0.9998 0.9991
Coefficient (2)

Note: Cotrelation Coefficient (1) is correlation with (a) and (2) with GDP.

4-3 Empirical test: distance
We have to prepare the distance data for both railway and road transport for estimating the Q

parameter of equation (10). The distance by railway transport is calculated using the data of China
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Info (http://www.china.co.jp/, author accessed 2010/4/22). However, we estimate the distance from
each provincial capital to Lhasa (Tibet) and Haikou (Hainan) on the assumption that railway
transportation would be made to Lhasa through Xining and to Haikou through Guangzhou. The
distance of road transport is estimated as the distance between the provincial capitals from the data
of China Highway Information Service (http://www.chinahighway.gov.cn/roadinfo/indexNew.do,
author accessed 2010/7/13).

As for the internal distance within provinces, Head and Mayer (2002) discuss several

methods of estimation, like (1) fractions of distances to the centers of neighboring regions, (2)
area-based measures trying to capture the average distance between producers and consumers
located in given territories, and (3) sub-unit-based weighted average methods using actual data on

the spatial distribution of economic activity within countries. In this paper, we apply the area-based

measures method (2), d;; = Zm, to estimate the internal distances within provinces, based on

3 a
T

Koshizuka (1978).

The other point with regard to estimating the Transport Distribution Index of distance is
how to estimate parameter o, which shows the decayed function with distance: when the distance is
more, transportation would become less. We estimate the gravity model by using the railway OD

table between regions; the result is shown in Table 2.

Insert Table 2

Table 2 Result of the Gravity model of raitway OD table
Per capita GDP GDP Freight Volume
Constant (A) 6. R7oH%*® -5 220%k% -2 .660%**
g (0.0001)" (0.0000) (0.0000)
Distance -0.784%%* -0.458%** -0.524%%%
g (0.0000) " (0.0000)” (0.0000)
Outflow of region (push factor) 0.011 1 521 %% 1 214%%=
g (0.9204)" (0.0000)" (0.0000)
Inflow of region (pull factor) 0.245%* 1.713%%* 1.715%**
g (0.0223)" (0.0000) (0.0000)
Coefficient of determination {R2) 0.125 0.413 0.618
Number of samples () 361 361 961

Note: The figures in parentheses are P values. "**" indicates 5% significance and "***" indicates 1% significance.

In the gravity model estimation, we use three types of supply (push factor) and demand (pull factor)
pools: per capita GRP, GRP, and cargo volume. The results show that the cargo volume type fits best
because the railway OD table of China is shown in cargo volume, and parameter o is between -0458
and -0.784.
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Insert table 3

Table 3 Total output induced by a unit final demand for each sector (the transport distribution coefficient of distance)

GDP Railway Raiway Distance Road Distance
OD Table :
(2007)
(2) =03 o=04 0=10.5 o=-0.1 0=-0.2 0=-0.3

