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Abstract 
Temporal benchmarking according to Denton (1971) is widely used in the production process of 
statistical offices. Statistics Netherlands has been using a multivariate Denton method for the 
compilation of large, fully consistent, quarterly and annual  supply and use tables. The purpose of  
Denton methods is to achieve consistency between high and low frequency data (e.g. quarterly 
with annual data). The high frequency data are adjusted to align with the low frequency data, 
while preserving as much as possible the short-term movements of the preliminary high 
frequency data. It is often claimed that the Proportionate First Differences (PFD) variant of 
Denton's benchmarking, which is the most used in practice, is a close approximation of the 
Growth Rates Preservation (GRP) benchmarking, which is considered as an 'ideal' benchmarking 
procedure to preserve short term movements of the indicator series. In addition, the PFD 
criterion is more often applied, because the resulting mathematical problem is easier to solve. In 
this paper we will search for empirical examples, from Dutch Supply and Use Tables, in which PFD 
does not work as expected. Examples in which the dynamics of the indicator series is not 
preserved well by Denton PFD benchmarking, whereas GRP benchmarking works better, are 
shown. A second aim of the paper is to present simple heuristic procedures that approximate the 
GRP criterion in the multivariate case, whose implementation involves the solution of a standard 
quadratic-linear problem instead of a linearly constrained non-linear one. The heuristics will be 
empirically compared with PFD and GRP in order to evaluate their possible ability to preserve the 
preliminary growth rates better than the PFD procedure. 

 
*Thanks to Coen Leentvaar, Jeroen Pannekoek, Nino Mushkudiani, Reinier Bikker and Ronald van der Stegen 

† Thanks to Marco Marini. 



1. Introduction 

Benchmarking monthly and quarterly series to annual data is a common practice in many National 
Statistical Institutes. The benchmarking problem arises when time series data for the same target 
variable are measured at different frequencies with different level of accuracy and there is the 
need to remove discrepancies between annual benchmarks and corresponding sums of the sub-
annual values. 
Usually, the low frequency (or annual) data sources describe levels and long-term trends better 
than the high frequency (sub-annual) sources. The latter, on the other side, provide the only 
information on the short-term movements. Therefore in benchmarking, the low-frequency 
benchmarks are fixed, while preserving as much as possible the short-term movements of the sub 
annual sources. 
Several benchmarking methods are available in the literature. Multiplicative methods try to 
preserve the relative changes of the preliminary high-frequency time series, while additive 
methods are aimed to preserve the changes in absolute terms. In this paper the focus will be 
solely on multiplicative variants of benchmarking. 
One of the most popular multiplicative benchmarking procedures is the Proportional First 
Differences (PFD) Denton method (Denton, 1971), which attempts to keep the relative differences 
between the benchmarked and the preliminary data as constant as possible over time. 
Mathematically, the Denton method deals with a linearly constrained quadratic optimization 
problem, for which many efficient solution techniques exist. 
A second method, the Growth Rates Preservation (GRP) benchmarking procedure by Causey and 
Trager (1981; see also Trager, 1982, and Bozik and Otto, 1988) minimizes the sum of the squared 
differences between the growth rates of the target and of the preliminary series. Bloem et al 
(2001, p.100) claim that this objective function is grounded on an ``ideal” movement preservation 
principle, “formulated as an explicit preservation of the period-to-period rate of change'' of the 
preliminary series. This benchmarking procedure basically looks for a solution to a linearly 
constrained non linear problem. For large scale applications, specialised optimization software is 
needed in order to find the optimal solution. 
Both methods, PFD and GRP, can be applied in univariate and multivariate situations. 
In the univariate case, there can only be temporal constraints, coming from the needed 
consistency between subannual time series and annual benchmarks. In the multivariate case 
there are also constraints between different time-series, usually valid at each time, the so-called 
contemporaneous constraints.
Because of the technical difficulty of applying GRP, Denton PFD is often used, despite its weaker 
theoretical foundation. For example, the Denton approach is used for reconciling Dutch National 
Accounts (see Bikker et al., 2013). The aim of this paper is to present two new heuristics that 
better preserve the initial growth rates than Denton PFD and that are at the same time much 
easier to implement than standard GRP benchmarking and reconciliation procedures. 
The results of this papers are useful to practitioners in the field, who will be able to obtain 
accurate results by using simple, understandable and easy to implement procedures. 
First, in Section 2, we will show an example from Dutch Supply and Use Tables, that illustrates 
that Denton PFD leads to suboptimal results. In Section 3 a formal description of Denton PFD and 
GRP benchmarking will be given. The multivariate case is the topic of Section 4. Thereafter, in 
Section 5 two new heuristics will be presented. In Section 6 several empirical results will be given. 
Finally, Section 7 concludes this paper. 



1

2. An example from Dutch SUT 

In the literature (Cholette, 1984, Bloem et al., 2001, Dagum and Cholette, 2006) it is often claimed 
that the Denton PFD procedure produces results very close to the GRP benchmarking. Di Fonzo 
and Marini (2010) explain that the approximation worsens if the preliminary series have a large 
variability and/or a large bias with respect to the annual benchmarks. Some empirical examples 
are shown in Harvill Hood (2005) and Titova et al. (2010). In this section we will add one example 
obtained from a data set of Dutch Supply and Use Tables (SUT)3.
In the example twelve quarters are benchmarked to three years. The example is of some case 
with high variability. Figure 1 compares the results of GRP with Denton PFD.
The most remarkable difference occurs in Quarter 9. At first sight the differences in results may 
seem minor, but these are more apparent, if we express the period-to-period changes as a 
percentage, which is done in Table 1. For 8 out of 11 cases, GRP better preserves the initial period 
to period changes than Denton PFD.
We refer to Section 6 for a more extensive comparison between Denton PFD and GRP, based on 
several data sets. 
 

