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Abstract

Global Multi-Regional Input-Output (GMRIO) models have become
indispensable tools for the value-added analysis of international trade
and the consumption-based re-attribution of remote environmental im-
pacts. The concept of global supply chains underlies both these areas
of research: a ’new wave of globalisation’ has seen the disintegration of
production processes across national borders as enterprises have stra-
tegically outsourced and offshored parts of their business. 80% of world
trade is estimated to involve multinational enterprises – either through
intra-firm trade or international sourcing and marketing – and there is
growing recognition that certain ’lead’ enterprises govern extended in-
ternational supply networks – either through collaborative relationships
or by exerting power over captive suppliers. there is a pressing need
to move from analysis at an aggregate industry-level to a more disag-
gregate enterprise-level. In response, this paper asks: can multinational
enterprises be sensibly characterised within GMRIO models. A method-
ological approach, based on a stochastic disaggregation technique, is
proposed for incorporating enterprises into a GMRIO model. In addition
to reflecting the scale and structure of the world’s leading companies,
the approach deals with uncertainty introduced by incomplete informa-
tion. As outside observers we are unlikely to know the true input-output
structure of a given enterprise, but using Monte Carlo simulation and
knowledge of the meta-constraints encoded by the original input-output
data we can start to explore the probable role of large companies in the
global economy. Further, by creating a framework whereby multiple en-
terprises can be simultaneously incorporated into the GMRIO system,
double-counting issues can also be investigated. For example, simply
summing individual enterprise carbon footprints risks double-counting
a portion of emissions as the enterprises in question may fall within one
another’s supply chain. Finally, the description of methodological steps
taken is supplemented with numerical experiments that aim to high-
light the advantages, limitations and possible extensions of the overall
approach.

1 the enterprise in input-output analysis

The literature is reviewed in this section with a view to understanding how
enterprises, rather than aggregate industries, have been assessed using
input-output (IO) models and techniques.

The use of IO in the assessment of enterprises has a long history cov-
ering three central approaches. More recently a hybrid approach, that com-
bines these approaches, has emerged. For clarity of exposition, the following
terms are used to distinguish between the four approaches:

1. Inferred enterprise assessment – using conventional IO models and
an assumption that the enterprise behaves according to the sector av-
erage (Section 1.1).

2. Isolated enterprise assessment – based on Enterprise Input-Output
(EIO) models that characterise the internal functions of an enterprise as
a stand-alone system of IO interdependencies (Section 1.2).
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3. Integrated enterprise assessment – using augmented conventional
IO models to provide a characterisation of an enterprise within a
wider-economy (reviewed in Section 1.3).

4. Nested enterprise assessment – using a hybrid approach that sees
an enterprise sub-system fully integrated into a wider economy (Sec-
tion 1.4).

Each approach is reviewed in turn below.

1.1 Inferred enterprise assessment

Conventional IO models can be used to assess the performance1 of an in-
dustry sector, from which the performance of an enterprise located within
this sector can be inferred by scaling sector-level results to enterprise output
and assuming sector average performance on behalf of the enterprise (Joshi,
1999). The suitability of this approach is limited by the degree of hetero-
geneity observed in many sectors2. As a result, applications of this method
are usually limited to benchmarking enterprise performance against sector
average performance, including for the purpose of enterprise carbon foot-
printing (Wiedmann et al., 2009).

1.2 Isolated enterprise assessment

Conventional IO models and techniques provide a means of analysing an
economy characterised by a system of interdependent sectors. As a field of
enquiry Input-Output Analysis (IOA) can be placed at the intersection of
national accounting practices and the study of macroeconomics. However,
the concepts and mathematical techniques of IOA have also been applied
at the level of the enterprise. In contrast to conventional IO, this separate
but related field, referred to as Enterprise Input-Output (EIO), can be placed
at the intersection of business accounting3, enterprise management and the
study of microeconomics.

