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“It is impossible to consider all updating methods, 
because theoretically their number is infinite.” 

Temurshoev et al. (2011, p. 92) 

1. The formulation of problem 

Using mathematical methods for updating (adjusting, projection, balancing, regionalizing etc.) 

national accounts, supply and use tables, input–output tables, social accounting matrices 

generates a class of applied algebraic problems associated with estimation of changes in 

economic data sets. General problem for updating a two-dimensional array (i.e. rectangular or 

square matrix) can be formulated as follows. 

Let A be an (initial) matrix of dimension NM with row and column marginal totals 

MAeuA  , AevA N  and further let Auu   and Avv   be exogenous column vectors of 

dimension N1 and M1, respectively. The problem is to estimate a target matrix X of dimension 

NM with possibly higher level of structural similarity (or closeness etc.) to initial matrix under 

N+М restrictions 

uXe M ,                  vXe N ,                                               (1) 

where Ne  and Me  are N1 and M1 summation column vectors consisting of 1’s. To make the 

problem's formulation well defined we need to impose the evident consistency condition 

veue MN  . It can be easily shown that any N+М–1 among N+М constraints (1) are mutually 

independent in this case. 

In the sequel, the initial matrix is assumed to be not too sparse: it does not have less than 

N+М nonzero elements, does not include any rows or columns with unique nonzero element and 

does not contain any pairs of rows and columns with four nonzero elements in the intersections. 
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Therefore it is expedient to “clear” matrix A of undesirable features before applying some 

updating methods in practice. 

2. The RAS multiplicative pattern 

Essential notion of the well-known RAS method is a factorization of target matrix 

sArsArRASX ˆˆ ,                                                (2) 

where r and s are unknown N1 and M1 column vectors. Here angled bracketing around 

vector's symbol or putting a “hat” over it denote a diagonal matrix, with the vector on its diagonal 

and zeros elsewhere (see,  for example, Miller and Blair, 2009, p. 697). 

Replacing X in (1) by (2) gives the system of nonlinear equations 

uAsresAr  ˆˆˆ M ,            vsArsAre  ˆˆˆN .                           (3) 

Solution of system (3) can not be uniquely determined but it defines the target matrix X as a 

unique because     sArsAr ˆˆˆˆ kk  for any nonzero scalar k. 

Proper transformations of system (3) lead to following pair of iterative processes: 
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 jj ,       j = 1J,                       (5) 

where i and j are iteration numbers. Besides, the character “  ” between the lower and upper 

bounds of index’s changing range means that the index sequentially runs all integer values in the 

specified range. 

Structural similarity between target and initial matrices is provided in RAS method by 

(N+М)-parametrical multiplicative pattern 

nmmnnm asrx   ,    n = 1N,     m = 1M.                                       (6) 

The row and column marginal totals given for target matrix X prevent from unreasonable mutual 

increasing or decreasing of the elements in r and s. So the constraints (1) restrict the scattering of 

factors mn sr  around some constant level. Moreover, the multiplicative pattern (6) preserves zero 

elements of initial matrix A in the same positions inside X that seems to be a significant 

contribution to structural similarity between A and X. 

3. Matrix homothety 

Consider an auxiliary problem for updating the initial matrix A in a particular case of strict 

proportionality between row and column marginal totals Auu k  and Avv k  with the same 

multiplier k. It is easy to see that under starting condition Ner )0(  or Mes )0(  the RAS method 
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iterative process (4) or (5) demonstrates one-step convergence to pair of vectors Ner  , Mkes   

or to Nker  , Mes  , respectively. Hence ksr mn   for any n and m, n = 1N, m = 1M. Thus, 

according to RAS logic the auxiliary problem solving leads to a matrix X = kA, i.e. a homothety 

of initial matrix A with the center at null matrix and homothetic ratio (or scale factor) k. 

In most practical cases, however, marginal totals proportionality can not really be observed. 

Nevertheless, homothetic transformation of initial matrix allows to obtain a unique solution for 

weakened version of auxiliary problem with given sum of all target matrix elements 

veueX MN   that is sometimes called the grand total (see Dagum and Cholette, 2006) to be 

distinguished from (row and column) marginal totals. By combining XXee  MN  with matrix 

homothety formula X = kA and then solving the received equation for k we obtain 

AXX Aee 
MNk  under not difficult condition that grand total for initial matrix be 

nonzero. Therefore, solution of weakened auxiliary problem is given by matrix 

AAB AX  k                                                         (7) 

with zero elements in the same positions as inside initial matrix. Excellent structural similarity of 

matrices B and A is deepened by the fact that RAS method iterations (4) and (5) are invariant by 

replacing A with B. Note also that matrix B do correspond to a variety of marginal totals u and v.  

If matrix homothety (7) is to be used in RAS method instead of initial matrix, then 

multiplicative pattern (6) can be rewritten in matrix notation as BsrX )(  , where the character 

“  ” denotes the Hadamard’s product for two matrices of the same dimensions. Matrix sr   does 

not contain zero elements and hence matrices A, B, X all have the identical location of 0’s. 

Rather natural way to extend (N+М)-parametrical multiplicative pattern is to replace factors 

mn sr  with more common coefficients nmq  and to introduce (NМ)-parametrical model 

BQX  ,                                                                (8) 

where Q is NM matrix of coefficients nmq . It is important to emphasize that model (8) can be 

identified for any known matrices A and X with the same location of zero elements regardless of 

the method used for the estimation of the target matrix X. Thus, one can use (7) to calculate B 

and then let 









,0 если       ,

;0 если ,

nm

nmnmnm
nm bc

 bbx
q          n = 1N,   m = 1M,                      (9) 

where с is positive constant chosen in advance (for example, c = 1). Such an approach creates 

certain possibility for constructing operational measure of structural similarity between target 

matrix and matrices from homothetic family kA.  
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Applying vectorization operator vec (see Magnus and Neudecker, 2007), which transforms a 

matrix into a vector by stacking the columns of the matrix one underneath the other, to each 

matrix in (8) gives matrix model 

qbx ˆ ,                                                               (10) 

where Xx vec , Bb vec  and Qq vec  are column vectors with dimension NM1. Note that 

vec operator is directly invertible, and that diagonal matrix b̂  is singular whenever A contains at 

least one zero element. 

4. Angular measure for matrix similarity 

Suppose X is the target matrix that was calculated from the initial matrix A by a certain method 

or procedure. Recall that Aab veckk   , where the constant value k  is defined by (7), so the 

grand totals for B and X coincide. 

