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Abstract 

 We used 1995-2000-2005 linked input-output (IO) tables for Japan to examine 

estimation errors of updated IO tables and the resulting prediction errors in computable 

general equilibrium (CGE) analysis developed with updated IO tables. As we usually have 

no true IO tables for the target year and therefore need to estimate them, we cannot 

evaluate estimation errors of updated IO tables without comparing the updated ones with 

true ones. However, using the linked IO tables covering three different years enables us to 

make this comparison. Our experiments showed that IO tables estimated with more detailed 

and recent data contained smaller estimation errors and led to smaller quantitative 

prediction errors in CGE analysis. Despite the quantitative prediction errors, prediction was 

found to be qualitatively correct. As for the performance of updating techniques of IO tables, 

a cross-entropy method often outperformed a least-squares method in IO estimation with 

only aggregate data for the target year but did not necessarily outperform the least-squares 

method in CGE prediction. 
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1. Introduction 

 Input-output (IO) tables are one type of data essential for constructing the social 

accounting matrices (SAM) used in computable general equilibrium (CGE) modeling. They 

also give CGE models attractive features as a multi-sectoral model describing details of 

industrial activities useful for empirical policy analysis, such as trade, environment, and tax 

policies. However, the availability of IO tables is often limited, because IO tables with such 

details are costly to construct. IO tables for Japan are constructed regularly every five years 

after intensive works with the target year data for several years. Many countries with 

poorer statistical organizational capacity cannot afford to construct IO tables on a regular 

basis. 

 Such low availability of IO tables forces CGE modelers to use IO tables that are 

several years old. When data and models are too old to use for their analysis, CGE modelers 

have to update IO tables themselves with simpler methods and fewer data than those 

employed by professional statisticians. CGE modelers employ a so-called non-survey method 

to update new IO tables by replacing a part of old IO tables with the target-year data, which 

are often incomplete and sometimes inconsistent with each other. The updated IO tables 

inevitably suffer some estimation errors compared with true tables. 

 There are two main problems that CGE modelers face. One is that the updated IO 

tables may suffer estimation errors. (In connection with this issue, they might also be 

interested in finding methods of updating that can reduce estimation errors.) The other 

problem is prediction errors in CGE analysis caused by the estimation errors in IO tables.1 

Usually, we cannot examine the estimation errors in IO tables because we have no true IO 

tables for a target year and, thus, have to estimate them permitting some estimation errors. 

Without true IO tables or true CGE models, we cannot measure prediction errors of CGE 

analysis, either. 

                                                      
1 Although CGE models are not used only for prediction, we refer to errors of simulation results in 

CGE analysis as prediction errors to avoid confusion with estimation errors in updated IO tables. 
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 In the literature, Robinson et al. (2001) estimated stylized SAMs for Mozambique 

with two different matrix balancing methods: RAS and cross-entropy (CE) methods. They 

found that these estimated SAMs were similar in flow data but that the CE method was 

likely to estimate a SAM closer to prior values in input coefficients. Cardenete and Sancho 

(2004) did experiments estimating a regional SAM for Andalusia, Spain and found results 

similar to the ones by Robinson et al. (2001). Then, they simulated tax reforms with CGE 

models calibrated to their updated SAMs to compare their simulation results with each 

other. However, these two studies compared a table estimated with one method to a table 

estimated with another method, or a CGE simulation result based on an estimated SAM to 

another, not to a true SAM or a CGE simulation result based on a true IO table/SAM. They 

could not conclude anything about the accuracy of the estimated SAM or the performance of 

the matrix balancing methods. 

 As true IO tables were not available, Bonfiglio and Chelli (2008) randomly created 

“true” IO tables by a Monte Carlo method for their numerical experiments to examine the 

performance of various estimation methods. Real true tables have been used very rarely. 

