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Abstract  

Non linear input-output (NIO) modelling, despite the relatively rich literature that developed 
its theoretical basis, has been only very modestly applied to empirical analysis. The main 
reason for this lack of empirical estimation of NIO models is that the number of parameters to 
estimate is much higher than the number of available data points. In order to solve this 
problem, calibration techniques are usually applied (as in the case of CGE estimation). 

 

This paper proposes an alternative approach to estimate NIO models. Taking advantage of the 
proliferation of IO databases in the last few years; and by applying an estimation strategy that 
relies on entropy econometrics, the paper suggests estimating (instead of calibrating) the 
parameters that characterize a non-linear relation between inputs and output. This nonlinear 
model is characterized by having scale dependent input coefficients, instead of fixed ones. 
Several types of multiplier can be calculated from this nonlinear model, allowing for calculating 
confidence intervals of our results. The proposed technique is developed and then illustrated 
by means of an empirical application where the parameters that characterize a NIO model are 
estimated for the Spanish economy. 

 

 

Keywords: Non linear input-output (NIO) modelling, scale dependent coefficients and 
multipliers, generalized maximum entropy 
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1. Introduction 
 

Literature on non linear input output modeling is mainly theoretical. Researchers in this field 

have been concerned with the theoretical conditions required to prove the existence of 

solutions for the nonlinear IO models (see, for example, Lahiri, 1973; Lahiri and Pyatt, 1980;  

Chander, 1983; Fujimoto, 1986, or Dietzenbacher, 1994). On the other hand, examples of 

research where non linear models are empirically applied are particularly scarce, if we exclude 

the vast literature on computable general equilibrium models (CGE) where non linearities in 

the models are common. Some attempts of relaxing the assumptions of linear relations 

present in the standard Leontief IO models can be found in Heen (1992), West and Gamage 

(2001), Sun (2007) or Zhang (2008). 

 

Perhaps the main motivation for the lack of empirical estimation of non linear IO models is 

that the number of parameters to estimate is much higher than the number of available data 

points. This restriction (solved in the field of CGE models by applying calibration techniques) 

has prevented IO researchers from conducting empirical applications of non linear IO models. 

The problem of limited information has been partially alleviated during the last years by the 

development of several projects that have released IO data at a world scale. Additionally, the 

use of alternative econometrics based on the statistical information theory has been growing 

in recent years as well. These estimators are characterized by performing comparatively better 

than traditional LS or ML estimators in contexts of small datasets.  

  

This paper proposes the application of this type of estimators in order to estimate empirically 

the parameters characterizing a non-linear IO model. The paper is organized as follows. 

Section 2 presents the basic characteristics of a simple input-output model with scale-

dependent coefficients. Section 3 provides a general description of the main characteristics of 

the estimator proposed for being used, and Section 4 provides detail of how it can be applied 

for estimating non-linear IO models. Section 5 presents an empirical application where such a 

non-linear IO model is estimated for the Spanish economy in 2009. Finally, Section 6 concludes 

the paper. 

 

2. The nonlinear input-output model: scale dependent coefficients 
 

The basic IO model assumes that input-output ratios are fixed; i.e., it is assumed that the 

output produced in one industry j (  ) and the intermediate inputs from industry i that this 
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industry j needs to produce its output (   ) are related by mean of a linear relation. These 

proportional relations are reflected in the technical coefficients            by the 

expression: 

           ; being         (1) 

 

In an economy with n industries the vector containing the outputs employed as intermediate 

input is then defined by   , where   is the (     vector of output by industry and   stands 

for the (      matrix with technical coefficients, which allows for defining the equation: 

      , (2) 

 

being   the vector with the final demands by industry. Just reordering terms it is possible to 

derive the well known open Leontief model: 

           (3) 

 

where matrix         contains the output multipliers from changes in the final demand. One 

of the key assumptions in this model, and sometimes a source of criticism from non input-

output practitioners, is that the coefficients     are fixed and independent on the scale of 

production. This assumption can be relaxed by modifying equation (1) in the following terms: 

             
   ; being           (4) 

 

In other words, the linear relation between intermediate inputs and outputs is transformed in 

a scale-independent relation and equation (1) can be seen as a particular case of the non-

linear equation (4) for      .1  

 

This type of non-linear equations lead to a new type of scale-dependent technical coefficient 

defined as: 

   
                  

           
       

 ; (5) 

 

In matrix notation this can be written in a new matrix of technical coefficients as       that 

transforms the original linear Leontief model (3) into the non-linear equation: 

                        (6) 

 

                                                 
1
 Note that assuming that       necessarily implies that        . 



4 
 

A similar version of this non-linear IO model has been recently proposed by Roland-Holst and 

Sancho (2012). In their paper they show that under quite general conditions, equations such as 

the one in (6) have a unique non-negative solution   for any possible non-negative vector  . 