In geometric representation the data available is reflected by a homothetic ray kb at k  0 

with the collinear vectors a and b lying on this ray and by the target vector Xx vec , which 

forms an acute angle between itself and homothetic ray. Mutual location of a, b and x in NM-

dimensional Euclidean space is illustrated by Figure 1. 

 

Figure 1. Vectorized representations of matrices A, B and X in initial coordinates 

Natural measure for structural similarity between target matrix X and matrices from 

homothetic family kB can be defined as a value of the angle between vector x and homothetic ray 

kb. If (y, z) = y'z = z'y is inner product of vectors y and z in NM-dimensional Euclidean space, 

then angle xb between target vector x and b is determined (in radians) by well-known formula 
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where 21)( xxx  is a length of vector x. 

Angular measure (11) does allow to evaluate the degree of structural similarity between 
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target matrix X and matrices from homothetic family kB by a unique scalar in reverse order of 

ranking. Unfortunately, angular measure is not quite operational, since it is expressed by rather 

cumbersome formula not suitable for further analytical computations. As a result, it seems to be 

more useful to create less complex metric measures of matrix similarity for operational applying 

in various algorithmic schemes. 

At first let us study possibilities of using vectors x–a and x–b for estimating the degree of 

structural similarity between X and A or B. These measuring vectors are not orthogonal to 

homothetic ray, because in general a'x  a'a and b'x  b'b. It can be shown that for a given 

vector’s length ax   or bx   vector y = x is not always a unique vector satisfying the 

equidistant condition axay   or bxby   under restrictions (1). So there exists several 

(at least more than one) vectors y–a or y–b connecting the point a or b to spherical surface 

axay   or bxby  . In Figure 1 these spherical surfaces are represented by dotted 

arcs of two circles with their centers at points a and b and with radiuses of ax   and bx  . 

Thus, one can not establish more or less exact interrelation between vectors x–a, x–b and 

angle (11). It is clear from geometry (see Figure 1) that measuring vector should be chosen 

within orthogonal complement to the homothetic ray. Nevertheless, vector x–b demonstrates zero 

sum of its components in contrast to x–a (since aexebe NMNMNM  ) and therefore has more 

clear statistical interpretation. From the parameter estimation theory viewpoint using x–b as a 

measuring vector instead of x–a corresponds to refusal of the biased estimator in favor of 

unbiased one. 

Besides, for any given veueX MN   vector x tends to b as Auu  k  and Avv  k  

simultaneously. So x–b can be considered as better measuring vector than x–a for applying in 

many algorithms of matrix updating. Unfortunately, such algorithms do not present a significant 

practical value because zeros’ preservation in the elements of target matrix is not guaranteed. 

5. Metric measure for matrix similarity 

As noted above, orthogonal projecting target vector x onto homothetic ray kb may here become a 

useful subject of discussion. Orthogonal projection of x on kb is determined by coefficient 

k = b'x / b'b from evident condition b'(x – kb) = 0 and equals vector kb. Figure 2 illustrates a 

case k < 1, but in general the coefficient value may exceed 1. Component sum for vector 

x
bb

bb
E

bb
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bxbxd 
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












 
NMk                                        (12) 

equals eNM d = (1 – k)eNM b and vanishes only at k = 1, when b and projection of x coincide. It 
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is easy to see that symmetric matrix in right-hand side of (12) is singular and idempotent. 

Vector (12) represents the shortest path from the point x to homothetic ray kb. Having 

nonzero sum of components it may be decomposed into a pair of additive items, namely NMde  

and NMdedt  , where d  is an average value (scalar) of all elements in d, bkd )1(  . These 

items are orthogonal to each other, because by definition of average value the vector t has zero 

sum of elements 0 NMNMNMNM d eedete , so that 0 teNMd . 

 

Figure 2. Projection of vector x on homothetic ray kb in initial coordinates 

For a pair of non-coplanar right triangles with hypotenuses d and x–b and a common side d 

(see Figure 2), the non-strict double inequality NMdkk ebxbxbx    is satisfied. It 

becomes equality only at k = 1 when x–b is orthogonal to homothetic ray. So from the parameter 

estimation theory viewpoint using d as a measuring vector instead of x–b corresponds to refusal 

of the high-variance unbiased estimator in favor of biased one with less mean square error (for 

details, e.g., see Wackerly, Mendenhall and Scheaffer, 2008). 

As a result, from evident equation x = b + (x–b) = kb + d one can obtain a three-item 

decomposition tebx  
NMdk  in which first item is orthogonal to sum of the others and 

second item is orthogonal to the third one. In matrix notation we have TeeBX  
NMNMdk , 

where NMNM ee   is the matrix of dimension NM consisting of unit elements and T is a matrix with 

zero grand total. 

Here, as well as earlier, the question of interrelation between vector d and angle (11) arises. 

Vector d, in contrast to x–b, does not have fixed origin, thus under the influence of feasible 

changes in x it may drift along the homothetic ray and, certainly, may rotate around this ray. It is 

easy to show that there are no other (except x) feasible target vectors on parallel ray x + kb (see 

Figure 2). Indeed, from matrix equations ueBX  Mk )(  and vBXe  )( kN  we have 0u k  

and 0v k , so that k = 0. 
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As it follows from geometrical constructions in Figure 2, analytical interrelation between 

vector (12) and angle (11) is determined by  

xbxxx
bb

bb
Exdd αNM

2sin










 ,       
ddbbxbbx

dd
xb 


α2sin .               (13) 

Function f(z) = z /(c + z) with parameter c monotonically increases over interval z[0, ], therefore 

it generates a bijective mapping between value sets of z and f(z) at c = const. Therefore, a 

comparison of target vectors is correct while the value bbxbbx   is being fixed, i.e. all testing 

target vectors must have the same orthogonal projection on homothetic ray kb. 

Thus, angular measure (11) and metric measure (12) are consistent only for any target 

vectors x and y satisfying the orthogonality condition b'(x – y) = 0. Obvious rigidity of this 

condition may be considered as disadvantage of metric measuring the degree of structural 

similarity between target matrix and homothetic family kA. Besides, it is important to note that 

multiplicative model (10), which preserves zero elements of initial matrix in the same positions 

inside target matrix, was not yet used in analytical computations and geometrical constructions 

implemented above. 

6. Homothetic measure for matrix similarity 

In accordance with multiplicative model (10) the operation of orthogonal projecting target vector 

x onto homothetic ray kb can be implemented not only in initial, but also in relative coordinates. 