Jalili (2000) did experiments by updating an IO table for the Former Soviet Union from 1966 

to 1972 with various methods such as RAS and least-squares (LS) methods and compared 

them to the true table for 1972. Jackson and Murray (2004) did similar experiments by 

updating the US tables from 1966 to 1972 and from 1972 to 1977 with 10 different matrix 

balancing method and found no better methods than the RAS method overall. These studies 

focused on estimation errors of updated IO tables, but did not examine prediction errors in 

CGE analysis calibrated to these updated tables. 

 In this study, we used linked IO tables for 1995, 2000, and 2005 from the Ministry 

of Internal Affairs and Communications (2011) and measured (1) estimation errors of 

updated IO tables from 1995 or 2000 to 2005 by comparing them with the true IO table for 

2005 and (2) prediction errors in CGE analysis caused by the estimation errors in the 

updated IO tables (Figure 1.1). We considered a LS method and a CE method among many 
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matrix balancing methods and two cases of rich and poor data availability for the target year 

in updating IO tables. Finally, we developed CGE models calibrated to these estimated and 

the true IO tables and made two numerical policy experiments to measure their prediction 

errors attributable to richness and age of information as well as matrix balancing methods. 

We found that the effect of richness and age of information used in updating IO tables was 

clear and straightforward but that the effect of matrix balancing methods was not. 

 

Figure 1.1. Outline of the study 

 

 

 Our paper proceeds as follows. Section 2 discusses estimation methods and 

estimation errors of IO tables. Section 3 shows simulation results of CGE analysis to 

measure prediction errors. Section 4 concludes the paper, followed by an appendix 

demonstrating the robustness of CGE simulation results with respect to key trade elasticity. 

 

2. Estimation of IO Tables 

2.1 Availability of Target Year Data and Settings of Prior Values 

 Let us update an old IO table  0
,vuIO  for 1995 or 2000 to a new one  vuIO ,  for a 

target year of 2005 by partly replacing old data with the target year data. The IO table 
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Calibration

CGE Model True CGE Model
Simulation
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Oil Price Hike)

Simulation Result True Simulation Result 

Calibration

Estimation Error

Prediction Error
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 vuIO ,  can be subdivided into a few sub-matrixes, 
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where 

  jiX , : intermediate input from industrial sectors i  to j , 

  jyY , : value added of the y -th factor used by the j -th sector, and 

 fiF , : final demand by the f -th user purchased from the i -th industrial 

sector. 

The updated tables must satisfy the row-sum and column-sum consistency for each industry 

i : 
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ij FXIOIOYX ,,,,,,  i  (2.1) 

 If additional information is available for some cells in the new IO table, those 

values are fed into the estimation process by pinning down these cell values with constraints. 

In this study, the available information was retrieved from the true IO table for 2005 

 2005
,vuIO  for ease of comparison.2 If the final demand of the i -th good by the f -th user 

2005
, fiF  is available for each cell, we can impose a constraint as follows. 

 2005
,, fifi FF   fi,       (2.2) 

Similarly, if we know the y -th value-added component of the j -th sector 2005
, jyY , we can 

impose a constraint as follows. 

 2005
,, jyjy YY   jy,       (2.3) 

                                                      
2 In reality, there are various factors that can cause deviations of data in the compiled true IO tables 

from true data, such as measurement errors in the original data and matrix balancing done for 

row-column consistency. However, we simplified our discussion by assuming the data in the IO table 

for 2005 to be true. 
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 In contrast, while these microeconomic data may be less likely to be available, we 

can more often obtain macroeconomic data. That is, if we know the final demand of the f

-th user in total (e.g., total household expenditure)  i fiF 2005
, , we can impose a constraint, 

which is looser than (2.2), as follows. 

  
i

fi
i

fi FF 2005
,,  f      (2.4) 

We can consider a similar constraint for the total of the y -th value added component 

i iyY 2005
, , which is looser than (2.3), as follows. 

  
i

iy
i

iy YY 2005
,,   y      (2.5) 

 We may well conjecture that the signs of cell values in the old tables are still kept 

in the target year and impose a sign condition: 

    0
,, vuvu IOsignIOsign   vu,      (2.6) 

We can also conjecture the level of cell values (prior values). For example, if we assume that 

input patterns are stable over time, we can compute an input coefficient for industries or 

expenditure share for final demand vua ,  as follows. 