Figure1. Case 1. Source data, GRP and Denton PFD results 

 

Table 1. Case 1. Quarter-to-quarter growth rates (%) 
Period 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12
Source -31,0 1,0 5,3 27,5 -62,2 95,2 16,1 12,6 -57,1 67,8 19,2
GRP -30,0 2,1 6,8 29,2 -61,3 95,1 14,7 9,8 -62,4 66,9 18,5
PFD -30,3 2,6 7,7 31,2 -62,2 93,8 13,0 7,0 -58,6 63,0 17,3

3 For confidentiality reasons, The Supply and Use tables have been aggregated to the so-called ‘publication 
level’. 
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3. Formal description of univariate benchmarking methods 

Because the temporal aggregation constraints are the same for Denton PFD and GRP, these are 
described first. Thereafter Denton PFD and GRP benchmarking procedures are explained. 

3.1 General notation and temporal constraints 
Let ��, � = 1,… ,�, and pt, t = 1,..,n, be, respectively, the temporal benchmarks and the high-
frequency preliminary values of an unknown target variable xt.
Let s be the aggregation order (e.g., s=4 for quarterly-to-annual aggregation, s=12 for monthly-to-
annual aggregation, s=3 for monthly-to-quarterly aggregation), and let A be a (N×n) temporal 
aggregation matrix, converting n high-frequency values into N low-frequency ones (we assume 
n=sN). If we denote with x the (n ×1) vector of high-frequency values, and with b the (N×1) vector 
of low-frequency values, the aggregation constraints can be expressed as Ax =b.
Depending on the nature of the involved variables (e.g., flows, averages, stocks), the temporal 
aggregation matrix A is usually written as 
 

� = �� ⊗ ��, (1) 

 
where the (s ×1)vector a may assume one of the following forms: 

1. Flows: � = �� = �1,… ,1��,
2. Averages: � = �

� ��,
3. Stocks (end-of-the-period): � = �0,… ,0, 1��,
4. Stocks (beginning-of-the-period): � = �1,0,… ,0��.

For flow variables the sum of s subannual values need to be in line with the annual benchmark. 
That is:� ��∗ = ��, � = 1,… ,�.�∈�  
Denoting by p the vector of preliminary values (in general it is Ap≠b, otherwise no adjustment 
would be needed), we look for a vector of benchmarked estimates x* which should be `as close as 
possible' to the preliminary values, and such that Ax*=b.
To this end, some characteristics of the original series p should be kept into consideration. For 
example, in an economic time series framework, the preservation of the temporal dynamics 
(however defined) of the preliminary series is often a major interest of the practitioner. 

3.2 Growth Rates Preservation (GRP) 
For flows series, Causey and Trager (1981; see also Monsour and Trager, 1979, and Trager, 1982) 
consider a criterion to be minimized explicitly related to the growth rate, which is a natural 
measure of the movement of a time series: 
 

���� =�� ������ −
��
�����

�
,

�

���
(2)

and search for values ��∗, t = 1,…, n, which minimize the criterion (2) subject to the aggregation 
constraints � ��∗ = ��, � = 1,… , �.�∈�  In other words, the benchmarked series is estimated in 
such a way that its temporal dynamics, as expressed by the growth rates ��∗

����∗ , be as close as 

possible to the temporal dynamics of the preliminary series, where the `distance' from the 
preliminary growth rates� ������ is given by the sum of the squared differences. 

In this paper we consider a more general formulation of the GRP benchmarking problem, valid not 
only for flows variables, that is: 
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min� ���� subject to �� = � (3)

where A is the temporal aggregation matrix (1). The criterion (2) is clearly a non-linear and also a 
non-convex function. The constrained minimization problem (3) has not linear first-order 
conditions for a stationary point, and thus it is not possible to find an explicit, analytic expression 
for the solution. On the other hand, provided that both pt and xt, t= 2,…,n-1, be different from 
zero, f(x) is a twice continuously differentiable function, which makes it possible to use several 
iterative minimization algorithms (Nocedal and Wright, 2006). 
 

3.3 Modified Denton PFD 
Denton (1971) proposed a benchmarking procedure grounded on the Proportionate First 
Differences (PFD) between the target and the original series. Cholette (1984) slightly modified the 
result of Denton, in order to correctly deal with the starting conditions of the problem. The PFD 
benchmarked estimates are thus obtained as the solution to the constrained quadratic 
minimization problem 
 

min�� ���� =������ −
����
�����

�
,

�

���
subject to �� = �.

(4)

In matrix notation, the PFD benchmarked series is contained in the (n ×1) vector xPFD solution to 
the linear system (Di Fonzo and Marini, 2010) 
 

�� ��
� � � �

����
λ � = ����,

(5) 

where λ is a (N ×1) vector of Lagrange multipliers,�� = �������� ���,� = diag���and Δn is the 
((n-1) ×n) first differences matrix 
 

�
�
−1 1 0
0 −1 1

⋯
⋯

0 0
0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0
0 0 0

⋯
⋯

1 0
−1 1�

�. (6)

Notice that������ has rank n-1 (Cohen et al., 1971, p. 122), so M is singular. However, given that 
matrix A has full row rank, and provided no preliminary value is equal to zero4, the coefficient 
matrix of system (5) has full rank (Di Fonzo and Marini, 2010). Then,�����can be obtained from 
 

�����λ � = �� ��
� � �

��
����.