These conditions can be summarized in the following set of assumptions:  

 

i.        is non-decreasing; implying that  in order to produce more output, more 

intermediate inputs (       ) are always required 

ii. Continuity of         

iii. Expression (6) holds true for some pair (   ).  

 

Given the characteristics of (4) and assuming that parameters           , the matrix of scale-

dependent coefficients        in expression (6) holds assumptions (i) and (ii). Roland-Holst and 

Sancho (2012) show that assumption (iii) always holds if the model has been empirically 

implemented model by the base year solution.  

 

Note that (6) states that the multipliers contained in the             matrix are not scale-

independent anymore: the effects derived by a change in the final demand will be different 

depending on the different levels of output by sector when this shock takes place. In other 

words, the multipliers that we estimate with this non-linear model will depend on the output 

levels. Parameters     , in particular,  play a key role here since their size determines the sign 

of the derivative: 

    
     

   
            

 

       
 (7) 

 

From (4) and (7) is relatively easy to see that if      , this would be reflecting that the 

additional intermediate input     necessary to produce additional output    is an increasing 

function of    (i.e., a production technology of    with decreasing returns to scale to 

intermediate input    ). This makes the scale-dependent technical coefficients    
      

increasing on the output levels, producing higher output multipliers at higher values of   . On 

the other hand, a parameter       indicates that the additional quantities of intermediate 

input     are decreasing on    (i.e., increasing returns to scale to intermediate input    ), 

making the    
      decreasing on the output levels and results in lower output multipliers at 

higher values of   . 
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Frequently, IO models are used not only to calculate the output generated by a shock in the 

final demand, but also for deriving other type of multipliers (labor, CO2 emissions, wages, etc.) 

generated by this type of shocks. Generally, this is done by an extension of (3) like: 

                    (8) 

 

Where (     vector   contains the values of the variable of interest and    is a diagonal 

(     matrix with elements          in the main diagonal, representing the (labor, 

emissions, etc.) values of the variable of interest by unit of output. Matrix             

contains the multipliers on variable   generated from changes in the final demand.  

 

Similarly to the assumption made for the technical coefficients    , conventional IO models 

assume that the    coefficients are independent on the scale of   . This linear relation between 

  and  , can be transformed into something more flexible like: 

         
  

 

  
 

;  (9) 

 

Where normally   
    

  are assumed as non-negative. The new scale-dependent coefficient are 

now defined as: 

  
              

  
 

  
 

     
  

 

   
    

 . (10) 

 

In matrix notation the non-linear model equivalent to (8) can be written now as: 

                         
  

         (11) 

 

The new matrix of   multipliers                      
  

 is dependent on the scale of the 

output, being its values conditioned by the     that affect matrix          
  

 and by 

parameters   
  affecting matrix       , since: 

   
     

   
   

    
      

 

   
    

 (12) 

 

We have the special case where   
   , going back to the scale-independent coefficients 

  
         situation. The role of   

  parameters are similar to the original model with output 

multipliers, and (all other things being equal) a case where   
    produces coefficients   
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increasing on the output levels, resulting in higher output multipliers for higher values of   . 

The opposite situation happens when   
   . 

 

Given the importance of these parameters, a crucial point in such non-linear IO models is 

specifying possible values for them. For example, when constructing Computable General 

Equilibrium (CGE) models, non-linear relations between the variables are relatively common 

and calibration techniques are usually. Alternatively, this paper proposes an alternative 

approach and proposes an estimation strategy based on entropy econometrics, whose main 

characteristics are explained in the next section. 

 

 

3. An overview of Entropy Econometrics 

 
In spite of the proliferation of IO databases in recent years, we still do not have series of data 

large enough to apply traditional estimation techniques like Least Squares or Maximum 

Likelihood estimators, given the reduced numbers of degrees of freedom. Instead, we propose 

the application of Entropy Econometrics to estimate the parameters that characterize non 

linear IO models, given that these techniques have interesting properties when dealing ill-

conditioned estimation problems (small samples). In Golan et al. (1996), Golan (2006) or Kapur 

and Kesavan (1992) extensive descriptions of the entropy estimation approach can be found. 