An image of target vector x in system of relative coordinates is obviously coefficient vector q, 

while images of b and kb are summation vector NMe  and a corresponding homothetic ray NMke  at 

k  0. Therefore, for transition to relative coordinates in right-hand side of (12) it is required to 

replace vector b by its relative equivalent NMe  and x by q as follows: 

NM
NMNM

NMNM
NM qeqq

ee

ee
Eδ 











 ,                                          (14) 

where  is a difference between relative target vector q and its orthogonal projection on 

homothetic ray NMke . 

The inner product of  and NMe  is 

0



 qeqeq

ee

eee
qeδe NMNM

NMNM

NMNMNM
NMNM , 

so  is orthogonal to homothetic ray NMke  and also has zero sum of elements. Vector  represents 

the shortest path from point q to homothetic ray NMke . From (14), orthogonal projection of q on 

homothetic ray is determined by coefficient that equals average value q . Figure 3 serves as an 



8 
 
illustration for mutual location of all considered vectors in relative coordinates. 

It is important to emphasize that vector NMeq  , in contrast to its preimage in initial 

coordinates )(ˆ
NMeqbbx  , does not demonstrates zero sum of elements, and vice versa, the 

component sum for  equals zero in contrast to its preimage d (note, that δbd ˆ ). So it is clear 

now how to specify the scalar c in (9): to prevent artificial increasing of vector ‘s length one 

must let c be the average ratio xnm / bnm on a set of nonzero elements in B. From the parameter 

estimation theory viewpoint using  as a measuring vector (instead of d) corresponds to the 

unbiased estimating with least variance. 

 

Figure 3. Projection of vector q on homothetic ray keNM in relative coordinates 

Note that here the angle qe between q and homothetic ray NMke , in general, does not equal 

the angle xb between x and homothetic ray kb in Figure 2, since multiplying on diagonal matrix 

b̂  is not a conformal (or angle-preserving) mapping. So in addition to (11) one can introduce 

another angular measure of matrix similarity 
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that is defined in system of relative coordinates of NM-dimensional Euclidean space. Compared 

with (11) this measure is more universal in nature because it does not depend on initial matrix 

elements and, for this reason, it can be applied for comparison of target vectors (and matrices) for 

various initial matrices with different marginal totals. 

As it follows from geometrical constructions in Figure 3, analytical interrelation between 

vector (14) and angle (15) is determined by  

qqee
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
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
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δδee
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






NMNMq 2

2sin .          (16) 

By analogy with the analysis of expressions (13), one may conclude that angular measure 

(15) and homothetic measure (14) are consistent only for any relative target vectors q and p 



9 
 
satisfying the average equality condition pq  , which is equivalent to the orthogonality 

condition 0)(  pqeNM . Under these conditions the homothetic measure (14) does allow to 

estimate the degree of structural similarity between target and initial matrices by a unique scalar 

in reverse order of ranking. Note that orthogonality condition 0)(  pqeNM  is, certainly, rather 

less rigid than b'(x – y) = 0 but also highly restrictive. 

As a conclusion, the angle between coefficient vector q and homothetic ray NMke  at k  0 

can be considered as a universal measure of structural similarity between target and initial 

matrices. Main “technical” disadvantage of angular measure appears to be the complexity of 

expressions (16) along with arising difficulties of using (16) to construct competing (in 

particular, with the RAS method) algorithms of matrix updating. Based on orthogonal projecting 

operation, homothetic measure (14) is the simplified version of an angular measure with some 

shortcomings. Nevertheless, proposed homothetic measure demonstrates a row of useful 

properties and may become operational in various algorithmic schemes. 

7. Optimization problems of matrix updating 

To apply the results obtained above for constructing certain algorithms of matrix updating, one 

needs to rewrite left-hand sides of the equations (1) in vector notation. It is easy to see that in this 

context the NNM matrix NM EeG  , which consists of M identity matrix NE  located 

horizontally, and the MNM matrix NeEH  M  – N-fold successive replication of each column 

from identity matrix ME  – are the proper substitutes of summation vectors Me  and Ne  

respectively. Note that each column of G and H includes exactly one nonzero (unit) element such 

that NMMN eHeGe  . Thus, the system of equations (1) and multiplicative model (10) can be 

combined as follows: 

uqbGGxXe  ˆ
M ,               vqbHHxXe  ˆ

N .                           (17) 

Recall that under condition veue MN   any N+М–1 among N+М constraints (17) are mutually 

independent. 

First expression in (16) generates the following mathematical programming problem: to 

maximize the quadratic fractional objective function 

q
ee

ee
q

qq
q

NMNM

NMNM








1

)(Fcosine                                                       (18) 

subject to linear constraints (17). Symmetric idempotent matrix NMNMNMNM eeee   in (18) has unit 

eigenvalue with unit multiplicity and corresponding eigenvector NMe  and also has zero 
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eigenvalue with multiplicity NM–1 and corresponding eigenvector z from the hyperplane 

0 zeNM  that is orthogonal to homothetic ray NMke . So the Rayleigh quotient (18) takes its 

values between the least and the most eigenvalues, i.e. over interval [0, 1] (for details, e.g., see 

Wackerly, Mendenhall and Scheaffer, 2008). Further, the matrix in (18) is singular and as being 

product of two vectors has rank 1. 

Second expression in (16) and formula (14) allow to invert optimizing direction in problem 

(18), (17) and to represent it in the following form: to minimize the Rayleigh quotient 

q
ee

ee
Eq

qqqq

δδ
qq 











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






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1
)(1)(Fsine                               (19) 

subject to linear constraints (17).  

Symmetric idempotent matrix in round brackets has zero eigenvalue with unit multiplicity 

and corresponding eigenvector NMe  and also has unit eigenvalue with multiplicity NM–1 and 

corresponding eigenvector z from the hyperplane 0 zeNM  that is orthogonal to homothetic ray. 

It can be shown that this matrix in (19) is singular and has rank NM–1. 

It is difficult to solve equivalent constrained nonlinear problems (18), (17) and (19), (17) in 

analytical manner. Numerical optimization methods implemented in various well-known 

software packages (MATLAB etc.) provide solving of constrained nonlinear problems with not 

so high number of variables (NM  103). However, in statistical practice of compiling national 

accounts, supply and use tables, input–output tables one can meet economic data arrays to be 

updated with total quantity of elements up to 104 and even to 105. 

In this connection the developing of a matrix updating method on the base of proposed 

homothetic measure (14) seems to be useful. So let us formulate the following mathematical 

programming problem: to minimize the quadratic objective function 

)()()(f NMNM
NMNM

NMNM
NM qq eqeqq

ee

ee
Eqδδq 











                        (20) 

subject to linear constraints (17). Objective function (20) expresses the length’s square for the 

shortest path from the point q to homothetic ray NMke  and vanishes only if target vector q and 

homothetic ray are collinear. From the mathematical statistics theory viewpoint the function (20) 

is proportional to a sample variance for the scattering of matrix Q’s elements around their 

average value. 