The foundations of EIO

Pre-empting the early developments in EIO, Mattessich (1956) drew atten-
tion to the deep, but often overlooked, relationships between the strata of
accounting (i. e., business, national and international balance of payments ac-
counting) and the strata of economics (i. e., microeconomics, macroeconom-
ics and foreign trade economics)4, and indicated the particular relationship
between IOA and the conventional business accounting system (Mattessich,
1957). Mattessich’s vision paved the way for the first practical translation
of a full business accounting system (i. e., including current, net fixed as-
sets, equity and production accounts) into an open input-output framework
(Richards, 1960). In Richards’ EIO model, debits and credits to the interde-
pendent accounts of an enterprise correspond to the inputs and outputs
of industry sectors in a conventional IO framework. As capital formation
was not specifically accounted for, the model provided a representation of

1 A performance measure could include, for example, upstream or downstream economic im-
pacts or the emissions embodied in intermediate inputs, etc.

2 Supply and demand structures may vary greatly from one establishment to another within a
given sector; when aggregated together an average structure emerges, but this may be radically
different to that of a given constituent establishment.

3 Business accounting encapsulates both financial and managerial or cost accounting.
4 Richard Mattessich (an eminent founder of the modern conception of accounting theory) notes

that while national and balance of payments accounting are readily encompassed within eco-
nomics, technically the same accounting principles are used in these fields as in business ac-
counting; and advises that in comparing accountancy (which emerged out of bookkeeping) and
economics (that has its origins in philosophy) it must be realised that they, though clearly inter-
woven, represent different dimensions which have a common basis but spread out in different
directions.
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the monetary flows into and out of respective accounts during a given ac-
counting period and thus a method for predicting changes (albeit under
the limiting assumption of linearity) in the accounts given some exogenous
perturbation.

However, a belief that only the production account of an enterprise can
be appropriately transcribed into an input-output system (nonlinearity be-
ing the primary restriction for other account types) led Farag (1967, 1968),
Livingstone (1969) and Stone (1969) to focus on the development of EIO

models to assist in the planning and costing of production activities within
a divisionalised enterprise5: in this case, production departments (rather
than account types) correspond to industry sectors, external sales and in-
ventory requirements replace final demand categories and primary inputs
of raw materials, labour, overhead and profit take the place of sector av-
erage value-added inputs. Livingstone went a step further than Farag by
illustrating how, by applying the input-output methodologies to the phys-
ical (rather than monetary) flows of production, the usefulness of EIO could
be extended to enterprise logistics planning for anticipated changes in activ-
ity levels and in appraising performance for control purposes. Gambling &
Nour (1970) recognised, however, that the adaption of monetary models to
physical systems of mixed units was less than straightforward: in particu-
lar, a central assumption of monetary models, that the total value of inputs
equal the total value of outputs, could not be readily applied to a physical
mixed units system (for example, due to the difficulty of equating inputs in
one physical unit with outputs in another). In an effort to provide a rigor-
ous means of comparing the, by that time, various forms and applications
of EIO models, Butterworth & Sigloch (1971) presented a generalisation of
the multi-stage input-output model whereby all possible alternatives could
be derived as special cases (including the Leontief model) and in addition
observed the links to the more general area of linear programming.

From account- to process-oriented EIO

Following the foundational developments in EIO, wide-spread adoption of
the methods by practicing accountants and managers of enterprises failed
to occur6, however, significant use within state-owned enterprises in China
during the 1980s has been reported (Lin & Polenske, 1998). It was not un-
til the work of Polenske and colleagues in the 1990s that academic interest
in EIO truly resurfaced; the insight primarily driving this renewed interest
was that EIO could be usefully deployed to evaluate environmental inter-
ventions of an enterprise, hence providing a tool for environmental man-
agement (Polenske, 1997)7. Central to Polenske’s (1997) reformulation of
the EIO model was a substitution of production departments for produc-
tion processes and a focus on their underlying input-output relationships
including by-products and waste (Lin & Polenske, 1998). This allowed link-
ages between the monetary and technological functions of an enterprise (or
subsystem such as a plant or subsidiary) to be explicitly analysed, with the
additional option of constructing the EIO model from the bottom-up using
engineering-process information. Specifically, Lin & Polenske’s (1998) expos-

5 I. e., an enterprise that consists of a set of production departments under the following as-
sumptions: each department produces only one homogenous product via a linear production
function using a singular technology or production process; the output of each department can
serve either the demands of another department, inventory requirements or external sales; all
prices of inputs and outputs are known and given and that unit output price equals average
cost; and, that the sum of departmental-level production across all departments is consistent
with the total production of the enterprise as a whole.