(7)

Alternatively, a solution can be obtained from the so-called augmented form of the problem, see 
Appendix A.1. This approach requires the computation of the inverse of one (n ×n) and one (N ×N)

matrix. For comparison, �� ��
� � � in (7) is a (N+n) square matrix. To the best of our knowledge, 

 
4 When some pt is null, the growth rates of the preliminary data are not defined. As mentioned in Bikker et 
al. (2013) a multivariate benchmarking model is not appropriate. A possible solution (see, for example, 
Cholette and Chhab, 1991, p. 413) consists in setting the originally null preliminary data at a very small 
value, e.g. pt=0.001. This may however result in unstable results. 
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the expression of Denton’s PFD benchmarking through the augmented form has not been 
previously mentioned in the literature. 
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4. The multivariate case 

4.1 General notation and temporal constraints 
 
Let us consider m vectors of (n×1) high frequency preliminary values� �� and of (N×1) benchmark 
(low frequency) data. In a typical multivariate reconciliation problem, the researcher is looking for 
reconciled values� ��, j = 1,…,m which are in line with temporal and contemporaneous constraints. 
The vectors ��and ��are combined in the (mn×1) vectors x and p. That is: 
 

� = �
��
⋮
��
�, � = �

��
⋮
��
�

For each time-series there the number of temporal constraints is N. Therefore, the total number 
of these constraints is Nm. Suppose that at each period, k contemporaneous constraints apply. 
Thus, the total number of these constraints is nk.
As shown in Di Fonzo and Marini (2011), all constraints can be expressed in matrix form as 
follows: 
 

�� = ��. (8)

where �� is a ((nk + mN)×1) vector of contemporaneous and temporally aggregated values: 
�� = ��������, with z a (nk×1)vector of high frequency contemporaneously aggregated values, 
and��� = ����⋯� ���� �� is a (mN×1) vector of m temporally aggregated vectors. In general, it holds 
that Hp ≠ ��, i.e. the provisional data do not satisfy all constraints. 
 

4.2 Multivariate GRP and multivariate Denton PFD 
The multivariate extensions of GRP and Denton PFD are given by (Di Fonzo and Marini, 2012): 
 

min��� ���� =��� �������� −
���
������

��

���
,

�

���
subject to �� = �� (9)

min��� ���� =��������� −
�����
������

��

���
,

�

���
subject to �� = �� (10)

respectively, where ���and ����denote the preliminary and reconciled subannual values of time-
series j at period t.
Analoguous to the univariate case, it is not possible to derive an analytical expression for the 
solution of GRP.
The Denton PFD benchmarked series xPFD  is contained in the (mn×1) vector solution to the linear 
system (Di Fonzo and Marini, 2010) 
 

�� ��
� � � �

����
λ � = � ����,

(11)

where λ is a ((nk + mN)×1) vector of Lagrange multipliers and 
 

� = ���������, (12)



6

� = diag��� and Δ is a (m(n-1) × mn) matrix, defined by Δ= diag����, in which all m matrices 
��are the ((n-1) × n) first difference matrix ��, as given in (6). 
It should be noted that, unlike the univariate case, this coefficient matrix is not necessarily 
invertible. For example, the coefficient matrix is not invertible if some of the rows of � are lineary 
dependent. This happens if one of the constraints can be expressed as a linear combination of the 
other constraints. 

The linear system has a solution only provided that the vector � ���� lies in the range space of the 

coefficient matrix �� ��
� � �. The system can be solved in a direct way through an appropriate 

factorization of the coefficient matrix, a facility offered by most of the mathematical software 
used by the practitioners (we used Matlab, but Gauss, SAS, R could work as well). 
Alternatively, the approach of the augmented problem can be followed (see Appendix A.2). This 
approach requires the computation of one ((nk + mN)×1) matrix and m times the  inverse of a (n x 

n) matrix. For comparison, the coefficient matrix �� ��
� � � in (11) is a square matrix of 

dimension(mn + nk + mN), where mn is the number of variables and nk + mN the number of 
constraints. In most large-scale practical situation, we have that mn>>nk + mN, from which it 
follows that using the augmented problem, instead of the standard approach, may lead to a 
computational gain. 
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5. Two new heuristics 

In this section the two new iterative heuristics are described for the multivariate case. The 
univariate problem is a special case in which m, the number of series, is one. 

5.1 Heuristic Growth Rates Preservation (HGRP)
The first heuristic is based on a relationship between the GRP function in (9) and the PFD criterion 
in expression (10): 
 

��� �������� −
���
������

��

���
= ��� �������� �

���
��� −

�����
�������

��

���

�

���

�

���
(13)

The idea is to exploit relationship (13) by considering at a first stage a feasible estimate of the 
series of interest, say��� , and (ii) by using it in a Weighted Denton PFD procedure (WPFD) aimed at 
minimizing the weighted PFD criterion 
 

min��� ������ �
���
��� −

�����
�������

��

���

�

���
, subject to �� = ��, (14)

where the weights w�� are defined by: 
 

��� = ���
������, � = 1,… ,�; � = 2,… , �. (15)

The solution of this problem will be denoted by xWPFD[1].
The objective function in (14) approximates the GRP function in (13). The more ��� resembles the 
GRP results, the better this approximation. Consequently, the solution of (14) can be considered 
as an approximation of the optimal GRP solution. 
Provided that the two steps shown so far (the estimation of �� and then of xWPFD[1]) give an 
improvement in the GRP criterion, i.e. 
 