Above-mentioned singularity of symmetric idempotent matrix in round brackets serves as an 

obvious technical obstacle for the analytical solving of constrained minimization problems (20), 

(17), but this obstacle can be bypassed in special manner discussed below. 
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8. Constrained minimization of homothetic measure 

Consider a parametric family of functions 

f (q; ) = (q – )W(q – ),                                                   (21) 

where  is an exogenous parameter vector of dimension NM1, and wW ˆ  is a nonsingular 

diagonal matrix with the relative reliability (relative confidence) factors for elements of vector q. 

In terms of GLS  can be interpreted as a mean of random vector q and W – as a inverse 

covariance matrix for q in case of zero autocorrelations. 

It is easy to detect a linkage between (20) and (21) by putting NMceγ   in (21), where с is an 

unknown scalar, and comparing the obtained expression with right-hand side of (20). However, 

the matrix of quadratic form in (21) is nonsingular in contrast with the matrix in (20). It allows to 

get an analytical solution for minimization of objective function (21) subject to linear constraints 

(17) in general form γQqγγq
~~)(  , where q~  and Q

~
 are computable vector and matrix of 

proper dimensions. Then unknown scalar с can be determined from orthogonality condition 

W(q – ) = 0 that delivers non-full quadratic equation 0
~~~~ 2)(  NMNMNM cc eQWeqWeγQqWγ  

with the unique nonzero root.  

Objective function (21) appears to be similar to the one proposed by Harthoorn and van 

Dalen (1987). Nevertheless, there are at least two significant distinctions between them. First, 

Harthoorn and van Dalen have used metric measure x – a and, second, they have not used the 

operation of orthogonal projecting. 

The Lagrange function for constrained minimization problem (21), (17) with parameter 

vector  is 

)ˆ()ˆ()()(),,;(L f vqbHμuqbGλγqWγqμλγq  ,                  (22) 

where  and  are vectors of Lagrange multipliers with dimension N1 and M1. By setting the 

partial derivatives of (22) with respect to q, ,  equal to zero, we obtain the system of NM+N+M 

linear equations 

0μHbλGbγW(q  ˆˆ)2 ,           0uqbG ˆ ,           0vqbH ˆ . 

While W is nonsingular matrix, the first equation can be resolved with respect to q as 

 μHλGbWγq   ˆ
2

1 1 .                                             (23) 

The second and the third equations from system above and (23) can be combined into N+M 

equations with  and  as unknown variables: 

)( ˆ2ˆˆˆˆ γbGuμπλπμHbWbGλGbWbG 1211
11   ,                       (24) 
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)( ˆ2ˆˆˆˆ γbHvμπλπμHbWbHλGbWbH 2221
11   .                       (25) 

For a nonsingular diagonal matrix wW ˆ it can be shown that: 

12π  is matrix with elements   )1(
2

12  mNnnmnm wbπ , n = 1N, m = 1M; 

11π  is diagonal matrix with elements   



M

j
jNnnjnn wb

1
)1(

2
11π , n = 1N; 

21π  is matrix with elements     )1(
2

1221  mNnnmnmmn wbππ , n = 1N, m = 1M; 

22π  is diagonal matrix with elements   



N

j
mNjjmmm wb

1
)1(

2
22π , m = 1M. 

It is easy to see that Meππ 1211  , NN eπeππ 122122   and hence, 0eπeπ  MN 1211 , 

0eπeπ  MN 2221 , i.e. the columns of matrix  formed by blocks 22211211 ,,, ππππ are linearly 

dependent. Thus, a general solution to corresponding  homogeneous system (24), (25) is 

 
Nkeλ 0 ,  

Mkeμ 0  with any scalar constant k. 

As a general solution to nonhomogeneous linear system equals the sum of a general solution 

to corresponding  homogeneous system and any particular solution to nonhomogeneous system, 

let    10 λλλ   and    10 μμμ  , where  1λ ,  1μ  is particular solution to system (24), (25). 

Recall that NMNN eHeGe  , so putting these formulas into round-bracketed expression in the 

right-hand side (23) gives 

             111111 μHλGμHλGeeμeHλeGμHλG  NMNMMN kkkk . 

Therefore, to find any particular solution of system (24), (25) means to solve constrained 

minimization problem (21), (17). The particular solution can be found by numerical methods, and 

also in analytical form. 

9. Numerical solution of system (24), (25) 

Matrix  is singular but its square blocks 11π  and 22π  are not if matrix A (and B) does not have 

zero rows and columns. So one can resolve (24) with respect to  and (25) with respect to  in 

forms  

μππγbGuπλ 12
1

11
1

11 )(2  


,                                            (26) 

λππγbHvπμ 21
1

22
1

22 )(2  


.                                           (27) 

The crossing substitutions (27) in (26) and (26) in (27) give two equations as follows: 

λΠγcλππππγbHvπππγbGuπλ NN   )(ˆ2ˆ2 21
1

2212
1

11
1

2212
1

11
1

11 )()( ,       (28) 

μΠγcμππππγbHvπγbGuπππμ MM   )(ˆ2ˆ2 12
1

1121
1

22
1

22
1

1121
1

22 )()( .       (29) 
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Further, 

NNMMNNN eeππeππeππππeππππeΠ  
11

1
1112

1
1122

1
2212

1
1121

1
2212

1
11 ,     0 NNNNN eeeΠE , 

MMNNMMM eeππeππeππππeππππeΠ  
22

1
2221

1
2211

1
1121

1
2212

1
1121

1
22 ,     0 MMMMM eeeΠE , 

so that matrices N , M are stochastic, and matrices EN – N , EM – M with linearly dependent 

columns are singular.  

Nevertheless, equations (28), (29) may be useful for getting a numerical solution of system 

(24), (25) because they are represented in the form suitable for iterations by formulas 

)1()( )(  iNNi λΠγcλ , i = 1I,   )()0( γcλ N ;      )1()( )(  jMMj μΠγcμ , j = 1J,   )()0( γcμ M , 

where i and j are iteration numbers. By the successive substitutions as I  and J we get 

)(
0

γcΠλ N
i

i
N  





,                   )(
0

γcΠμ M
j

j
M  





.                            (30) 

Since NN
i
N eeΠ   and MM

j
M eeΠ  , the row marginal totals in partial sums of matrix power 

series in (30) increase unboundedly. So the convergence of considered iterative processes is 

questionable and needs to be studied. 

From the theory of homogeneous Markov chains one may conclude that stochastic matrices 

i
NΠ  and j

MΠ  have properties as follows: 




 NNN

i

i

i
N

i
ΠveππππΠ )(limlim 21

1
2212

1
11 ,      


 MMM

j

j

j
M

j