6 The formalisation of the accounting profession based on matrix algebra methods, meanwhile,
continued apace of course culminating in the computer-based form of the now ubiquitous
spread sheet.

7 Polenske also conceived the usefulness of and means by which an EIO model could be em-
bedded into an economy-wide IO model; an idea that was later adopted by way of practical
application in Lenzen et al. (2010a).

3



ition of the process-orientated EIO model put forward the following potential
extensions and applications:

1. As a process-analysis tool the model can help: trace flows of energy
and materials between production units; estimate demand for energy,
materials, labour etc., at different production levels; identify bottle-
necks of production activities; evaluate alternative technologies or pro-
cesses in terms of total input requirements and profitability.

2. Transformation of the model into a purely monetary model (using
price and cost data) would allow: the tracing of financial flows and
the study of the cost and profit structure of the enterprise, individual
segments of the market or individual products; an examination of the
impacts of exogenous changes, therefore serving as a basis for business
planning.

3. Extension of the model to include waste-management processes and
pollution control can assist managers to: examine the impacts of envir-
onmental regulation on the enterprise and to evaluate alternative com-
pliance strategies; quantify costs of waste disposal; identify factors that
influence the generation of waste and pollution; and, consider optimal
strategies for enterprise-wide pollution control through the simultan-
eous evaluation of all pollutants.

Subsequently, process-orientated EIO models have been adopted for a
variety of applications, for example: in the analysis of the economic, en-
ergy and environmental trade-offs of alternative cokemaking technologies
in China (Polenske & McMichael, 2002); to compare the energy and material
usage and the generation of waste and pollution between two tile manufac-
turers (Albino & Kühtz, 2004; Kühtz et al., 2010); to forecast human resource
requirements of an enterprise subject to exogenous changes in demand for
output from and supply of inputs into the enterprise (Correa & Craft, 1999);
and, to investigate the interactions between energy and material flows and
monetary flows in a coal mine (Liang et al., 2010). In addition, recognising
that the modern enterprise is often characterised by multi-regional produc-
tion activities, Li et al. (2008) introduced distinct regions into an EIO frame-
work; an extension analogous to the Multi-Regional Input-Output (MRIO)
model in conventional IOA.

In related research, Grubbstrom & Tang (2000) bridged the fields of
EIO and material requirements planning by illustrating how timing prop-
erties of inputs into a production process can be captured by means of
the Laplace transform within an overall EIO framework. Returning to an
account-oriented EIO framework, Marangoni & Fezzi (2002) restructured the
profit and loss account (integrating additional data from 70 management
accounts) of a leading pharmaceutical subsidiary in order to simulate the
consequences of various sales forecasts.

Taking EIO beyond the gates of the enterprise

By extending process-oriented EIO methods beyond the gates of the enter-
prise, Albino and colleagues have made two important additional contri-
butions: firstly in the analysis of the network of production processes that
characterise the supply chain of a final product (Albino et al., 2002); and,
secondly in the analysis of the network of production processes within
an industrial district, i. e., a localised cluster of interdependent enterprises
(Albino et al., 2003). Material, energy and pollution flows are assessed to
provide holistic measures of resource consumption and environmental im-
pacts of the supply chain and industrial district, respectively. In both in-
stances, the effects of alternative formulations of the system (e. g., the use
of different technologies) and changes in demand for output can be evalu-
ated, thus providing tools for the collective, inter-enterprise, environmental
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management of specific supply chains and industrial districts. It is with
these developments that EIO merges with the disciplines of Life-Cycle As-
sessment (LCA) and Life-Cycle Costing (LCC).