����������� < ����� ,

where function f(.) is the global GRP criterion defined in (9), we can iterate by updating the 
weights in (15). That is, by using xWPFD[1] in (15) instead of ��. Thereafter, the minimization problem 
(14) is solved again, using the updated weights, from which we obtain a new solution ��������.
The process is repeated until no improvement in the global GRP criterion (9) is found. As a result a 
sequence of solutions is obtained, that are hoped to finally converge to the GRP result. 
The iterative procedure starts with a feasible solution ��.� In order to find such a solution we can 
apply a multivariate Denton PFD procedure, i.e. the solution to problem in (14) with all weights 
set to one. 
The new estimate, say �����, can be obtained from the linear system 
 

�� ��
� � � �

�����
λ � = � ����,

where Q = �����������, and W = diag(w) with dimensions m(n -1)× m(n - 1). 
A more formal description of the stopping criterion will be based on the measure ��
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uv �
�n�v��p  ���w�

���v��� � x � ��� ��y�

where k denotes the iteration and f stands for the GRP criterion in (9).The iterations proceed for 
uv z {��where ε is a small tolerance value, usually set at 1e-6. 
When the iterations terminate, the `Heuristic GRP' (HGRP) benchmarked series are given by 
 

c|}~< � � cvcv��
,� � q uv q �
,� uv q �

The heuristic can be summarised as follows: 
Step 1:  Apply Denton PFD, call its solution cY[\ ; 
Stepk: with k >1: 

- Update the weights in (15), by using   cYv��\instead of�cd .
- Apply Weighted Denton PFD (14),using the updated weights, to obtain the solution cYv\.
- Stop, if the stopping criterion, based on (16), is fulfilled. 

We will show in Section 6 that the iterated procedure can be considered as an `heuristic' 
approximation of the `true' GRP benchmarking procedure. It provides good quality results both in 
terms of precision of the estimates, the degree of movement preservation cannot be less than 
that of Denton PFD, and of simplicity of the implied mathematics, the procedure is just a small 
extension to Denton PFD.
In practical situations, we have found that very few iterations are needed to converge at the final 
estimates, and that performing only one iteration leads to a considerable improvement over 
Denton PFD already. 
 

Example 1 

We consider a simple example to illustrate the procedure. In this example 6 monthly preliminary 
values are benchmarked to 2 quarterly totals. The monthly values are (80, 100, 80) for the three 
months within both quarters. The two quarterly benchmarks are 300 and 200, respectively. For 
both quarters the sum of the three benchmarked monthly values has to be the same as the 
corresponding quarterly benchmark. The result of Denton PFD and the heuristic procedure are 
shown in Table 2. The GRP criterion in the last column refers to the measure in formula (2). The 
weights are defined in (15). 
The first iteration is the best iteration, it leads to the lowest GRP criterion value. The iterations are 
stopped after the second iteration, because u# has a negative value: u# � �0.0609 – 
0.0688)/0.0609. 
 
Table 2. Results of Example 1. 

M1 M2 M3 M4 M5 M6 
GRP-
criterion 

Preliminary 80.00 100.00 80.00 80.00 100.00 80.00
Denton PFD 98.41 117.50 84.09 69.76 74.80 55.44 0.0743
- weights(1) 1.02 0.68 0.95 1.43 1.07
HGRP 1st it. 100.35 120.94 78.71 65.36 76.61 58.04 0.0609
- weights(2) 1.00 0.66 1.02 1.53 1.04
HGRP 2nd it. 102.77 125.34 71.89 63.00 77.25 59.75 0.0688
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5.2 Taylor linearization of the GRP objective function (TLGRP) 
The second heuristic is based on Taylor linearization of the ratios 

 ���
����� , � = 1,… ,�; � = 2,… , �

within the GRP objective function in (9). 
First-order Taylor linearization around the points �������,������ leads to: 
 

���
����� ≃

����
������ +

1
������ ���� −

����
������ ����� �. �17�

After substitution of (17), we obtain the following GRP objective function 
 

min��� ��� 1
������ ���� −

����
������ ����� � +

����
������ −

���
������

�
,

�

���

�

���
�18�

i.e. a sum of squared linear terms. The optimization problem can also be written as 
 

min��� ����������� + ������ + �����,
�

���

�

���
subject to �� = ��, �19�

where 
 

��,� = −
����

���������
, ��� =

1
������, ��� =

����
������ −

���
�����.

Because of the linear terms, the objective function in (19) is technically easier to solve than the 
GRP objective function in (9). 
It can be expected that the solution of (19) closer approximates optimal ‘GRP’ than the vector of 
input data x. We can exploit this result in the development of a ‘ Newton-like’ iterative procedure. 
In this procedure Taylor approximation is applied repeatedly, each time around different points, 
that closer and closer approximate the GRP-result. 
In the first iteration the preliminary values are used, leading to a first approximation of GRP. In 
the second iteration we apply Taylor iteration again around the outcomes of the first iteration. 
Since the linearization is performed around a closer to optimal point, it can be expected that the 
result of the second iteration will also be closer to optimal GRP. If this is actually the case, a third 
iteration is performed. The process stops if no improvement in the GRP criterion is found. 
We now proceed to explain how the problem in (19) can be solved. For this purpose, we consider 
the band-diagonal matrices Mj, j =1,…,m, each of dimensions (n-1 ×n), whose non-zero items are 
given by 
 

������,���� = ���, ������,�� = ���, j = 1,…,m, t = 2,…,n

meaning that: 
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�� =

�
�
�
�
���,� ��,� 0
0 ��,� ��,�

⋯
⋯

0 0
0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0
0 0 0

⋯
⋯

��,��� 0
��,� ��,��

�
�
�
�
.