 

Generally speaking, Entropy Econometrics techniques are used to recover unknown probability 

distributions of random variables that can take M different known values. The estimate    of 

the unknown probability distribution   must be as similar as possible to an appropriate a priori 

distribution  , constrained by the observed data. Specifically, the Cross-Entropy (CE) 

procedure estimates    by minimizing the Kullback-Leibler divergence         (Kullback, 1959): 

   
 

           

 

   

   
  

  
  (13) 

 

The divergence         measures the dissimilarity of the distributions   and  . This measure 

reaches its minimum (zero) when   and   are identical and this minimum is reached when no 

constrains are imposed. When the a priori distribution  is not clearly defined because of lack of 

a prior information, the natural solution is assuming that in principle all the M values have the 

same probability, setting   as an uniform distribution. In this situation the CE procedure turns 
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into the so-called Maximum Entropy methodology: a particular case of CE where the objective 

is to be as close as possible to the initial situation of maximum uncertainty. In such a case, 

minimizing equation (13) is equivalent to maximizing Shannon’s entropy indicator defined by:  

   
 

         

 

   

       (14) 

 

The underlying idea of the ME methodology can be applied for estimating the parameters of 

general linear models, which leads us to the so-called generalized Cross Entropy (GME). Let us 

suppose a variable   that depends on H explanatory variables   : 

       (15) 

 

Where   is a (   ) vector of observations for  ,   is a (   ) matrix of observations for the 

   variables,   is the (   ) vector of unknown parameters             to be estimated, 

and   is a (   ) vector with the random term of the linear model. Each    is assumed to be a 

discrete random variable. We assume that there is some information about its     possible 

realizations. This information is included for the estimation by means of a support vector 

             with corresponding probabilities                . The vector b is based 

on the researcher’s a priori belief about the likely values of the parameter. For the sake of 

convenient exposition, it will be assumed that the M values are the same for every parameter, 

although this assumption can easily be relaxed. Now, vector  can be written as:  

   
  

 
  

      

   
   

  
  

  
  

  
   

  

  
  

 
  

  (16) 

 

Where   and   have dimensions (    ) and (    ) respectively. Now, the value of each 

parameter    is given by the following expression: 

            

 

   

              (17) 

 

For the random term, a similar approach is followed. Oppositely to other estimation 

techniques, GME does not require rigid assumptions about a specific probability distribution 

function of the stochastic component, but it still is necessary to make some assumptions.   is 

assumed to have mean        and a finite covariance matrix. Basically, we represent our 
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uncertainty about the realizations of vector   treating each element    as a discrete random 

variable with     possible outcomes contained in a convex set             , which for the 

sake of simplicity is assumed as common for all the   . We also assume that these possible 

realizations are symmetric around zero (      ). The traditional way of fixing the upper and 

lower limits of this set is to apply the three-sigma rule (see Pukelsheim, 1994). Under these 

conditions, vector   can be defined as: 

   

  
 
  

      

   
   

  
  

  
  

  
   

  

  
  

 
  

  (18) 

 

and the value of the random term for an observation t equals: 

            

 

   

              (19) 

 

Consequently, model (15) can be transformed into: 

         (20) 

 

So we need also to estimate the elements of matrix   (denoted by     ) and the estimation 

problem for the general linear model (15) is transformed into the estimation of     

probability distributions. For this estimation the GME problem is written in the following 

terms: 

   
   

             

 

   

 

   

             

 

   

 

   

        (21) 

subject to:  

          

 

   

    

 

   

     

 

   

          (22) 

      

 

   

           (23) 

      

 

   

           (24) 
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The restrictions in (22) ensure that the posterior probability distributions of the estimates and 

the errors are compatible with the observations. The equations in (23) and (24) are just 

normalization constraints.  

 

4. Applying GME to estimate a non-linear IO model 

 
The estimation strategy explained in the previous section can be applied to recover the 

parameters that determine the non linear relations present in equations like (6) or (11). In 

order to estimate the     and     parameters present in equations like (4), we need to collect 

information from a dataset (a time series or a cross-section) of IO tables and to assume that 

the production technology reflected in the parameters is constant across along all the 

observations (i.e., all the data points in the time series or the cross section of IO tables). 