A future role for EIO in Life-Cycle Sustainability Analysis

In general, LCA is a widely used method for addressing the environmental
aspects of products and services that has developed from the analysis of
simple products to more complicated systems and from product-level decision-
making to economy-wide policy evaluation (Guinée et al., 2011). Develop-
ments in the direction of more complicated systems included the use of
process-oriented EIO models (Lave, 2006). However, within a life-cycle assess-
ment context, EIO models, in common with other process-focused LCA meth-
ods, encounter a truncation issue when defining the boundary of analysis:
i. e., the full life-cycle of a product, plant or enterprise cannot be captured.
Hybrid approaches, linking process-level analysis with economy-wide IOA,
have been developed to overcome this issue (Hendrickson et al., 2006; Suh,
2004).

LCC can be considered as the monetary counterpart to environmentally
focused LCA: whereby the total costs occurring during a products life-cycle
are evaluated for purposes of business (e. g., outsourcing and ownership de-
cisions) and supply chain (e. g., vulnerabilities to fiscal environmental regu-
lation) management (Lindholm & Suomala, 2005). Settanni and colleagues
have proposed and shown that EIO methods could provide a formalised com-
putational structure for LCC (Settanni, 2008; Settanni et al., 2011), while Na-
kamura & Kondo (2009) have linked LCC, LCA and IOA at a macro-economic
level in the analysis of waste.

Most recently, the EIO-based developments in LCC has been extended
with the aim of providing a computational structure for a unified Life-Cycle
Sustainability Analysis (LCSA) including aspects of LCC, LCA and social LCA

(Heijungs et al., 2012).

Dealing with unavailable and uncertain data in EIO

The models and applications of EIO discussed above are all of a deterministic
nature. That is, they require the collection or estimation of comprehensive
data, which must subsequently be assumed accurate for the tool to be con-
sidered useful in decision-making. In reality, two problems are found: first
the quantity and quality of data required can be considerable, hence the time
taken and expense incurred in gathering the necessary data can also be con-
siderable; and second, the required data may be uncertain in the sense that it
is inherently unknowable, variable within the timeframe of analysis, or that
resources are not available or in place to accurately measure it. Perhaps then
the state of the art in EIO surrounds the treatment of uncertainty and data
unavailability. Two important contributions are found in the literature. First,
Lenzen & Lundie (2012) overcome the problem of limited data availability
(in this case due to the scale of the application) by estimating EIO tables for
22 dairy product manufacturing sites. In contrast to standard procedures
for constructing EIO tables involving full-survey of inputs and outputs of
sub-systems (processes, departments etc.), the following steps were taken:
data on inputs to and outputs from each site, as a whole, were measured;
qualitative expert knowledge of what inputs and outputs are important to
each sub-system was captured in a weighted binary matrix; this matrix was
then scaled such that total inputs and outputs across all sub-systems balance
with that of the overall site.

Second, within an EIO model for an LCC of a vertically-integrated multi-
product manufacturing process, Settanni & Emblemsvåg (2010) take expli-
cit account of uncertainties associated with: (a) the efficiencies of convert-
ing inputs into outputs from each of the system’s processes (i. e., the ratio
of main output to waste and other by-products); (b) the requirements for
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externally-purchased inputs; and, (c) the requirements for intra-system pro-
cess outputs. In this stochastic EIO model, uncertainties are characterised by
subjectively-defined triangular distributions, although the authors note that,
in the absence of detailed information, a uniform distribution as defined by
bounded intervals (where all values within the interval are assumed to be
equally plausible) can be used. The model is solved by way of Monte Carlo
simulation, where all uncertain values are allowed to vary simultaneously
within a given iteration; each iteration then provides a unique and plaus-
ible characterisation of the manufacturing system. By adopting a stochastic
rather than deterministic approach the inherent level of vagueness associ-
ated with certain aspects of a system can be retained within a structured
input-output framework. The theoretical underpinnings of stochastic EIO

are further elaborated by Li et al. (2012).