Given the (n– 1×1) vectors 
 

��=���,���,� ⋯ ��,��� , � = 1,…�,

it is easy to check that the objective function in (19) can be written as 
 

������ + ���� ����� + ���.
�

���
�20�

or in matrix form 
 

��� + ��� ��� + ��. �21�

where M = diag(Mj) and � = ���� ⋯��� ��.
The minimization of function in(20) subject to the constraints Hx = �� is rather straightforward: 
given a ((nk + mN)×1) vector of Lagrange multiplier λ, the optimal solution is obtained by solving 
the linear system 
 

���� ��
� � � �

�
��=�

−��
�� �, �22�

Notice that matrix ��� in the top-left part of the coefficient matrix of system (22) has not full 
rank, and thus the formula for the inverse of a partitioned matrix cannot be applied. This means 
that the benchmarked estimates according to the objective function (20) are given by vector��� in 
the following expression: 
 

����� = �
��� ��
� � �

��
�−���� �. �23�

The heuristic can be summarised as follows: 
 
Step 1:  Apply Taylor linearization about the preliminary values5, i.e. consider function (17) with 

��� = ��. The solution of system (19) is labelled as����.
Stepk: (with k> 1), Apply Taylor linearization about �����, i.e.��� = �����. The new optimal vector is 

denoted ���.
Convergence condition: Apply the same convergence condition considered for the HGRP 

estimates (see Section 5.1). 
 
We will show in Section 6 that the iterated procedure provides good results that closely 
approximate ‘true’ GRP. The results will be more accurate than that of the HGRP procedure 
explained in Section 5.1. 

 
5 From our experiments on many time series it turned out that it is not necessary to use a benchmarked series 
(e.g., Denton PFD) as starting values. Using the preliminary series does not worsen the final solution nor 
results in more iterations. 
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There are some clear differences between the two heuristics in this paper. The HGRP in Section 
5.1 uses Denton PFD as point of departure. This is not the case in the Taylor linearization 
approach, which is applied directly on the preliminary values. 
The HGRP approach leads to an optimization problem that can be seen as an extension of Denton 
PFD. The Taylor linearization algorithm results in an optimization problem that is rather different 
from Denton PFD.

Example 2 

We continue Example 1 and show the results of the first three iterations of the Taylor 
linearization approach. 
 
Table 3. Results of Example 2. 

M1 M2 M3 M4 M5 M6 
GRP-
criterion 

Preliminary 80.00 100.00 80.00 80.00 100.00 80.00  
Denton PFD 98.41 117.50 84.09 69.76 74.80 55.44 0.0743 
TLGRP1st it. 98.68 120.01 81.31 67.72 77.12 55.16 0.0636 
TLGRP2nd it. 99.95 121.19 78.86 65.71 76.89 57.40 0.0607 
TLGRP3th it. 100.14 121.43 78.43 65.61 76.89 57.49 0.0607 

Here, the third iteration gives the best results in terms of GRP-criterion. Notice that the criterion 
values is better than 0.00609, the optimum value that has been obtained in Table 2. 
 
The TLGRP heuristic can be extended to an algorithm that produces optimal results in all the 
experiments we performed. The extension consists of a so-called line-search procedure, by 
analogy with the line search procedure in Newton’s optimization algorithm. This means that when 
it happens that in iteration k there is no improvement in the GRP-criterion, 
 

���� =��� �������� −
���
������

��

���

�

���
, �l��

we do not stop the iterations, but we search for some α, 0 <α<1, that minimizes f((1-α)xk-1 + αxk).
The kth iteration is performed with ��  u���v�� � u��v instead of �v, where u� denotes the 
optimum value of α and �v is the solution obtained after iteration k. In practise, it is not even 
necessary to find the ‘best’ value of α, rather it suffices to use some value that is ‘close’ to it. 
We will not consider this extension in the remainder of this paper, because it is not a heuristic. 
The further development of the approach would be an interesting topic for further research. 
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6. Empirical results 

In this section we apply the Heuristic GRP (HGRP) and the Taylor linearization approach (TLGRP) to 
real-life test data. In the Subsections 6.1 – 6.4 we consider univariate benchmarking problems. 
These are data sets with many time-series, without any constraints between them. Thus, each 
time-series can be benchmarked in isolation. Thereafter, in Subsection 6.5 we consider a 
multivariate problem, with temporal and contemporaneous constraints. 

6.1 Datasets 
The first two data sets are obtained from quarterly and annual Dutch Supply and Use Tables. The 
second data set contains a small selection of time-series from the original, non-aggregated Dutch 
Supply and Use Tables.6

The third and fourth data set come from the EU Quarterly Sector Accounts (EUQSA) and the 
Canadian Monthly Retail Trade Survey (MRTS); both have been described extensively in Di Fonzo 
and Marini (2011). All data sets contain flow variables only. Table 4 gives the main characteristics 
of these data sets. 
The last row of Table 4 shows a measure of the temporal discrepancy. This measure compares the 
low frequency period-to-period changes of the aggregated high-frequency series with the low-
frequency benchmarks. Table 4 gives the average of the absolute values of these differences, 
measured in percent point. The larger this difference, the more the movement of the provisional 
data needs to be adjusted in order to achieve consistency with the benchmarks. 
From Table 4 it follows that this “average discrepancy”  is the largest for Data set 2. 
 