 



u vu

vu
vu IO

IO
a

0
,

0
,

,   vu,      (2.7) 

By combining this coefficient/share vua ,  with the IO table margin data u vuIO2005
, , we can 

update the prior values as follows. 

 
u

vuvuvu IOaIO 2005
,,

0
,  vu,      (2.8) 

 We can estimate another type of prior value. When we know all the cell values in 

the value-added matrix  jyY ,  and the final demand matrix  fiF ,  in addition to the 

column totals for the j -th industrial sector u juIO2005
,  as assumed for (2.2) and (2.3), we 
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need to estimate only the intermediate input matrix   jiIO , . By estimating an input 

coefficient jia ,  computed from the old table data  0
, jiIO  as  

 



i ji

ji
ji IO

IO
a

0
,

0
,

,   ji,      (2.9) 

and combining jia ,  with the known column total u juIO2005
, , we can compute prior values 

for this sub-matrix  jiIO ,  as follows. 

 
i

jijiji IOaIO 2005
,,

0
,  ji,      (2.10) 

 

2.2 Matrix Balancing Methods 

 Because prior values are updated partially and hence do not satisfy the constraints 

for the row-sum and column-sum balance (2.1) and the additional constraints (2.2)–(2.5), we 

need to conduct matrix balancing to recover their balance and consistency with the control 

totals. Let us formulate this adjustment as a constrained minimization problem. If we use a 

LS method, its minimand is 

  











vu vu
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IO
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,

2
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1       (2.11) 

If we, instead, use a CE method, it is defined as  

  











vu vu

vu
vu IO

IO
IOW

,
0
,

,
, ln       (2.12) 

(Golan et al. (1996)).3 

 In our computational implementation, we excluded terms with priors 0
,vuIO  equal 

to zero in the minimands. In addition, when we used a CE method, we modified the 

minimand (2.12) by taking absolute values for negative prior values and using an arbitrary 

                                                      
3 Miller and Blair (2009, Ch.7) suggested alternative minimands for this problem. 
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small value   to treat cases where the estimated cell values vuIO ,  became zero, as 

suggested by Robinson and El-Said (2000):4 

  














vu vu
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vu IO
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,
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, ln




     (2.12’) 

 We updated tables from 1995 or 2000 to 2005 by minimizing deviations of new cell 

values from the priors (2.8) or (2.10) as defined by (2.11) or (2.12’) subject to the row-sum 

and column-sum constraint (2.1) and the sign condition (2.5) as well as constraints 

describing the additional microeconomic and macroeconomic data (2.2)–(2.5). In our 

experiments, we considered eight cases with variations in richness of additional data, age of 

original IO tables, and minimands to examine their contributions to accuracy of estimates 

(Table 2.1). 

 

Table 2.1: Estimation Methods 

Case 
Additional Data and 

Constraints/a 
Prior 

Values 
Original IO 

Table Minimand/b

LS_Macro(1995) Macroeconomic data (2.4), (2.5) (2.8) 1995 LS (2.11) 
LS_Micro(1995) Microeconomic data (2.2), (2.3) (2.10) 1995 LS (2.11) 
CE_Macro(1995) Macroeconomic data (2.4), (2.5) (2.8) 1995 CE (2.12’) 
CE_Micro(1995) Microeconomic data (2.2), (2.3) (2.10) 1995 CE (2.12’) 
LS_Macro(2000) Macroeconomic data (2.4), (2.5) (2.8) 2000 LS (2.11) 
LS_Micro(2000) Microeconomic data (2.2), (2.3) (2.10) 2000 LS (2.11) 
CE_Macro(2000) Macroeconomic data (2.4), (2.5) (2.8) 2000 CE (2.12’) 
CE_Micro(2000) Microeconomic data (2.2), (2.3) (2.10) 2000 CE (2.12’) 

/a In all the cases, we assumed that the column totals for all the industrial sectors j  

u juIO 2005
,  were known and imposed constraints for the row-sum and column-sum 

consistency (2.1) and signs (2.6). 
/b LS: least-squares, CE: cross-entropy. 