ΠveπππΠ )(limlim 12

1
1121

1
22 , 

where NNN Πvv   and MMM Πvv   are the left eigenvectors of N and M both corresponding 

to unit eigenvalues (for more details in transposed case of right eigenvector, see Bellman, 1960, 

pp. 256 – 258). Using these matrix algebra results it can be shown that )(γcΠ NN
  and )(γcΠ MM

  

are null vectors with proper dimensions. 

Let 11πzv NN  , where Nz  is an unknown row vector. Putting this relation into the left 

eigenvector definition NNN Πvv   gives homogeneous equation 0)( 1121
1

2212 
Nzππππ . As 

NNN eeΠ  , its solution is NN kez   with any scalar constant k. Indeed, from NNN kezπv  1
11  

we have NNMMNNN kkkk vπeπeπππeπππeΠv  
112121

1
222221

1
2212 )( . 

Consider the product of matrix NNN veΠ   and vector )(γcN  by regrouping relevant 

summands in right-hand side of (28) as 

γbGHππeevππueeγcΠ ˆ22)( )()( 1
2212

1
2212N    NNNNN kk . 

Since 2212 πeπe MN  , we get 0)( 1
2212   veuevππue MNN  and  

0ˆˆˆ )()()( 1
2212   γbeeγbGeHeγbGHππe NMNMNMN . 
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Therefore, vector )(γcΠ NN
  is a sum of two null vectors. The statement 0γcΠ  )(MM  can be 

proved by analogy. 

Thus, the convergence of considered iterative processes is provided by orthogonality 

between )(γcN  and Nv  and also between )(γcM  and Mv . In practice it is expedient to calculate 

the partial sums of matrix power series in (30) subject to terminal criteria resembling 

)(γcΠ N
I
N  and )(γcΠ M

J
M , where  is a small positive value. 

As a result, the numerical solving of system (24), (25) consists of finding vector  in iterative 

fashion and calculating  from (27) or finding vector  in iterative fashion and calculating  from 

(26). Note that these iteration-based solutions do not coincide among themselves, as well as RAS 

solutions (4) and (5). Computational complexity of such an algorithm is not high because it 

requires the diagonal matrix inverses only. 

10. Analytical solution of system (24), (25) 

As repeatedly noted above, any N+М–1 among N+М constraints (17) are mutually independent 

while veue MN  . Therefore, without loss of generality any one of them can be eliminated. Let 

HG ,  and vu,  be matrices and vectors obtaining from G, H and u, v by deleting a one row 

either out N-row expanded matrix (Gu) or out M-row expanded matrix (Hv). So reduced system 

of linear constraints (17) in new notation can be written as 

uqbG ˆ ,                  vqbH ˆ .                                             (31) 

From the first-order conditions for constrained minimization problem (21), (31) with 

parameter vector  by analogy with (23) – (25) we get 

 μHλGbWγq   ˆ
2

1 1 ,                                              (32) 

)( ˆ2ˆˆˆˆ γbGμPλPμHbWbGλGbWbG u1211
11   ,                       (33) 

)( ˆ2ˆˆˆˆ γbHμPλPμHbWbHλGbWbH v2221
11   ,                       (34) 

where λ  and μ  are reduced vectors of Lagrange multipliers with dimension N1 or (N–1)1 and 

M1 or (M–1)1, respectively. 

Using well-known formulas for the inverse of a partitioned matrix (for details, see Miller and 

Blair, 2009, Appendix A) the solution of linear system (33), (34) with partitioned matrix P can be 

written in two analytical forms as 





































γbHv

γbGu

PPPPPPPPPPPPPP

PPPPPPPPPP
μ

λ

ˆ

ˆ
2

1
2212

1
21

1
22121121

1
22

1
22

1
21

1
22121121

1
22

1
2212

1
21

1
221211

1
21

1
221211

)()(
)()(

P
 



15 
 
or as 





































γbHv

γbGu

PPPPPPPPPP

PPPPPPPPPPPPPPP
μ

λ

ˆ

ˆ
2 1

12
1

112122
1

1121
1

12
1

112122

1
12

1
11212212

1
11

1
1121

1
12

1
11212212

1
11

1
11

)()(
)()(

. 

First notation is based on inverse of symmetric matrix 21
1

221211 PPPP   of order N or N–1, 

while the second one is founded on inverse of symmetric matrix 12
1

112122 PPPP   of order M or M–

1. In practice, therefore, if N < M, it is better to delete a row out N-row expanded matrix (Gu) 

and to choose the first notation. Vice versa, if N > M, eliminating a row out M-row expanded 

matrix (Hv) with choice of the second notation is more preferable. 

Thus, the reduced Lagrange multipliers are expressed in terms of the vectors in right-hand 

sides of (33) and (34) as their linear functions 

)()( ˆ2ˆ2 1211 γbHDγbGuDλ v  ,         )()( ˆ2ˆ2 2221 γbHvDγbGuDμ  ,      (35) 

where D11, D12, D21 and D22 are the corresponding blocks of the inverse matrix D = P–1 (note that 

2112 DD  ). 

11. Analytical solution of constrained minimization problem (21), (31) 

Transformation of the round-bracketed expression in right-hand side (32) using formulas (35) 

gives the analytical solution of constrained minimization problem (21), (31) with an unknown 

parameter vector  as 

 ))(())(( ˆˆˆ
22122111 γbHvDHDGγbGuDHDGbWγq 1    .           (36) 

To find vector , as noted earlier, the orthogonality condition W(q – ) = 0 may be used. So 

let us write (36) in more compact form )( ˆˆ γbYzbWγq 1   , where z is a vector of dimension 

NM1, and Y is a symmetric matrix of order NM. It is easy to see that z and Y do not depend on  

and, besides, Y do not depend on u  and v . By combining the orthogonality condition 

0ˆˆˆ  γbYbγzbγ  and a uniparametric specification NMceγ   we have non-full quadratic 

equation with the unique nonzero root Ybbzb c . 

Hence, Ybbzbeγ 
NM  and, furthermore, 

YbbW
Ybb

zb
e

Ybb

zb
zbWγbYbWγzbWq 1111 ˆˆˆˆˆ 








 NM . 

The latter result seems to be very hopeful because the dependency of its right-hand side on huge 

matrix Y of order NM is represented here as one on NM1 vector y = Yb with much less number 

of the elements. 

As a result, the analytical solution of constrained minimization problem (21), (31) is given 
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by 

)( ˆˆ ybWe
yb

zb
zbWq 11  




 NM ,                                            (37) 

where NM1columns z and y are determined as 

vDHDGuDHDGz )()( 22122111   ,      bHDHDGbGDHDGy )()( 22122111   .    (38) 

Attendant calculations include an estimation of the inverse for one of the symmetric matrices 

21
1

221211 PPPP   or 12
1

112122 PPPP   of order min {N, M}– 1 and computing NM elements for each 