Table 4. Characteristics of the test data. 

Data set 1 Data set 2 Data set 3 Data set 4
Number of Low-freq.  
benchmarks 3 years 3 years 7 years 13 years 
Number of High-freq.  
periods 

12 quar-
ters 

12 quar-
ters 

28 quar-
ters 

156 
months 

Number of time-series 2,252  372 61 227*

Average discrepancy (in% 
point) 1,84 19,33 2,56 0,72 

*= the original data set contains 236 series. Nine series, for which data are not available for all 13 years 
have been left out. 

6.2 Methods 
The following methods have been compared: 

1. GRP 
2. Modified Denton PFD (as explained in Subsection 3.3) 
3. HGRP (as explained in Subsection 5.1) 
4. TLGRP (as explained in Subsection 5.2) 
5. HGRP1: the result after one iteration of HGRP 
6. TLGRP1: the result after one iteration of TLGRP 

6.3 Criteria 
In order to evaluate the performance of the heuristics we use two criteria. 
The first is based on the so-called GRP gap. The GRP gap compares the GRP criterion value (as 
defined in formula (2)) of the GRP method with the criterion value of some other method. The 

 
6 Due to confidentiality we are not allowed to provide any more information on these data sets. 
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GRP method will by definition lead to the smallest GRP criterion value. The GRP gap is an 
indication of how much worse some alternative method preserves the initial growth rates. 
The first performance criterion shows the relative reduction in GRP-gap, when some heuristic is 
used instead of Denton PFD. That is: 
 

Relative�Reduction�in�GRP�gap = ��������������������� ,

where Heuristic, GRP and PFD stand for the GRP criterion value of those methods. 
The relative reduction of the GRP gap has a clear intuitive interpretation: it is the percentage of 
the potential improvement over Denton PFD that is actually achieved by using a heuristic. A 
relative reduction of zero means that there is no improvement over Denton PFD. On the contrary, 
a relative reduction of one means that some heuristic preserves the growth rates as good as the 
optimal GRP-method. 
The second performance criterion is the relative difference of the GRP-criterion of some heuristic, 
compared to the optimum value: 
 

Relative�Difference�GRP�criterion��RD� = �������������
���

We adopt the same standards as in Di Fonzo and Marini (2012). According to this standard, a 
heuristic result is considered: 
• Best:  if  0  ≤  RD ≤ 0,0001  (i.e. within 0.01% of the optimal solution) 
• Very accurate:  if  0< RD ≤ 0,001   (i.e. within 0.1% of the optimal solution) 
• Accurate: if  0< RD ≤ 0,01  (i.e. within 1% of the optimal solution) 
• Acceptable: if 0 < RD ≤ 0.1  (i.e. within 10 % of the optimal solution) 
• Bad: if RD > 0.1 (i.e. not within 10% of the optimal solution). 
Note that the outcome of the heuristic is either “acceptable” or “bad”. All “accurate” results are 
“acceptable” as well, but the opposite is not necessarily true. 

6.4 Results 
The Tables 5a-b show the minimum, the 10 percent percentile and the median of the relative 
reduction of the GRP gap, taken over all time-series in the data set. 
 
Table 5a. Minimum and median of the relative reduction GRP-gap, over all time-series 

Minimum Median 

HGRP    TLGRP  HGRP1 TLGRP1 HGRP 
 
TLGRP  HGRP1 TLGRP1 

Data set 1 61.50 99.45 61.50 -49.37 99.97 100.00 99.96 99.92

Data set 2 84.07 99.62 79.10 -69.83 99.90 100.00 99.87 99.67

Data set 3 0.00 8.85 0.00 -55.29 99.99 100.00 99.98 99.91

Data set 4 0.00 -176.93 0.00 -312.99 99.95 100.00 99.95 99.79

Table 5b. 10%-Percentile of the relative reduction GRP-gap, over all time-series  
10%-percentile 

HGRP TLGRP HGRP1 TLGRP1
Data set 1 99.10 100.00 98.99 98.12 
Data set 2 98.14 100.00 97.63 91.72 
Data set 3 97.61 98.73 95.18 92.51 
Data set 4 99.43 99.29 99.39 98.74 
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It can be concluded that TLGRP and HGRP perform very well; in more than 90 percent of the cases 
the distance with respect to the optimal solution is more than 90 percent smaller when compared 
with Denton PFD. Even after one iteration the initial growth-rates are much better preserved 
(following from HGRP1 and TLGRP1 in Table 5a-b). From this it follows that the improvement in 
the first iteration is much larger than the improvement in all further iterations. 
It can also be seen in Table 5a-b that the Taylor linearization approach (TLGRP) performs better 
than HGRP. In fact, TLGRP leads to the optimal solution for the majority of case. 
In some few cases, in Data sets 3 and 4, HGRP does not lead to a better GRP criterion than 
modified Denton PFD. TLGRP can even lead to a worse result than Denton PFD, which can be seen 
from the negative GRP gap reduction. 
The results of our second performance indicator are shown in Table 6. This indicator is based on 
the relative difference of the Heuristic’s result from the optimal growth rate preservation. The 
relative differences are classified into five categories, from “best” to “bad”, as explained in 
Subsection 6.3. Table 6 shows the percentages of the time-series in each category. 
 