Assuming that we have a dataset composed by   IO tables composed by the same   industries, 

for the basic IO model depicted in (6),     equations like the following are estimated: 

                
   ;           (25) 

 

When applying GME to estimate the type of equations (25), these equations are first linearized 

by means of a log transformation: 

                                 ;           (26) 

 

Where    stands for the error term included in the equation, and then re-parameterized as 

follows:  

                
 
           

 
                 

 
      ;           (27) 

 

Being   ,    and    the points included in the supporting vectors for the     and     

parameters and the error term    respectively, with corresponding unknown probabilities    , 

    and    . Consequently, the following    GME optimization programs need to be solved: 

                          
 
               

 
            

      
 
   

 
            

(28) 

subject to:  

                
 
           

 
                 

 
      ;           (29) 

            
   

 
    ;           (30) 

       
              ;       (31) 
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The estimates of the parameters will be given by the expressions: 

             

 

   

                (32) 

             

 

   

                (33) 

 
Similarly, if we extend our IO model to estimate multipliers of variable  , we also need to 

estimate   equations like: 

           
  

  

  
 

;  (34) 

 

Which, after the convenient linearization and the inclusion of an error term are written as: 

              
     

            ;           (35) 

 

After the same type of re-parameterization as the one applied before, the   GME programs 

are: 

  

     
    

       
    

          
  

         
       

  
         

    

      
 
   

 
            

(36) 

subject to:  

               
  

           
  

                 
  

      ;           (37) 

    
      

    
   

 
    ;    

     
    (38) 

       
              ;       (39) 

 

Now   
 ,   

  and   
  stand for the points included in the supporting vectors for the   

  and   
  

parameters and the error term    respectively. Their corresponding probabilities to be 

estimated are     
 ,    

  and    ; which once the GME programs is solved, allow for getting 

estimates of the parameters like: 

   
    

        
 

 

   

   
            (40) 

   
    

        
 

 

   

   
            (41) 
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5. An illustration: output and labor multipliers in the Spanish economy with a 
non-linear IO model for 2009 

 

The empirical estimation of these non-linear IO models will be illustrated in this section by 

estimating the impact in terms of creation of jobs of changes in the final demand of the 

Spanish economy. The IO table taken as reference for this empirical exercise is the industry-by-

industry IO table published in the WIOD project database corresponding to 2009.2 This 

particular database has been taken for this analysis for several reasons. One is that it provides 

more recent information than the Spanish Statistical Institute (INE), which only publishes 

harmonized industry-by-industry tables until 2005. Second, the WIOD database allows for 

using a series of IO tables for Spain from 1995 until 2009 with an homogenous sectoral 

classification along time and with information about employment (among other economic and 

environmental indicators) following the same classification.  

 

Even when the sectoral classification in these IO tables allows for identifying 34 different 

industries, a sectoral aggregation into a new classification with 16 economic branches has 

been considered instead, in order to reduce the computational burden and to ease the 

presentation of results. The specific sectoral classification used can be found in the Appendix. 

 

First a model like (6) has been considered. The information required to estimate this model are 

the interindustry transactions (in current million $)     together with the total industry inputs 

   in the series of IO tables from 1995 to 2009. In particular, the 162 equations to be estimated 

are: 

                                 ;                 (42) 

 

But they are modified as follows in order to prevent possible spurious regression in the time 

series of observations: 

                           ;                 (43) 

 

The GME program used in this estimation is the same type as the one described in equations 

(28) to (31) with the particularity that the GME program does not estimates the     directly, 

but they are specified as                                     
        .3 This implies that setting supporting 

vectors for the possible values for this parameter is not necessary. We still need, however, 

                                                 
2
 See www.wiod.org for details. 

3
 This expression is included as a constrain in the GME program directly. 

http://www.wiod.org/
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specifying a supporting vector for the parameters     but this specification can be done in a 

relatively “natural” way. More specifically, a support vector with     points like    

           has been considered. This allows for setting the central point    as the 

“uninformative” estimate (i.e., the estimate that we would expect if no information was 

available) and then setting the bounds symmetrically around it. In a situation with no 

additional information, one would expect that this parameter was equal to 1, since there 

would not be any evidence to depart from the simple linear IO model.4 On this basis, the 

central value has been specified as     . The lower limit    can be set easily as well, since 

we do not allow for negative values of the parameters and therefore     . Consequently, 

since the values are set symmetrically around the central one, this implies that     . For the 

supporting vector of the error terms, the traditional three-sigma rule has been applied.  