Summary

There is a diverse literature base dealing with isolated enterprise assessment
within an IO framework characterised by EIO models. While EIO models ex-
hibit the same restrictive assumptions of economy-wide IO models (e. g.,
that economies of scale, learning curves and productivity changes cannot
be easily accounted for), their value to corporate environmental manage-
ment in particular is clear. The premise of EIO has transformed from one of
restructuring enterprise cost accounts, to the ordered representation of phys-
ical and monetary interdependencies between sub-systems of an enterprise,
supply chain or area of localised production.

The application of isolated enterprise assessment approaches based on
EIO models to the measurement of an enterprise’s influence over its supply
chain emissions faces the same limitation as process-based enterprise car-
bon footprinting methods: the full extent of global supply chains stemming
from an enterprise are necessarily truncated due to the data intensity of
the method and the easy availability of such data. However, the detailed
depiction of the interdependencies between enterprises within an industrial
district presents insights into how double-counting issues can be treated
through the explicit representation of the activity of multiple enterprises
within a holistic framework. Furthermore, the treatment of uncertainty asso-
ciated with unavailable or vague information presents opportunities for the
stochastic characterisation of groups of enterprises where the availability of
detailed, and commercially sensitive, data may be limited.

EIO can be considered as a bottom-up modelling tradition. The logical
next steps and perhaps the most exciting developments in the field are in
relation to the embedding of EIO models within conventional, top-down,
economy-wide IO models, the subject of Section 1.4. The following section
details the literature that has viewed the enterprise from a different per-
spective: its role within the wider-economy.

1.3 Integrated enterprise assessment

The term integrated enterprise assessment is used here to describe work that
has been carried-out with a view to understanding the role of an enterprise
in the wider-economy, whereby the enterprise is integrated into a conven-
tional IO framework through its characterisation as an additional sector. The
motivation for this work is twofold: first, to assess the effect of the wider-
economy upon the enterprise, which is of interest to the management of the
enterprise in question (Tiebout, 1967); and second, to evaluate the total effect
an enterprise has on the wider-economy, which is of interest, for example, to
a regional analyst (Hewings, 1971). This field of enquiry is relatively small,
but the contributions made in the literature raise important issues of partic-
ular interest to the work presented in Section 2. As such, each contribution
is reviewed in some detail.
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Critique of inferred enterprise assessment

Focusing on the first motivation, Tiebout (1967) notes that inferred enterprise
assessment8 provides an enterprise with two relatively limited capabilities: (a)
the identification of possible areas of additional market potential by compar-
ing the enterprise’s current marketing position with that of the industry as
a whole (i. e., by inspecting the sales (row) coefficients of the enterprise’s re-
spective industry, general aggregate industry customers are identified; if the
enterprise does not already supply specific customers located within such
industries, then a competitor may well be doing so); and, (b) conventional
industry-level impact analysis can be directly mapped to the enterprise (i. e.,
should a 10% increase in the final demand for automobiles require, via inter-
industry linkages, a 5% increase in total output from the steel-industry, then
a steelmaking enterprise could infer that its total output would also be re-
quired to increase by 5%).

Tiebout views these capabilities as being primarily limited by two factors:
(a) the technical coefficients of a given industry always represent industry
averages no matter how disaggregated the IO table is; and, (b) IO tables are
constructed on the basis of similarity of input purchases rather than output
sales. Hence, for an enterprise to infer anything from an IO table, it must
assume a sales and purchasing structure in common with the industry av-
erage. While the assumption of an industry average purchasing structure
becomes more satisfactory the more disaggregated the IO table, this is not
necessarily the case for the assumption of industry average sales structure.
By way of extreme example, consider an automobile industry consisting of
just two manufactures producing identical vehicles, where one sells only to
final demand households while the other specialises in sales to commercial
customers (e. g., corporate fleet vehicles). Should one of these manufactur-
ers wish to make an inferred assessment from an IO table, it would find
an industry average purchasing structure identical to its own but a radic-
ally different sales structure, with the likely result of misleading analysis of
downstream effects (e. g., changes in final demand) or market potential.