Table 6.Percentage of time-series in 5 categories of accuracy 

Data set 1 Best
Very 

Accurate  Accurate Acceptable Bad 
Denton PFD 0.10 0.34 8.84 57.83 42.17
HGRP 45.61 91.31 99.85 100.00 0.00
TLGRP 99.80 100.00 100.00 100.00 0.00
HGRP1 44.62 89.64 99.66 100.00 0.00
TLGRP1 56.31 83.85 98.77 99.95 0.05
Data set 2 

Denton PFD 0.00 0.00 8.87 52.15 47.85

HGRP 38.17 91.40 99.46 100.00 0.00

TLGRP 100.00 100.00 100.00 100.00 0.00

HGRP1 33.33 85.48 98.12 99.46 0.54

TLGRP1 30.65 70.97 95.70 99.46 0.54
Data set 3 

Denton PFD 0.00 4.92 24.59 57.38 42.62

HGRP 68.85 77.05 96.72 100.00 0.00

TLGRP 86.89 93.44 98.36 100.00 0.00

HGRP1 63.93 75.41 88.52 100.00 0.00

TLGRP1 55.74 72.13 86.89 98.36 1.64

Data set 4 

Denton PFD 0.00 0.00 39.65 87.22 12.78

HGRP 87.67 97.36 99.56 100.00 0.00

TLGRP 91.63 95.15 98.24 100.00 0.00

HGRP1 85.90 97.36 99.56 99.56 0.44

TLGRP1 75.77 93.39 98.24 100.00 0.00

The percentage of the cases for which Denton PFD yields “acceptable” growth rate preservation 
varies from 52 percent in dataset 2 to 87 percent in dataset 4. Considering the “Dutch” Supply and 
Use tables, it follows that Denton PFD leads to “acceptable” Growth rates Preservation for about 
50-60 percent of the cases, but “Very accurate” results hardly occur. These findings are more or 
less in line with other studies. 
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Table 6 shows that the initial discrepancies are the smallest for dataset 4. This is also the data set 
for which Denton performs best. In general, the results show that Denton PFD performs best 
when the initial temporal discrepancies are small. 
HGRP clearly leads to better growth rate preservation than Denton PFD. In at least 98% of all 
time-series in all data sets “acceptable” growth rate preservation has been achieved. TLGRP in 
turn outperforms HGRP: in more than 98% of the cases “accurate” results have been obtained in 
all data sets. 
Finally, Table 7a and 7b show the distribution of the number of iterations for the HGRP and TLGRP 
heuristics. For most of the cases one or two iterations are enough. 
On average, TLGRP requires more iterations than HGRP. However, note that HGRP starts with a 
Denton PFD reconciliation, which is not counted as an iteration, while TLGRP does not start with 
reconciled data. 
 
Table 7a. Distribution of  the number of iterations required for HGRP (in%) 
 Data set 

1 2 3 4

1 iteration 37.02 25.27 40.98 56.39 

2 iterations 61.71 72.58 52.46 43.61 

3 iterations 1.23 1.61 6.56 0.00 

4 iterations 0.05 0.54 0.00 0.00 

5 iterations 0.00 0.00 0.00 0.00 

>5 iterations  0.00 0.00 0.00 0.00 

Table 7b. Distribution of  the number of iterations required for TLGRP  (in%) 
 Data set 

1 2 3 4
1 iteration 24.35 11.83 11.48 21.15 

2 iterations 70.30 68.01 77.05 78.85 

3 iterations 5.20 19.35 11.48 0.00 

4 iterations 0.15 0.27 0.00 0.00 

5 iterations 0.00 0.54 0.00 0.00 

>5 iterations  0.00 0.00 0.00 0.00 

6.5 Multivariate problem 
In this subsection we present the results of one large, multivariate benchmarking problem. 
This problem is derived from the aggregated Dutch Supply and Use Tables. The data set contains 
4,273 time-series of which data are available for 12 quarters and 3 years. 
Each quarter there are 140 contemporaneous constraints. An example of such a constraint is that 
the total use of some good has to be the same as the total supply. Each time-series is involved 
with at least one constraint, most time-series are included in two constraints. 
As mentioned in Bikker et al. (2013) an additive benchmarking model has to be preferred for 
time-series with positive as well as negative values and time-series with values close to zero. For 
this reason, a multiplicative benchmarking method can only be applied properly to a selection of 
2,252 time-series: the time-series that are included in dataset 1 in Section 6.4.  
A multivariate benchmarking method has been applied, as described by Bikker et al. (2013). In this 
model additive and multiplicative model types are combined. That is: for some of the time-series 
a multiplicative model is applied, i.e. Denton PFD, while for other time-series an additive model is 
chosen, i.e. Denton Additive First Differences. This all happens within one mathematical model. 
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The two heuristics HGRP and TLGRP can only be used for time-series to which a multiplicative 
benchmarking model can be properly applied. This means that we compare two kind of 
multivariate models: (i) a multivariate model that combines additive Denton and proportional 
Denton; (ii) a multivariate model that combines additive Denton with one of the heuristic 
procedures. 
Table 8 shows the results of our first performance indicator: the relative reduction of the GRP 
gap. This measure is based on the aggregated GRP gap of the 2,252 series to which a 
multiplicative model has to be applied. 

 
Table 8. Percentage reduction of the total GRP-gap 
 HGRP  TLGRP  HGRP1 TLGRP1 

Reduction of GRP-gap 98.41 100.00 98.41 82.49 

It can be seen that the Taylor linearisation approach (TLGRP) leads to the optimal growth rate 
preservation in this case, while HGRP is close to optimal. 