 

Additionally, given that a desirable objective is that the estimated matrix of scale-dependent 

technical coefficients was composed by elements characterized by being positive and with 

column sums smaller than one, these two additional constrains have been included in the GME 

program: 

   

       

 

   

                  (44) 

      
       

 

   

             (45) 

 

By solving such a GME program, the scale-dependent coefficients    
      are estimated at the 

output industry levels corresponding to 2009.  

 

In a similar fashion, a non linear IO model like (11) for quantifying the effect of final demand 

shocks in the variations of jobs by industry has been estimated as well. The data on which this 

estimation is based on are the number of persons engaged by industry, obtained from the 

WIOD database for Spain 1995-2009 as well. Now, a GME program like the one depicted in 

equations (36) to (39) is implemented, including as constrain the information that relates 

output levels with the number of jobs by industry in our sample by the expression: 

             
            ;                 (46) 

                                                 
4
 Note that this implies that the estimation of the non-linear IO model without the sample information 

contained in equations like (29) will get as solution the traditional linear IO model.  
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The same logic as in the GME program for estimating the previous non linear IO model applies 

here as well. A support vector with     points has been considered again, setting the 

central value as      and the lower and upper limits as      and      respectively. The 

traditional three-sigma rule has been applied for the supporting vector of the error terms.  

 

Note that our estimates of these coefficients are by definition exactly equal to the traditional 

technical and labor coefficients for this “base” year if the estimates of the errors are 

considered as well: 

       
                

        
             , (47) 

      
             

  
     

    
    

                (48) 

 

but it allows for estimating different coefficients (and therefore different output and job 

multipliers) if the industry outputs are assumed to change from the 2009 levels. Denoting by 

    the simulated output levels, these estimates will be defined by the expressions: 

    
              

        
 (49) 

   
          

  
  

    
    

 (50) 

 

Following these ideas, the non linear matrices of output and jobs multipliers,          
  

  

and       respectively, have been estimated for the Spanish economy from the mentioned 

series of IO tables from 1995 to 2009.  

 

<<Insert Tables 1 and 2 about here>> 

 

Tables 1 and 2 show the GME estimates of the     and   
  parameters respectively. Focusing in 

Table 1, there are not large differences with respects of the linear model (     ), but one can 

still detect some patterns.5 For example, the sector composed by the Coke, Refined Petroleum 

and Nuclear Fuel industries (column i6) seems to present systematically estimates smaller than 

one, indicating that increases in the output of this sector derived from a positive shock in its 

final demand will result in smaller effects generated on the output of other sectors if the 

output when the output of this industry is relatively high. A similar situation, but to a lesser 

                                                 
5
 The highest 10% of estimates in Table 1 are written in bolds, whereas the smallest 10% are underlined 

and written in italics 
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extent can be observed for the branches of Electricity, Gas and Water Supply (i10) and FIRE 

services and other business activities (i15).  

 

Oppositely, it is possible to identify some industries where the additional intermediate inputs 

required to produce additional output is an increasing function of   . This can be seen, for 

example, for the sector composed by the Hotel and Restaurant industries (column i13), where 

the     estimates corresponding to the intermediate inputs from Transport, post and 

telecommunications (i14) or FIRE services and other business activities (i15) are among the 

highest ones. Something similar happens with the Sale, maintenance and trade industries 

(column i12), with estimates of this parameter larger than one for the intermediate output 

from Basic Metals and Fabricated Metal (i8), Machinery, equipment and n.e.c. manufacturing 

(i9), Electricity, Gas and Water Supply (i10) and Construction (i11). In all these cases the scale-

dependent technical coefficients    
      are estimated to be increasing on the output levels, 

producing higher output multipliers at higher values of the industry outputs. 

 

Table 2 reports the estimates for the   
  parameters. Again the results are not very different 

form the unit values, but they allow for identifying two groups of industries. Only Agriculture, 

Hunting, Forestry and Fishing (i1), Wood, pulp and paper (i5), Chemicals, rubber, plastics and 

non-metallic mineral (i7), Construction (i11) and, specially, Textiles, Leather and Footwear 

products (i4) present estimates larger than 1, indicating that only for these cases labor 

coefficients   
      increasing on the output levels are estimated. Note that this implies that for 

these industries one should expect higher output multipliers for higher values of their outputs, 

and the opposite case happens for the remaining 12 industries.  