vector z, y, q* at high sparsity of matrices HG ,  and diagonality of matrices bW ˆ, . 

12. Lagrange multipliers and solution sensitivity analysis 

Lagrange multipliers in the constrained minimum point of problem (21), (31) are determined by 

putting the vector Ybbzbeγ 
NM  into the right-hand sides of (35) as 

yb

zbb
HDGDvDuDλ




 )()( 12111211 22 ,      
yb

zbb
HDGDvDuDμ




 )()( 22212221 22 .     (39) 

It is easy to see that they are linear functions of the arguments vu, . 

The analytical solution (37), (38) can be obtained by N+М equivalent ways in dependence on 

the choice of an excessive linear constraint to be deleted from (17) to get the reduced system of 

linear constraints (31). In each of these cases the united (i.e. concatenated) reduced vector of 

Lagrange multipliers ρ  has dimensions (N+M–1)1, while Lagrange function (22) and the 

system (24), (25) involve the united multiplier vector  of dimensions NM1. Relationship 

between  and ρ  is set by 






































 

M

Nj
MN

M

Nj
MN kk

e

e
ρE

e

e

μ

λ
E

μ

λ
ρ )(

1
)(

1 ,                          (40) 

where j is a number of the excessive constraint thrown out (17) in transition from G, H, u, v to 

HG , , vu, , j = 1(N+M), and )(
1

j
MN E  is a rectangular (N+M)(N+M–1) matrix, which is 

obtained by incorporating a zero row into identity matrix of order N+M–1 on position j. Relation 

(40) is constructed on the basis of the above-getting general solution to corresponding  

homogeneous system (24), (25) and reflects the obvious fact that the eliminated constraint 

corresponds to zero Lagrange multiplier. An equality in (40) is provided by a proper choice of the 

constant k for each pair of  and ρ . 

From the theory of mathematical programming is known that Lagrange multipliers in the 

optimal solution of an extremal problem with equality constraints are the components of the 
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objective function’s gradient with respect to the right-hand sides of constraints – for example, see 

Magnus and Neudecker (2007), pp. 160, 161. However, in this case Lagrange multipliers 

 
Nkeλλ  1  and  

Mkeμμ  1  can not be uniquely identified. So their using for the 

sensitivity analysis of the objective function (21) at a conditional minimum point under impact of 

changes in the target marginal totals u and v is questionable and needs to be clarified. 

Any disturbance of vector u through the frame of consistency condition veueX MN   

generates some compensating changes in the elements of v, and vice versa. In particular, the 

increasing of an element un by a certain value entails the adding to v any vector with this value as 

the algebraic sum of its elements. Clearly, some disturbances lead to the increased constrained 

minimum of objective function (21), while others contribute to decrease it. 

As stated earlier, linear function μHλG   is invariant under any change of parameter k 

from general solution of corresponding  homogeneous system (24), (25). Another similar 

invariant is matrix )()( MNMNMNMNNMNM kkkk eμeeeλeeeeμeeλμeeλL    with 

dimensions NM and elements mnnml  , n = 1N, m = 1M. It is easy to see that each nml  may 

be considered as a coefficient of the constrained minimum’s sensitivity under impact of the 

simultaneous increasing un and vm by the same small value . So if one replaces un and vm by 

nu  and mv  respectively, then the increment of constrained minimum );f(),(f   γqvu  

should equal nmmn lvu   ),(f),,(f vuvu . Thus, to decrease the minimum ),(f vu  a small 

scalar  is to be chosen with the sign reversed from the sign of nml . 

In this context the larger absolute values of matrix L’s elements are of great interest. Let nml  

be an element with the largest absolute value of any one in matrix L. Then the best strategy for a 

local enhancing of constrained minimum ),(f vu  is to disturb un and vm by the same small value 

)sgn( nml , where  > 0 and sgn() is a signum function. 

Further, let 0l  and 0l  be a maximal and a minimal elements of L respectively. Then 

the best two-component strategy for a local enhancing ),(f vu  at the fixed grand total X  is to 

decrease the elements of u and v corresponding to l  by – and to increase the elements of u and 

v corresponding to l  by  simultaneously.  

It can be easily shown that, in general, total sensitivity effect is formulated as 

vuvuvu ΔμλΔvuΔvΔuΔΔ  )()()( ,f,f, **
f ,                        (41) 

where vectors uΔ  and vΔ  are exogenous disturbances for u and v respectively satisfying the 

consistency condition ΔXvu ΔeΔe  MN . To express the right-hand side of (41) in matrix L 
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terms, it is necessary to consider two cases, namely, 0ΔX  and 0ΔX . 

The disturbances uΔ  and vΔ  with zero sums 0 vu ΔeΔe MN  play an important role in 

statistical practice. They entail the redistributions of u’s and v’s components while the grand total 

ΔXX   is being fixed. It is easy to see from (41) that the total redistribution effect depends on 

the marginal totals of matrix L and is estimated by 

vuvuΔXvu LΔeLeΔΔeμeλΔΔΔ NMMN NM
  11

0, )()()(f .         (42) 

Here the first summand implies that in the total effect calculation an each value n)( uΔ  is 

uniformly distributed among M components of vΔ  and generates M elementary effects, sum of 

which is proportional to a row marginal total n for L divided by M. By analogy, the second 

summand in (42) implies that an each value m)( vΔ  is uniformly distributed among N components 

of uΔ  and generates N simple effects, sum of which is proportional to a column marginal total m 

for L divided by N.  

On the other hand, the numerical function of disturbances vuLΔΔ  can be transformed as 

follows: 

)()()()( vuΔXvuvuvuvu ΔμλΔΔμeΔΔeλΔΔμeeλΔLΔΔ  NMNM . 

Hence, the total sensitivity effect may be represented as  

vu
ΔX

vuΔXvu LΔΔΔμλΔΔΔ 



1

0, )(f ,                                          (43) 

where the disturbance grand total ΔX  is assumed to be nonzero. Recall, that in contrast to (43) 

formula (42) is well defined only for the redistribution case 0ΔX . 