The second performance indicator is the relative difference of the GRP-criterion. The results of 
this indicator are displayed in Table 9. 

 

Table 9. Relative difference from optimal GRP 

 
Denton 
PFD TLGRP  HGRP HGRP1 

 
TLGRP1 

Relative difference from 
optimal GRP-criterion (in %) 33,58% 0,00% 0,53% 0,53% 5.88%
Judgement Bad Best Accurate Accurate Acceptable

Finally, the total number of iterations is 1 for HGRP and 4 for TLGRP.
The most important result of this subsection is that it shows that the heuristics can be applied in 
large-scale multivariate benchmarking problems that occur in practise. 
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7. Conclusions 

Two well-known multiplicative benchmarking methods are Denton Proportionate First Differences 
(PFD) and Growth Rates Preservation (GRP). The first method is technically easier to apply, while 
the latter is often considered the ideal method. 
In the literature, it is known that Denton PFD often closely approximates GRP, but in some cases 
the approximation is not very accurate. An empirical application on Dutch Supply and Use Tables 
are in accordance with these findings. 
In this paper two new heuristics have been developed that are easier to apply than GRP and 
better preserve the temporal dynamics of the preliminary series than Denton PFD. These 
heuristics are iterative procedures that can be applied to univariate as well as multivariate 
problems. One of the heuristics adds weighting factors to the objective function of Denton PFD,
the other heuristic repeatedly applies first order Taylor linearization of the GRP objective 
function. 
An important benefit of both heuristics is easiness: they are based on standard quadratic-linear 
problems. For large, practical problems, we can use very simple programs, avoiding the use of 
sophisticated, and black-box software and still obtain close to optimal results within a small 
number of iterations. 
From empirical application it follows that both heuristics considerably better preserve the 
movements of the initial time-series than Denton PFD. The Taylor linearization heuristic 
outperforms the weighted Denton PFD approach. HGRP is a good and simple heuristic, but it is 
not a strong competitor of 'true' GRP, as instead TLGRP is. 
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Appendix A. Augmented Denton PFD 

The ‘Augmented Modified Denton PFD’ benchmarking procedure is grounded on an objective 
function seemingly different from, but equivalent to, the one of the classical ‘Modified Denton 
PFD’ benchmarking procedure. 

A.1 The univariate case 

Where the classical, univariate Denton PFD problem is given by 

 
min�� ���� =������ −

����
�����

�
,

�

���
subject to �� = �

(A.1)

the ‘Augmented Modified Denton PFD’ benchmarking procedure considers the following 
constrained minimization problem 
 

min�� ���� =������ −
����
�����

�
+ ���.� � − ����,

�

���
subject to �� = �.

(A.2)

What has been done was adding the term ���.� � − ���� to the objective function, i.e. the squared 
difference between the left hand side and the right hand side of the first temporal aggregation 
constraint. As it is immediately recognized, due to the imposed temporal constraints, this term 
does not give any contribution to the original function, i.e. its value will be zero in the optimal 
solution. 
Nevertheless, as we shall see, its use results in a system whose solution requires the inversion of 
an (n x n) matrix, instead of (n+N x n+N) as in the expression (7) for the standard Modified Denton 
PFD benchmarking procedure. 
In matrix form the benchmarking according to the Augmented Denton PFD procedure can be 
expressed as the following quadratic-linear constrained minimization problem: 
 

min� ��� − ��
´��� − ��, subject to�� = �, (A.3)

where � = �∆��
��

��� �is a (n × n) matrix of rank n, and � = ������ ���is a (n × 1) vector. 

Now, let’s define � = �� and�� = ����. The above constrained minimization problem can be 
written as 
 

min� �� − ��
´�� − ��, subject to �� = �,

whose solution is 
 

�� = � + �� ���� ����� − ���

from which we derive the benchmarked values 
 

�� = ����� (A.4)
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A.2 The multivariate case 

The application of the augmented modified Denton PFD to the multivariate case is similar to the 
univariate case. The multivariate Denton PFD problem is given by 

 
min��� ���� =��������� −

�����
������

��

���
,

�

���
subject to �� = ��.

Its augmented form is: 

 
min��� ���� =��������� −

�����
������

�
+

�

���
��∗� − ��∗��,

�

���
subject to �� = ��,

where �∗and���∗ are a subset of m rows from���and �� that belong to the first temporal 
aggregation constraint of each time-series. 

Let’s define �� as the (n x 1) vector of preliminary values of time series j and �� = diag����.
Further, the first temporal aggregation constraint of time-series j will be denoted ���∗�� � =
�����∗.
In analogy with the univariate case in Appendix A.1, the problem can be written as 

 

min� ��� − ��
´��� − ��, subject to �� = �,

where�� = diag����,h = ���� ,⋯ , ��� �� , � = ��and�� = �� ,with �� = �
∆�����
���∗��

�and �� =

������ �����∗�. Thus, the reconciled values can be obtained from (A.4). 

However, note, that this is only possible if (A.4) can be computed. This is the case if 
���� ���exists. If some of the constraints are linearly dependent than the inverse of ��� cannot 
be computed. This problem can be solved by an appropriate factorization of the coefficient 
matrix��.
It follows that the computation of the benchmarked requires the computation of the inverse of Q,
a (mn x mn) matrix. Notice that the computation can be simplified because Q is a block-diagonal 
matrix. It consists of m square blocks, each of which of dimension n. Each block can be inverted 
independently of the other blocks. Basically, this means that m times an (n x n) matrix needs to be 
inverted. 
 