 

In order to illustrate the usefulness of such non-linear IO models, a small numerical 

experiment has been carried out. This simulation will generate 100 different output levels 

      by industry departing from the original values at 2009. These simulated outputs are 

generated as                          . Then, the non-linear intermediate inputs and 

labor coefficients,     
       and     

       respectively, are calculated based on equations (49) 

and (50). This will allow estimating a matrix of labor multipliers defined as       

               
  

 that will be different for each simulated output.  The mean and the 

standard deviation of each element     
       on this matrix are computed along the 

simulations, allowing for computing the bounds of “confidence intervals” for the labor 
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multipliers defined as the mean   three times the standard deviation. Table 3 shows the 

difference (in %) between the upper and lower bounds for each cell of matrix      . 

 

<<Insert Table 3 about here>> 

 

Results in Table 3 seem to suggest that the variability in the estimates of the labor multipliers 

can be substantial depending on the output level for which these multipliers are calculated. 6 

Not surprisingly, the sector of Coke, Refined Petroleum and Nuclear Fuel industries (column 

i6), where the estimates of the     parameter where remarkably different (smaller) from 1, 

and the sector of Textiles, Leather and Footwear products (row i4), where the   
  parameter 

had the highest estimate are those presenting the largest differences between the bounds.  

 

Just to have a clue about what differences in the calculation of the labor multipliers can 

represent in jobs, Figures 1 and 2 plot the estimated     
       elements (i.e., the additional 

jobs in industry j generated by an increase in the final demand of this industry j) for the sectors 

of Construction (i11) and FIRE services and other business activities (i15). Specifically, these 

figures show how many jobs (in thousands of persons engaged) are generated by all the 

multiplier effects derived of 1 billion of US$ increase on their final demand. 

 

<<Insert Figures 1 and 2 about here>> 

The vertical axis in both graphs represents the total additional jobs generated, whereas the 

horizontal axis contains the output levels simulated expressed as a % difference with respect 

to the 2009 levels. The grey points show the job multipliers estimated for each level of output, 

whereas the horizontal black line marks the reference of the estimate under a traditional 

linear IO model like (11). These two industries taken for the example illustrate how the use of 

such non-linear IO modelling can add some additional information to the standard derivation 

of IO multipliers: it allows for establishing a range of plausible values for the estimated 

multipliers (the impact on the number of additional jobs created ranges approximately 

between 14,600 and 15,600 in the Construction industry or between 7,800 and 8,200 in the 

case of FIRE services and other business activities). 

 

 

                                                 
6
 The highest 10% of estimates in Table 3 are written in bolds, whereas the smallest 10% are underlined 

and written in italics 
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6. An illustration: output and labor multipliers in the Spanish economy with a 
non-linear IO model for 2009 

 

This paper basically presents a proposed technique to estimate empirically the parameters 

characterizing a non-linear IO model with scale-dependent coefficients. The idea of the non-

linear IO model itself is not new itself, but it has been deserved some attention in the IO 

literature. However, this attention has been normally focused on theoretical characteristics of 

the model (see Chander, 1983; or Fujimoto, 1986; among others), but not in its possible 

empirical implementation.  

 

The lack of datasets large enough for applying traditional econometrics has prevented IO 

researchers from conducting empirical applications of such models, with the exception of CGE 

practitioners who base their computations on an IO model in the core of their models and the 

calibration (not estimation) of the necessary parameters. However, during the last years 

several projects for developing global IO databases have flourished (like WIOD, Exiopol or 

Eora), which can be helpful for expanding the sample sizes with the required data to conduct 

empirical estimations of non linear IO models. Moreover, alternative estimation techniques 

can be safely applied even in situations with relative small datasets. Entropy Econometrics, in 

general, and the technique known as Generalized Maximum Entropy (GME), in particular, can 

be considered for its potential application in this field.  

 

In this paper it is shown how the GME estimator can be applied for estimating IO models 

characterized for having scale dependent coefficients. Its flexibility allows for including all the 

data available in one sample, keeping at the minimum the distributional assumptions about 

the error, but including at the same time all the constrains necessary to guarantee that the 

estimated model holds a series of properties. Its performance is illustrated by estimating a non 

linear IO model for quantifying the labor multipliers by industry in the Spanish economy, taking 

advantage of the homogenous series of IO tables compiled in the WIOD project. The results 

obtained by means of a small numerical experiment show the potential of such type of 

modeling, since it allows for calculating “confidence intervals” to the estimates of the 

multipliers, which can contribute to enrich the analysis performed by a traditional IO model 

with fixed coefficients.  