 

 We aggregated the 108-sector linked IO tables to 18-sector tables for simplicity of 

our subsequent CGE experiments in Section 3 (Table 2.2). We fed the detailed or aggregate 

data appearing in the true 18-sector table for 2005 about capital and labor income, indirect 

taxes, household and government consumption, investment, exports, imports, and import 
                                                      
4 In our study, we assumed  = 10E-10. 
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tariffs, which were typically reported in such frequently used official statistics in Japan as 

the national account tables, the census of manufactures, and the trade statistics. We 

assumed that sectoral total input u juIO2005
,  was known in all cases. 

 

Table 2.2: Sectoral Aggregation 

Sectors in Aggregated IO Tables Abbreviations Sector Codes in the Original 
108-Sector Tables 

Industries ( i , j )    

Agriculture AGR 001–005, 011 
Other Mining MIN 006–007 
Oil, Coal, and Natural Gas OIL 008 
Food FOD 009–010, 012 
Textiles and Apparel TXA 013–014, 032 
Wood, Paper, and Printing WPP 015–019 
Chemical CHM 020–027, 030–031 
Oil and Coal Products P_C 028–029 
Pottery POT 033–036 
Steel STL 037–040 
Metal MET 041–044 
Machinery and Other Manufacturing MAN 045–048, 062–063 
Electric Equipment EEQ 049–056 
Transportation Equipment TEQ 057–061 
Electricity ELY 069 
Town Gas TWG 070 
Transportation TRS 078–085 
Other Services SRV 065–068, 071–076, 086–108 

Value Added ( y )   
Capital CAP 113–115(row code) 
Labor LAB 111–112(row code) 
Indirect Tax IDT 116–117(row code) 

Final Demand ( f )   

Household HOH 111–112(column code) 
Government GOV 113–114(column code) 
Investment INV 115–117(column code) 
Exports EXP 120–121 
Imports IMP 125 
Import Tariffs TRF 126–127 

 

2.3 Estimation Errors of Updated Input-Output Tables 

 We measured (1) the deviations of updated tables  vuIO ,  from the prior matrix 

 0
,vuIO  and (2) their estimation errors as deviations from the true IO table for 2005 

 2005
,vuIO . The deviations of estimated tables from the prior values were mostly around 10% 
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in the LS cases but more extensive in the CE cases (Figure 2.1). The total of deviations from 

the prior 0
,vuIO  were computed by such indicators as standardized total percentage error 

(STPE), mean absolute difference (MAD), Theil’s U2, root mean squared error (RMSE), and 

mean absolute percentage error (MAPE) (Figure2.2).5 If we assumed that true values 

should be close to the priors, we could interpret those deviations from the priors as 

“estimation errors,” which indicate accuracy of our estimates, but we would find the results 

counterintuitive. That is, the rich information cases (Micro) appear to perform more poorly 

than the poor information cases (Macro) in Figure 2.2. These counterintuitive results 

originated from the nature of their minimization problems: The constraints in the rich 

information cases (2.2)–(2.3) were stricter than the constraints (2.4)–(2.5) in the poor 

information cases. Even if we assumed oppositely that the true table should be quite 

different from the prior matrix, the large deviations, however, would not immediately 

indicate better accuracy. Only comparison with the true table can tell us accuracy of our 

updated tables. 