Tentative steps towards integrated enterprise assessment

In response to the identified limitations of inferred enterprise assessment, Tiebout
(1967) proposes a simple approach: represent the enterprise as a new row of
technical coefficients in the IO table by dividing known enterprise sales to
different industry sectors by each sectors reported total output. The input
(purchasing) side of the problem is, however, dismissed as being of no par-
ticular interest to the enterprise. Tiebout subsequently proposes that require-
ments from the enterprise induced by downstream changes in the economy
can be observed. For example, a unit change in final demand for a given in-
dustry’s output can be traced back to the enterprise by multiplying the row
of enterprise technical coefficients by the relevant column of the original
Leontief inverse matrix. Although the author suggests that the enterprise
is introduced into the IO model, this is in fact not the case; the enterprise
technical coefficients are simply taken as an exogenous multiplier intensity
vector, much as an emissions intensity vector is used in environmentally-
extended IOA. The problem with this approach is that the role of the enter-
prise is already accounted for within the Leontief inverse matrix (i. e., the
enterprise has not been stripped out of the industry of which it was ori-
ginally a part of), hence double-counting of economic effects are likely to
ensue, particularly if the enterprise accounts form a significant share of its
aggregate industry.

Hewings (1971) takes inspiration from Tiebout’s approach in proposing
a method for: (a) evaluating the impact of a new enterprise on the wider-
economy (i. e., the second motivation noted above), whereby the new en-

8 Inferred enterprise assessment is alternatively described by Tiebout as “the industry of which
you are a part” approach.
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terprise is characterised as an additional row and column in the technical
coefficients matrix and an expanded Leontief inverse calculated; and, (b)
evaluating the impact of the removal of an enterprise on the wider-economy,
whereby the transactions of the enterprise are stripped out of the industry
rows and columns of which it was a part. As (Morrison, 1973) points out, in
both cases the total output of each industry in the table would be affected
and hence the technical coefficients matrix would need to be re-calculated,
as would the Leontief inverse. Modern computational resources render such
concerns as trivial, but at the time of these developments the emphasis was
evidently upon the minimisation of computational tasks. Morrison’s other
concern is in regard to the stability of technical coefficients faced with the
prospect of the arrival or removal of an enterprise, thus calling into ques-
tion the static nature of IO models for the analysis of inherently dynamic
responses.

Greytak (1972) also criticises Tiebout’s and Hewings’ proposals focusing
on three possible factors that could cause the enterprise-level calculation
of technical requirements to diverge from strict comparability to industry-
level coefficients. The factors identifies by Greytak are outlined below and
are supported by more recent literature and guidelines:

1. Treatment of the trade sector – IO tables show the inter-linkages
between the producers and consumers of products; the monetary value
of products traversing such linkages are therefore shown as direct
transactions, while in reality these transactions are likely to involve an
intermediary wholesale or retail trade establishment (Miller & Blair,
2009). The trade sector is still depicted in the IO table but only by its
role as a provider of marginal services (e. g., the marketing and tem-
porary storage of products)9. Transport sectors are similarly treated
as marginal service providers. An enterprise is likely to be able to
identify who its immediate customers are, but if the enterprise is par-
ticularly dependent upon trade establishments for the distribution of
its products, then it may be difficult to identify who ultimately con-
sumes its products. Hence, the calculation of the enterprise’s sales
(row) coefficients, such that they are comparable to industry sales coef-
ficients, may be problematic.

2. Issue of product mix – Many enterprises, particularly large corpor-
ations, produce multiple products10. These products may fall into dif-
ferent industry and/or commodity classifications (e. g., a steelmaker
may also produce fabricated metal products). In compiling IO tables,
strict accounting conventions are adopted to accommodate for such
situations11. This presents a particular problem when removing an en-
terprise from an IO table, as the manner in which it was originally
captured within the table may be unknown.