 

Even when the results presented in this paper are encouraging, this line of research still has 

several topics to study in the future. One important issue that should be considered is the 
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robustness of the estimates obtained by the proposed estimator to changes in some of the 

assumptions. When GME estimators are applied to datasets characterized by small sample 

sizes, sensitivity analysis are useful to quantify the effect of the a priori information imposed 

by the researcher on the outcomes of the estimation: if the results are highly sensitive to the 

non-sample information included in the support vectors, this is a signal that the GME 

estimates are not robust. This type of questions, together with additional empirical 

applications not based only on a time series for a single country, but considering a panel of 

homogenous IO tables should be in the center of the research agenda on this field. 
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Table 1: GME estimates of the     parameters  

 

 

 

 

 

 

 

 

     i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 i13 i14 i15 i16 

i1 1.048 0.933 0.986 0.937 0.991 0.589 1.057 0.872 0.964 0.771 0.806 0.922 0.897 0.959 1.048 0.933 
i2 1.026 1.083 1.052 1.073 1.055 0.957 1.097 1.024 1.060 0.718 0.949 0.983 1.004 1.002 1.026 1.083 
i3 0.956 0.917 0.967 0.846 0.937 0.691 0.932 0.874 0.769 0.935 0.824 0.923 1.008 0.893 0.956 0.917 
i4 1.004 0.991 1.017 1.039 1.039 0.615 0.993 1.017 0.973 0.944 1.014 0.983 0.973 1.010 1.004 0.991 
i5 1.041 0.919 0.917 1.052 0.978 0.405 0.984 0.966 0.962 0.956 0.903 0.981 0.923 0.843 1.041 0.919 
i6 0.859 0.943 1.032 1.065 1.014 1.084 0.938 0.981 0.959 0.935 0.804 0.963 0.933 0.932 0.859 0.943 
i7 0.935 0.870 1.020 0.939 0.956 0.560 0.980 0.903 0.936 0.889 0.913 0.995 0.923 0.922 0.935 0.870 
i8 1.019 1.002 0.975 1.067 1.023 0.452 1.064 1.006 1.001 0.965 0.962 1.052 0.952 0.984 1.019 1.002 
i9 1.002 1.049 1.070 1.064 1.008 0.623 1.038 1.021 1.056 0.943 0.984 1.051 1.000 1.037 1.002 1.049 
i10 0.992 0.993 1.072 1.029 1.021 0.552 1.053 1.010 0.900 1.069 0.928 1.044 1.043 0.981 0.992 0.993 
i11 1.002 0.996 0.986 1.015 1.016 0.562 1.040 0.956 0.936 1.017 1.074 1.039 0.984 1.078 1.002 0.996 
i12 0.999 0.933 1.010 0.926 1.038 0.857 0.995 0.942 0.913 0.915 0.911 0.986 1.034 1.034 0.999 0.933 
i13 1.046 0.921 1.044 1.025 0.988 0.488 0.987 0.884 0.931 0.982 0.982 0.958 1.002 0.987 1.046 0.921 
i14 1.055 1.003 1.052 0.877 0.982 0.511 0.982 0.933 0.840 1.067 0.951 1.034 1.074 1.045 1.055 1.003 
i15 1.019 1.021 0.957 0.922 0.968 0.378 1.001 0.906 0.891 1.024 0.980 1.056 1.063 1.042 1.019 1.021 
i16 0.993 0.916 1.048 0.953 1.036 0.475 1.001 0.910 0.841 1.026 0.990 0.995 1.061 1.073 0.993 0.916 