 

                                                      
5 They are defined as  

vu vuvu vuvu IOIOIOSTPE
,

0
,,

0
,, ,    vu vuvuvu IOIOMAD

,

0
,,

1 , 

    
vu vuvu vuvu IOIOIOU

,

20
,,

20
,,2 ,     vu vuvuvu IOIORMSE

,

20
,,

1 , and 

   vu vuvuvu IOIOMAPE
,

0
,,

1 1/  to compute deviations from the priors 0
,vuIO . We can replace 

0
,vuIO  with 2005

,vuIO  to compute the accuracy of the new tables. In all these indicators, smaller values 

indicate smaller deviations/better accuracy. 
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Figure 2.1: Deviations from Prior Values [%] 

 

 
Note: Deviations of cells with priors equal to zero are not considered. 

 

Figure 2.2: Overall Deviations from the Prior Values 

 
Note: All the indicators but MAPE are normalized so that their maximum values are equal 
to 1.00. 
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 We measured the true accuracy of the updated tables by comparing them with the 

true table for 2005 (Figure 2.3). The cases based on the table for 2000 were likely to achieve 

better accuracy than the cases based on the table for 1995. The rich information cases 

(Micro) were likely to outperform the poor information cases (Macro) (Figure 2.4). 

 

Figure 2.3: Distribution of Estimation Errors of Updated IO Tables [%] 

 

 
Note: Estimation errors of true cell values equal to zero are not considered. 
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Figure 2.4: Overall Estimation Errors 

 
Note: All the indicators but MAPE are normalized so that their maximum values are equal 
to 1.00. 
 

 In contrast to these straight-forward results about richness and age of information 

fed for updating IO tables, we need a careful examination of the performance of the matrix 

balancing methods (Figure 2.4). In the poor information cases (Macro), the CE method was 

likely to generate more accurate estimates. In the rich information cases (Micro), the LS 

method outperformed the CE method by the four indicators (all sectors but MAPE) in the 

cases with the IO table for 1995 and did so only by Theil’s U2 and RMSE in the cases with 

the table for 2000. The relative performance of these two methods was not clear-cut. 

 Regarding the magnitude of errors, MAPE indicates sizable average estimation 

errors per cell reaching 44–69%. These large errors may be carried over to CGE analysis and 

result in large prediction errors. We examine the significance of these estimation errors 

transmitted into the prediction errors of CGE analysis in the next section. 

 

3. Prediction Errors in CGE Analysis 
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IO tables estimated in the previous section and the actual direct tax data in the national 

account tables. 6 We modified the original CGE model to treat negative values in IO tables 

because the updated and the true IO tables for 2005 carried negative values in household 

consumption of other mining (MIN) and steel (STL) and in some of government consumption 

and investment uses. We set the household consumption of these two goods as exogenous.7 

We also assumed that all the government consumption and investment uses were exogenous 

while lump-sum direct taxes and savings filled the gaps in their budget constraints. 

 There were two simulation scenarios considered. Scenario 1 assumed a uniform cut 

of import tariff rates by 2% points for all the 14 tradable goods (i.e., all but ELY, TWG, TRS, 

and SRV).8 Scenario 2 assumed exogenous hikes of international prices (in USD) of oil, coal, 

and natural gas (OIL) and petroleum and coal products (P_C) by 100%. 

 We used those eight IO tables estimated in Section 2, as well as true IO tables for 

                                                      
6 As Hosoe et al. (2010) demonstrated, we can construct a SAM with only an IO table and information 

about direct tax payments. The amount of direct taxes was estimated 38,285.5 billion Japanese yen, 

consisting of current taxes and net social contributions earned by the general government in 2005 

(Economic and Social Research Institute (2012)). 

7 In the IO table for 1995, the household consumption of other mining goods (MIN) was positive; 

therefore, the updated tables based on this one also had positive consumption of this good due to the 

sign condition (2.6). In contrast, as the IO tables for the other two years showed negative household 

consumption of this good, the estimated tables based on them showed negative consumption. For 

simplicity, we assumed that consumption of both other mining (MIN) and steel (STL) goods in the CGE 

model was exogenous in all the cases. 