13. Decomposing procedure for large-scale problems 

The constrained minimization problem (21), (31) contains NM unknown variables, so its 

dimension rapidly grows while N and M increases. At a lack of resources for computing one can 

refuse the optimal solution in favor of an suboptimal one, which is obtained by handling the 

chain of subproblems with rather less dimensions. 

Basic notion for decomposition of the problem (21), (31) consists of constructing a family of 

multiplicative models ijijij bqx   , i = 1N, j = 1M, for a initial matrix of dimension NM divided 

into rectangular submatrices (blocks). For convenience (but without loss of generality), let us 

assume that all the blocks have the same dimension nm, where n and m are divisors of N and M, 

respectively. Thus, the total number of blocks in a initial matrix partition equals (NM)/(nm). The 

developed decomposing procedure for updating a matrix of large dimension is implementing in 
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accordance with the following four-stage algorithm. 

UStage 1U. The elements of each block of initial matrix A is aggregating into an element of 

matrix )()( //00 mmMnnN eEAeEA   with dimensions (N/n)(M/m). The marginal totals u and v 

are replacing by the aggregated vectors ueEu )( /00 nnN   of dimension (N/n)1 and 

veEv )( /00 mmM   of dimension (M/m)1. Then the matrix 00
00 AB k  is calculating, where scalar 

multiplier k  is determined from (7). Further, using an analytical solution (37) and (38), it is 

required to update the matrix A00 with marginal totals u00 and v00 , i.e. to estimate matrix X00 with 

dimensions (N/n)(M/m) that satisfies 00/00 ueX mM  and 0000/ vXe  nN . 

UStage 2U. (For each i = 1N/n.) Here we need to construct the chain of N/n matrices 

)()( /,/ mmMninN
i eEAEeA   of dimension n(M/m) and corresponding chain of N/n subvectors 

uuEeu  )( ,/ ninN
i  of dimension n1, where inN ,/e  is a column vector from the natural basis 

of N/n-dimensional space with 1 in a position i. It is easy to see that the columns of each matrix 

i
A  are formed by the row sums for the initial matrix blocks located along horizontal line i. 

Further, using formulas (7), (37) and (38), it is required to sequentially update N/n matrices i
A  

with marginal totals i
u  and inN

i
,/00eXv  , i.e. to estimate N/n matrices i

X  of dimension 

n(M/m). Note that 00,/ Xe inN  is a row i in the matrix X00 calculated at the stage 1, i = 1N/n. 

 UStage 3U. (For each j = 1M/m.) At this stage we need to construct the chain of M/m matrices 

)()( ,// mjmMnnN
j EeAeEA   of dimension (N/n)m and corresponding chain of M/m subvectors 

vvEev  )( ,/ mjmM
j  of dimension m1, where jmM ,/e  is a column vector from the natural 

basis of M/m-dimensional space with 1 in a position j. It is easy to see that the rows of each 

matrix j
A  are formed by the column sums for the initial matrix blocks located along vertical line 

j. Then, using formulas (7), (37) and (38), it is required to estimate M/m matrices j
X  of 

dimension (N/n)m by sequentially updating M/m matrices j
A  with marginal totals jmM

j
,/00eXu 

 

and j
v . Note that jmM ,/00eX  is a column j in the matrix X00 calculated at the stage 1, j = 1M/m. 

 UStage 4U. At this final stage the initial matrix A is partitioning into (NM)/(nm) rectangular 

blocks )()( ,/,/ mjmMninNij EeAEeA   of dimension nm. (Further, for each pair i and j, 

i = 1N/n, j = 1M/m.) For a block ijA  the column vector jmM
i

,/eX , namely the column j of 

n(M/m)-dimensional matrix i
X  calculated at the stage 2, is using as the row marginal total, and 

the row vector j
inN 

 Xe ,/ , namely the row i of (N/n)m-dimensional matrix j
X  calculated at the 
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stage 3, is using as the column marginal total. By using formulas (7), (37) and (38), one needs to 

sequentially update (NM)/(nm) matrices ijA  and so to estimate (NM)/(nm) matrices ijX . The 

target matrix X of dimension NM is formed by natural integration of all the blocks ijX , 

i = 1N/n, j = 1M/m. It is easy to see that target matrix obtained in such manner satisfies the 

marginal total conditions uXe M  and vXe N . 

Thus, the decomposing procedure described above involves a solving of constrained 

minimization problem (21), (31) in multiple fashion for one matrix of dimension (N/n)(M/m) at 

the stage 1, for N/n matrices of dimension n(M/m) at the stage 2, for M/m matrices of dimension 

(N/n)m at the stage 3 and for (NM)/(nm) blocks of dimension nm at the stage 4. To increase the 

computational efficiency it is preferable to have all the updating matrices with approximately 

same dimensions. Therefore, it is advisable to choose integer algorithm’s parameters n and m on 

the base of conditions N/n  n and M/m  m that imply Nn   and Mm  . 

14. Numerical examples and concluding remarks 

Consider the Eurostat input–output data set given in “Box 14.2: RAS procedure” (see Eurostat, 

2008, p. 452) for compiling several numerical examples. The 34-dimensional initial matrix A 

combines the entries in intersections of the columns “Agriculture”, “Industry”, “Services”, “Final 

d.” with the rows “Agriculture”, “Industry”, “Services” in “Table 1: Input-output data for year 

0”. Note, that all the elements of this matrix are nonzero. The row marginal total vector u of 

dimension 31 is the proper part of the column “Output” in “Table 2: Input-output data for year 

1”, and the column marginal total vector v  of dimension 14 involves the proper entries of the 

row “Total” in the near-mentioned data source.  

Initial matrix A, marginal totals u, v , and also corresponding matrix B calculated by 

formula (7) with k = 1.0290 are presented in Table 1. 

Table 1. Initial matrix A with nonzero elements 

 A     Au  u  
k  B     Bu  u  

 20.00 34.00 10.00 36.00 100.00 94.78 1.0290 20.58 34.99 10.29 37.05 102.90 94.78 

 20.00 152.00 40.00 188.00 400.00 412.86  20.58 156.41 41.16 193.46 411.61 412.86

 10.00 72.00 20.00 98.00 200.00 212.68  10.29 74.09 20.58 100.84 205.81 212.68

Av  50.00 258.00 70.00 322.00 700.00  Bv 51.45 265.49 72.03 331.35 720.32  