9 For example, Clause 6.146 of the System of National Accounts 2008 states: “Although whole-
salers and retailers actually buy and sell goods, the goods purchased are not treated as part
of their intermediate consumption when they are resold with only minimal processing such as
grading, cleaning, packaging, etc. Wholesalers and retailers are treated as supplying services
to their customers by storing and displaying a selection of goods in convenient locations and
making them easily available for customers to buy. Their output is measured by the total value
of the trade margins realized on the goods they purchase for resale” (United Nations et al.,
2008).

10For example, Clause 5.2 of the System of National Accounts 2008 states: “The majority of
enterprises by number engages in only one sort of production. The majority of production,
though, is carried out by a relatively small number of large corporations that undertake many
different kinds of production, there being virtually no upper limit to the extent of diversity of
production in a large enterprise...” (United Nations et al., 2008).

11Clause 5.2 continues: “...If enterprises are grouped together on the basis of their principal activ-
ities, at least some of the resulting groupings are likely to be very heterogeneous with respect
to the type of production processes carried out and also the goods and services produced. Thus,
for analyses of production in which the technology of production plays an important role, it
is necessary to work with groups of producers that are engaged in essentially the same kind
of production. This requirement means that some institutional units must be partitioned into
smaller and more homogeneous units...” (United Nations et al., 2008).
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3. Distinguishing sales – Intermediate transactions between industries
in an IO table represent an industry’s consumption of purchased products
other than fixed assets12. Purchases of fixed assets are conventionally
recorded within the final demand category of fixed capital formation,
while consumption of fixed assets is recorded as a value-adding activ-
ity (Miller & Blair, 2009). At the enterprise-level this distinction corres-
ponds to purchases made on current account and capital account, al-
lowing purchasing (column) coefficients to be specified (Nations, 2000).
This causes a problem in estimating sales coefficients: the enterprise
may know the volume of sales to each industry but it may not necessar-
ily know whether the products are sold for intermediate consumption
or as fixed assets.

None of the issues raised by Greytak are insurmountable (for example,
Katz & Burford (1981) propose a technique for estimating enterprise output
coefficients when input coefficients are known), but they do highlight the
need to understand how a specific IO table has been constructed before it
can be sensibly modified through the introduction of an enterprise. Unfor-
tunately, no further applications of integrated enterprise assessment are found
in the literature before the development of the nested hybrid approach dis-
cussed in Section 1.4. However, comparable methods have been developed
in the field of IO-based LCA, whereby a single product, rather than an enter-
prise, is represented as an additional sector in an IO framework.

Comparable approaches in IO-based LCA

Joshi (1999) presents a range of different models of varying complexity for
IO-based LCA of products. The simplest approach is comparable to inferred
enterprise assessment, whereby the product under analysis is assumed to be
well approximated by the industry average. A slightly more complex ap-
proach that sees the product represented as a new hypothetical sector is
directly comparable to Hewings method. Joshi notes that this approach as-
sumes that the original technical coefficients matrix is unaffected by the in-
troduction of the new sector, which if the product under analysis is already
included in the IO table cannot be the case.

A third model is subsequently proposed by Joshi (1999) that overcomes
this problem: the sector already containing the product of interest (in ag-
gregate form) can be disaggregated into two sectors, one representing the
product and the other representing the sector less the product, with strict
constraints tying corresponding coefficients together. Specification of the
product sector coefficients automatically determines the value of the remain-
ing industry coefficients. It is surprising that this approach has not been
adopted in the integrated enterprise assessment literature as it provides a sat-
isfactory solution to the issue of double-counting with relatively little addi-
tional computational work required. The process of IO sector disaggregation
is then of particular interest to the accurate representation of an enterprise
within the wider-economy.