8 We did not assume a common scenario of abolition of import tariffs, because estimated tariff rates 

implied by the estimated IO tables for the base run were different and, thus, would make the impact of 

tariff abolition different among different cases. 
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1995 (True(1995)) and for 2000 (True(2000)).9 We compared their CGE simulation results 

based on these ten IO tables to the simulation result based on the true IO table for 2005 

(True(2005)). We set the Armington’s (1969) elasticity at two for all the sectors.10 

 

3.2 Prediction Errors in Simulation Results 

 In Scenario 1 (uniform tariff cut), the output changes predicted by the CGE models 

calibrated to these ten IO tables were consistent for all the sectors but MAN with the 

prediction by the true CGE model (True(2005)) (Figure 3.1). Prediction accuracy 

significantly differed among these ten cases depending on the IO table estimation methods. 

The cases with IO tables updated with the poor information (Macro) and the naïve cases 

with the true but old IO tables (True(1995) and True(2000)) clearly showed poor 

predictability. Regarding the matrix balancing methods, the CE method combined with the 

poor information (Macro) performed better than the LS method in IO table estimation 

(Figure 2.4) but poorer in CGE analysis (Table 3.1). In the rich information cases (Micro), as 

the IO estimation errors did not differ much by the matrix balancing methods, neither did 

the CGE prediction errors. 

 

                                                      
9 We adjusted the scaling of these two true IO tables for 1995 and 2000 according to the GDP growth 

among these three periods. The GDP in 2005 was larger than that in 1995 by 0.5% and that in 2000 by 

2.5%. This scaling-up process, however, changed results only in levels but not in rates or ratios. 

10 The Appendix presents the results of sensitivity analysis where the Armington (1969) elasticity was 

perturbed by 30% upward and downward. 
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Figure 3.1: Result of Scenario 1 (Uniform Tariff Cuts) [Changes from the Base ( Z
Z ), %] 

 

 

Table 3.1 

18-Sector Simple Mean of Absolute Prediction Errors of Sectoral Output Changes ( Z
Z ) [%] 

Case Scenario 1 Scenario 2
LS_Macro(1995) 41.1 65.7 
LS_Micro(1995) 10.4 29.4 
CE_Macro(1995) 53.3 61.2 
CE_Micro(1995) 10.9 27.3 
True(1995) 51.8 69.9 
LS_Macro(2000) 28.9 38.2 
LS_Micro(2000) 7.2 22.8 
CE_Macro(2000) 32.4 35.5 
CE_Micro(2000) 6.0 23.2 
True(2000) 33.4 44.2 

Note: Absolute Prediction Error Rate= 1100 
true
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Z
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Z
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 While Scenario 1 assumed a uniform shock to all the tradable sectors, Scenario 2 

assumed exogenous shocks on international prices only for the two oil-related sectors. The 

results of Scenario 2 showed that prediction of output changes was generally correct but 

qualitatively erroneous for a few sectors (Figure 3.2). One sector is the textiles and apparel 

sector (TXA) in all ten cases. The others were the steel (STL) and the pottery sectors (POT) 

in CE_Macro(1995). The change of chemical output (CHM) was correctly predicted in quality 

but suffered a large prediction error in quantity. The prediction errors attributable to age of 

the original IO tables (1995 vs. 2000) and richness of additional information (Macro vs. 
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Micro) were found similar to those found in Scenario 1 (Table 3.1). Regarding the matrix 

balancing methods, the CE method performed better than the LS method in all cases but 

CE_Micro(2000). 

 

Figure 3.2: Result of Scenario 2 (Petroleum Price Hike) [Changes from the Base ( Z
Z ), %] 
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IO table for 2000 was found performing better. In contrast, when microeconomic data were 

fed into the IO table estimation process, estimates of welfare impact were made almost 

perfectly, irrespective of age and richness of data and matrix balancing methods (Figure 

3.3). 

 

Figure 3.3: Welfare Impact in Scenario 1 (Left) and Scenario 2 (Right) [Unit: bil. JPY] 

 
Note: Measured by Hicksian equivalent variations. 