v  47.28 268.02 73.58 331.44  720.32 v 47.28 268.02 73.58 331.44  720.32

The first numerical example is to handle the data set in Table 1 by RAS method with 

iterative processes (4) or (5) and by analytical approach (37), (38) for solving the constrained 

minimization problem (21), (31) – briefly, by GLS method. The computation results grouped in 
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Table 1a seem to be very similar among themselves.  

Table 1a. RAS and GLS results for updating data set in Table 1 

RAS X     Xu  u  GLS X     Xu  u  
 17.94 32.77 9.76 34.31 94.78 94.78  18.35 32.41 10.03 33.99 94.78 94.78 

 19.36 158.08 42.12 193.30 412.86 412.86  19.07 158.82 42.60 192.37 412.86 412.86

 9.98 77.17 21.70 103.84 212.68 212.68  9.86 76.79 20.95 105.08 212.68 212.68

Xv  47.28 268.02 73.58 331.44 720.32  Xv 47.28 268.02 73.58 331.44 720.32  

v  47.28 268.02 73.58 331.44  720.32 v 47.28 268.02 73.58 331.44  720.32

Nevertheless, GLS method demonstrates the stable 5-percentage advantage over RAS 

method both in homothetic measure of matrix similarity (14) and in angular measure (15) as 

follows: 

RASδ = 0,1847,           GLSδ = 0,1756,            RASGLS δδ = 95,10%; 

RAS
qe = 3,1161,           GLS

qe = 2,9677,               RASGLS
qeqe  = 95,24%. 

The next numerical example is assigned to test the methods’ response to zero elements in the 

initial matrix. So let us disturb one element of our data set, say (3, 1), by putting it equal to zero 

for years 0 and 1. After recalculation of the marginal totals we get Table 2. 

Table 2. Initial matrix A with zero element 

 A     Au  u  
k  B     Bu  u  

 20.00 34.00 10.00 36.00 100.00 94.78 1.0297 20.59 35.01 10.30 37.07 102.97 94.78 

 20.00 152.00 40.00 188.00 400.00 412.86  20.59 156.52 41.19 193.59 411.90 412.86

 0.00 72.00 20.00 98.00 190.00 202.88  0.00 74.14 20.59 100.91 195.65 202.88

Av  40.00 258.00 70.00 322.00 690.00  Bv 41.19 265.67 72.08 331.58 710.52  

v  37.48 268.02 73.58 331.44  710.52 v 37.48 268.02 73.58 331.44  710.52

The results of computations by RAS and GLS methods collected in Table 2a, as earlier, seem 

to be very similar among themselves. 

Table 2a. RAS and GLS results for updating data set in Table 2 

RAS X     Xu  u  GLS X     Xu  u  
 18.02 32.74 9.75 34.27 94.78 94.78  18.36 32.40 10.04 33.98 94.78 94.78 

 19.46 158.05 42.11 193.25 412.86 412.86  19.12 158.80 42.58 192.37 412.86 412.86

 0.00 77.23 21.72 103.92 202.88 202.88  0.00 76.82 20.96 105.10 202.88 202.88

Xv  37.48 268.02 73.58 331.44 710.52  Xv 37.48 268.02 73.58 331.44 710.52  

v  37.48 268.02 73.58 331.44  710.52 v 37.48 268.02 73.58 331.44  710.52

To estimate the degree of matrix similarity more correctly in the presence of zero elements 

one can apply an adjustment procedure for the scalar c in (9) described above. But even in this 

case GLS method still keeps on the 5-percentage advantage over RAS method both in homothetic 
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and angular measures as follows: 

RASδ = 0,1826,           GLSδ = 0,1736,            RASGLS δδ = 95,08%; 

RAS
qe = 3,0778,           GLS

qe = 2,9291,               RASGLS
qeqe  = 95,17%. 

An advantage of GLS method observed here is not so impressive because of small number of 

“free” variables NM – (N + M) in our numerical examples. However, if the dimensions of updating 

matrix tend to grow, then this advantage rapidly increases. At the dimensions more than 37 

(73) and 45 (54) a total amount of free variables starts to exceed total number of RAS 

variables, so flexibility of GLS method substantially grows. Computational experiments with 

1520-dimensional matrices indicates that GLS method seems to be almost twice more effective 

than RAS in the sense of homothetic measure (14) and angular measure (15). 

As it is well-known, “… RAS can only handle non-negative matrices, which limits its 

application to SUTs that often contain negative entries…” – see Temurshoev et al. (2011, p. 92). 

So the final numerical example is assigned to test the methods’ response to negative elements in 

the initial matrix. Let us disturb three elements of our data set, say (1,3), (3, 1) and (3,3), by 

reversing their sign for years 0 and 1. After proper recalculation of the marginal totals we obtain 

Table 3. 

Table 3. Initial matrix A with some negative elements 

 A     Au  u  
k  B     Bu  u  

 20.00 34.00 -10.00 36.00 80.00 74.50 1.0263 20.53 34.89 -10.26 36.95 82.10 74.50 

 20.00 152.00 40.00 188.00 400.00 412.86  20.53 155.99 41.05 192.94 410.50 412.86

 -10.00 72.00 -20.00 98.00 140.00 148.92  -10.26 73.89 -20.53 100.57 143.68 148.92

Av  30.00 258.00 10.00 322.00 620.00  Bv 30.79 264.77 10.26 330.46 636.28  

v  27.68 268.02 9.14 331.44  636.28 v 27.68 268.02 9.14 331.44  636.28

The results of computations by RAS and GLS method grouped in Table 3a now 

demonstrates wide differences in the elements of two target matrices calculated, especially in x13, 

x23, x24 and x33 . 

Table 3a. RAS and GLS results for updating data set in Table 3 

RAS X     Xu  u  GLS X     Xu  u  
 17.09 31.06 -6.18 32.53 74.50 74.50  18.55 32.30 -10.21 33.87 74.50 74.50 

 20.13 163.54 29.12 200.07 412.86 412.86  19.27 159.99 39.34 194.26 412.86 412.86

 -9.54 73.42 -13.80 98.84 148.92 148.92  -10.13 75.73 -19.99 103.31 148.92 148.92

Xv  27.68 268.02 9.14 331.44 636.28  Xv 27.68 268.02 9.14 331.44 636.28  

v  27.68 268.02 9.14 331.44  636.28 v 27.68 268.02 9.14 331.44  636.28

An advantage of GLS method in this case seems to be overwhelming. Indeed, the received 
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estimates of homothetic and angular measures are 

RASδ = 0, 4906,           GLSδ = 0,1479,           RASGLS δδ = 30,14%; 

RAS
qe = 9,1437,            GLS

qe = 2,5102,            RASGLS
qeqe  = 27,45%. 

Thus, one can conclude that this method is especially effective under the complicated 

circumstances because of its immanent flexibility. In practice the proposed GLS-based method 

allows to generate much more compact the multiplicative model’s factor distributions in 

comparison with RAS method. 
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