20 
 

Table 2: GME estimates of the   
  parameters  

Industry number    
  

i1 1.135 

i2 0.857 

i3 0.970 

i4 1.470 

i5 1.115 

i6 0.982 

i7 1.037 

i8 0.979 

i9 0.948 

i10 0.864 

i11 1.100 

i12 0.868 

i13 0.948 

i14 0.781 

i15 0.874 

i16 0.834 
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Table 3: % differences between the upper and lower bounds of the estimates of      
         

 
i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 i13 i14 i15 i16 

i1 7.38% 7.41% 7.65% 9.77% 7.38% 25.00% 7.69% 8.93% 8.86% 8.33% 10.10% 8.60% 7.93% 7.46% 7.69% 9.76% 

i2 15.38% 7.91% 10.00% 11.11% 5.26% 8.33% 9.88% 7.79% 12.00% 18.13% 8.57% 8.33% 10.00% 8.33% 11.11% 10.00% 

i3 2.99% 5.56% 2.23% 8.82% 2.27% 16.67% 5.13% 5.00% 9.09% 0.00% 5.00% 3.57% 2.15% 0.00% 7.14% 2.27% 

i4 36.84% 38.89% 34.48% 37.15% 34.48% 66.67% 35.71% 36.00% 37.70% 30.00% 35.00% 37.50% 38.46% 42.11% 33.33% 36.00% 

i5 6.49% 7.50% 8.11% 6.90% 6.72% 40.00% 7.03% 6.72% 7.35% 7.14% 7.37% 6.25% 7.77% 7.14% 9.48% 7.91% 

i6 0.00% 9.09% 0.00% 0.00% 0.00% 0.80% 11.11% 0.00% 50.00% 8.33% 0.00% 0.00% 50.00% 8.33% 0.00% 0.00% 

i7 3.72% 5.99% 2.10% 4.03% 3.49% 30.30% 1.91% 5.62% 3.78% 4.81% 4.40% 1.79% 2.13% 3.17% 3.19% 2.44% 

i8 1.60% 1.34% 1.80% 2.13% 1.67% 35.14% 3.08% 1.39% 1.49% 2.20% 1.62% 2.17% 1.22% 2.44% 1.41% 1.56% 

i9 2.80% 2.77% 3.08% 3.02% 2.95% 25.93% 3.24% 3.16% 2.74% 3.77% 2.82% 3.38% 3.23% 3.74% 3.26% 2.84% 

i10 6.00% 7.38% 7.14% 7.94% 7.32% 33.33% 7.77% 6.74% 7.41% 7.16% 8.11% 6.56% 7.50% 6.38% 7.69% 6.82% 

i11 8.61% 8.75% 8.80% 8.93% 8.74% 32.14% 8.76% 9.76% 10.04% 8.52% 8.78% 9.21% 9.04% 9.04% 8.69% 8.80% 

i12 7.66% 8.19% 7.66% 8.71% 8.03% 15.35% 7.69% 8.96% 9.14% 8.48% 8.60% 7.63% 7.70% 8.46% 8.01% 7.49% 

i13 2.86% 4.29% 2.74% 5.08% 3.03% 33.33% 3.03% 6.35% 5.17% 2.17% 2.82% 2.70% 2.85% 2.97% 4.40% 3.45% 

i14 13.62% 13.37% 13.58% 16.34% 13.60% 38.40% 13.41% 13.42% 14.82% 13.40% 13.23% 13.99% 13.89% 13.38% 13.83% 13.86% 

i15 7.58% 7.57% 7.74% 8.57% 7.64% 40.38% 7.45% 9.17% 9.14% 7.59% 7.46% 7.62% 7.68% 7.85% 7.50% 7.95% 

i16 10.42% 10.84% 10.57% 11.02% 10.52% 37.74% 10.22% 12.70% 12.39% 10.53% 10.48% 10.35% 10.26% 11.14% 10.30% 10.23% 
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Figure 1: estimates of labor multipliers for Construction (i11) in the simulation 
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Figure 2: estimates of labor multipliers for FIRE services and other business activities 
(i15) in the simulation 
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Appendix: industry classification 

Industry number Industry description 

i1 Agriculture, Hunting, Forestry and Fishing 

i2 Mining and Quarrying 

i3 Food, Beverages and Tobacco 

i4 Textiles, Leather and Footwear products 

i5 Wood, pulp and paper 

i6 Coke, Refined Petroleum and Nuclear Fuel 

i7 Chemicals, rubber, plastics and non-metallic mineral 

i8 Basic Metals and Fabricated Metal 

i9 Machinery, equipment and n.e.c. manufacturing 

i10 Electricity, Gas and Water Supply 

i11 Construction 

i12 Sale, maintenance and trade 

i13 Hotels and Restaurants 

i14 Transport, post and telecommunications 

i15 FIRE services and other business activities 

i16 Other services  

 
 