 

4. Concluding Remarks 
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suffering more or fewer estimation errors, the predicted signs of output changes were correct 

in most CGE simulations. 
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tables. In the rich information cases with microeconomic data, the CE method sometimes 
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increased the prediction errors in CGE analysis. 

 In our experiments updating IO tables, we used data reported in the true IO table 

for 2005 assuming these target year data were all true. However, if the target year data 

suffer measurement errors, they may lead to larger estimation errors in updated IO tables 

and thus to larger prediction errors in CGE analysis. In this sense, the estimation errors 

and the prediction errors demonstrated here should be considered as their minimum values. 

In this case, it may be useful to employ an updating technique that explicitly considers 

measurement errors in available information as proposed by Robinson et al. (2001). 

 For better accuracy of IO table estimation and CGE analysis, more recent and more 

detailed data are requested but rarely or insufficiently available. CGE modelers, who are 

not necessarily professional statisticians, often have difficulty in this regard. Our results 

suggest that CGE modelers can make qualitatively correct predictions even if their IO tables 

are old or suffer errors compared with the true target year IO tables. This approach would 

be useful, especially for practical purposes, when we assess the impact of, for example, free 

trade agreements, whose details can be frequently revised and updated in the process of 

their negotiations. 
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Appendix: Sensitivity Analysis of CGE Results 

 Following the usual practice of CGE analysis, we conducted a sensitivity analysis 

regarding our simulation results with respect to a key parameter of Armington’s (1969) 

elasticity by perturbing it by 30% upward and downward. The results of Scenario 1 were 

found to be robust irrespective of the assumed parameter values (Figure A.1). The results of 

Scenario 2 led to a similar conclusion about output changes for all sectors, except chemical 

(CHM), pottery (POT), and steel (STL). Their predicted output changes were qualitatively 

erroneous in some cases with old or poor information (Figure A.2). The perturbation little 

affected the conclusion regarding their average prediction errors (Table A.1). One exception 

was found regarding the performance of matrix balancing methods in Scenario 1. While the 

LS method outperformed the CE method in Micro(1995) in the central and lower elasticity 

cases, the conclusion was found to be opposite in the higher elasticity case. 
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Figure A.1: Result of Scenario 1 (Uniform Tariff Cuts) [Changes from the Base ( Z
Z ), %] 

30% Lower Armington Elasticity Case 

 
30% Higher Armington Elasticity Case 
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Figure A.2: Result of Scenario 2 (Petroleum Price Hike) [Changes from the Base ( Z
Z ), %] 

30% Lower Armington Elasticity Case 

 
30% Higher Armington Elasticity Case 
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Table A.1: 18-Sector Simple Mean of Absolute Prediction Errors of Sectoral Output Changes 

( Z
Z ) [%] 

Scenario 1 Scenario 2 
Elasticity Lower Central Higher Lower Central Higher 

LS_Macro(1995) 56.1 41.1 37.9 58.7 65.7 75.2 
LS_Micro(1995) 14.5 10.4 9.8 26.8 29.4 34.5 
CE_Macro(1995) 75.0 53.3 48.8 56.4 61.2 74.2 
CE_Micro(1995) 17.7 10.9 9.6 25.5 27.3 34.3 
True(1995) 53.4 51.8 53.6 67.5 69.9 74.6 
LS_Macro(2000) 38.9 28.9 27.6 36.9 38.2 43.1 
LS_Micro(2000) 10.6 7.2 6.6 21.2 22.8 28.6 
CE_Macro(2000) 47.3 32.4 29.8 36.7 35.5 41.4 
CE_Micro(2000) 10.4 6.0 5.1 23.0 23.2 29.4 
True(2000) 35.4 33.4 34.9 42.8 44.2 49.8 

Note: Absolute Prediction Error Rate= 1100 
true

true

Z
Z

Z
Z . The central case results are those 

shown in Table 3.1. 
 