Beijing 9353 3413 3114 3.078 3.033 3178 3166 3147
Tianjin sos0| 2339 2136 2111 2.080 2176 2169 2157
Hebei 13710 4480 4156 4151 4155 4203 4197 4186
Shanxi 5733|2542 2309 2,303 2,300 2333 2326 2317
Inner Mongoria 60s1| 2621 2388 2380 2375 2 408 2393 2378
Linoning 11023 3.179 3.530 3.504 3.473 3.561 3.548 3.538
Filin s285| 2252 2233 2225 2213 2225 2216 2208
Heilongjiang 7065| 2614 2645 2,633 2616 2636 2623 2613
Shanghai 12189 3983 3.912 3.914 3.892 3.881 3.910 3.930
Tangsu 25741 7.5%0 7199 7253 7295 7.087 7.149 7200
Zhejiang 18780|  4.896 5512 5.545 5574 5.435 5.476 5.509
Ashui 7364|3031 2729 2729 2729 2735 2746 2752
Fujian o249|  2.892 3.112 3.086 3.055 3.165 3.168 3.171
Tiangxi sso0|  2.070 2280 2274 2265 2287 2286 2283
Shandong 25966|  8.041 7241 7303 7.368 7102 7129 7147
Henan 15012|  s5.074 4585 4612 4639 4507 4502 4494
Hubei 9231| 3164 3151 3154 3161 3151 3142 3131
Hunan 9200  3.008 3124 3123 3128 3145 3138 3132
Guangdong 31084|  6.761 8.328 8.386 8.469 8.297 8.356 8.448
Guangxi s956|  2.119 2333 2317 2304 2380 2370 2362
Hainan 1223|  1.000 1274 1271 1.268 1.284 1283 1.282
Chongging 4123 1909 1.930 1.925 1.926 1.949 1937 1.927
Sichuzn 10505| 3207 3393 3385 3385 3413 3378 3351
Guizhou 2742|1598 1.620 1.615 1.610 1.631 1.622 1.614
Yunnan 4741 1955 2079 207 2,066 2.007 2089 2.084
Tibet 42| 1065 1.077 1.076 1.075 1.078 1076 1.075
Shaansi 5466|2365 2253 2242 2231 2264 2250 2238
Gansn 2702|1759 1599 1587 1576 1618 1,605 1593
Qinghai 784  1.327 1.176 1.174 1172 1.180 1.176 1.174
Ningxia 889 1234 1.195 1.191 1.188 1.203 1.199 1.194
Xinjiang 3523|1924 1.803 1.797 1.793 1.806 1792 1781
Average 3.078 3.078 3.078 3.078 3.078 3.078 3.078
STPE §31%  825%  8.26%| 836%  854%  862%
MAD 2556%  2539%  2541%| 2633%  2628%  2654%
Correlation 09757 09759  09755| 09739 09736 09726
Coefficient (1)

Correlation 09736| 09997 09995 09993 | 10000 09999 09997

Coefficient (2)

Note: Correlation Coefficient (1) is correlation with (a) and (2) with GDP.

Based on this result, we move parameter a from -0.1 to -0.7 by 0.1 point and estimate the

transport distribution coefficient of distance, and construct the MRIO model. As there is no “real”

OD table for road transport, we compare it with the estimated model by using the railway OD table.
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The results are shown in Table 3.

The Transport Distribution Index of distance depends on parameter o—how much volume
of the commodity would be transported, and how far. The larger parameter a is, the more distance
the commodity is transported. If parameter a is small, it means that the commodity would be
transported to a nearby region, not to a far away region. So, it is very common that parameter o for
road transport is smaller than that for railway transport, because the average transport distance by
road is shorter, according to the transportation statistics of China.

From Table 3, the average total output induced by one unit of final demand of each
province (the row sum of the Leontief inverse) is 3.078, which is the same figure as for the model
estimated using the railway OD table data. Judging from the STPE and MAD indexes, -0.4 for
parameter o of railway distance and -0.2 for parameter o of road transport distance fit better than
other a parameter values.

As for the correlation coefficient, it fits better when parameter o is increased. It is quite
natural that the correlation coefficient (1) of the distance by railway compared with the railway OD
table model is higher than the correlation coefficient of the distance by road. As a result, we can

conclude that the estimated result would be acceptable for constructing the MRIO model.

5. Conclusion

In this paper, we discussed how to estimate an interregional input-output model with limited data,
and we proposed a model that is both easy and practical: the Chenery-Moses-type MRIO model with
the interregional trade coefficient stipulated by the LSG model, in which the Q parameter is
estimated with random variables and distance data.

We evaluated the model using random variables with uniform/exponential distribution and
railway/road distance. The results show that we can estimate a reliable interregional input-output
model with the transport distribution coefficient of distance under the situation of no data of
interregional transactions. However, this does not mean that we can obtain accurate figures in each
interregional transaction. It only means that it is possible to construct an interregional input-output
model with so-called holistic accuracy (Jensen 1980).

Even in the absence of data on the distance among the regions, the results suggest that we
can construct a relatively reliable interregional input-output model with random variables. This
means that the total output plays an important role in estimating interregional commodity flows in an
LSG model.

However, there is no economic sense in using random variables. We have to consider the

distance and its exponent reflected in the spatial character of the region in order to construct a model
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with higher accuracy and economic sense.
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