General disaggregation techniques

The level and implications of sectoral and regional aggregation in IO tables
has received significant attention in the literature (for example: Andrew
et al., 2009; Katz & Burford, 1981; Lenzen, 2000; Su & Ang, 2010; Wiedmann
et al., 2007; Williams et al., 2009): as the level of aggregation increases, the

12For example: Clause 6.213 of the System of National Accounts 2008 states: “Intermediate con-
sumption consists of the value of the goods and services consumed as inputs by a process of
production, excluding fixed assets whose consumption is recorded as consumption of fixed
capital”; in addition, Clause 6.214 states: “...intermediate consumption also does not include
costs incurred by the gradual using up of fixed assets owned by the enterprise: the decline in
their value during the accounting period is recorded as consumption of fixed capital” (United
Nations et al., 2008).
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assumption of homogenous sector inputs and outputs becomes less valid.
All IO tables necessarily exhibit some degree of aggregation, but the extent
to which the associated ’aggregation bias’ effects a particular analysis is
difficult to quantify (Kymn, 1990; Miller & Blair, 2009). Efforts to measure
aggregation bias have therefore focused on observing the effects of further
aggregating an existing IO table. For example, Katz & Burford (1981) find
that the output multipliers of industry sectors in an original IO table exhibit
a wider range of values compared to those measured in a more aggregated
version of the table. Similarly, Andrew et al. (2009) investigate the role of
regional aggregation by measuring the effect of systematically disabling the
regional resolution of a full MRIO model, finding that the ’domestic tech-
nology assumption’ frequently used in Single-Region Input-Output (SRIO)
studies inaccurately estimates the carbon footprint for many countries.

The implications of aggregation bias are of particular importance when
linking economic IO data with satellite environmental accounts. If the two
data sources (economic and environmental) exhibit dissimilar levels of ag-
gregation then the analyst is faced with two options (Lenzen, 2011): aggreg-
ate the more disaggregate data source such that it concords directly with
the more aggregate data source; or, disaggregate the more aggregate data
source such that it concords directly with the more disaggregate data source.
In common with earlier studies, Lenzen (2011) identifies that the aggrega-
tion option leads to an undesirable loss of information, but also notes that
the alternative disaggregation option requires additional information that
may involve labour-intensive collection or that may simply be unavailable
to the analyst13. Lenzen’s analysis of the relative merits of the aggregation
and disaggregation options, within the context of environmental multipliers
derived from randomly generated and subsequently aggregated and disag-
gregated IO tables, found that the disaggregation option is superior even
when the disaggregation process is based on a minimum of additional in-
formation.

In addressing the problem of further labour- and time-costs associated
with gathering additional information required to disaggregate IO tables,
Wolsky (1984) developed a technique for prioritising information collection
efforts according to whether or not the as yet uncollected data would ma-
terially affect a particular analysis. Specifically, Wolsky’s technique concerns
the disaggregation of a single sector into two new sectors by expanding an
existing IO table through the introduction of an additional row and column
based on known (or estimated) total output weights of the two new sectors.
The technique centres on the identification of constraints that bound all un-
known parameters (that, if known, would fully define the disaggregated IO

table) according to the following steps:

1. Construct an initial estimate of the disaggregated IO table – the augmen-
ted matrix – by assuming that the new sectors are essentially identical
to the original sector, both in terms of technology (i. e., input coeffi-
cients are the same) and output sales structure (i. e., output coefficients
take a fixed proportion of the original sector, according to the new sec-
tor output weights).

2. Define a distinguishing matrix parameterised by a set of, as yet un-
known, independent variables14 such that the sum of the augmented
and distinguishing matrices would yield the exact disaggregated IO

table.
13If information is lost when original data is aggregated, then reconstruction of the original data

through the reverse process of disaggregation must somehow involve the retrieval of the lost
information. Should this information be rendered unavailable, then a degree of uncertainty is
introduced into the system.

14The unknown independent variables, or distinguishing parameters, fall into three categories:
those that manifest the difference in technology between the two new sectors; those that mani-
fest the difference in output sales structure between the two new sectors; and, those that mani-
fest the intra-aggregate exchanges between the two new sectors.
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3. Define a system of inequalities, in terms of the unknown independent
variables, that provide upper and lower bounding constraints on the
unknown, but interdependent, elements of the distinguishing matrix.

4. Reduce the system of inequalities to yield the upper and lower bounds
of the unknown independent variables.

5. Prioritise the collection of pertinent data according to the magnitude
of the bounding range on values of the unknown variables (i. e., where
the range is very small defer effort to the estimation of variables where
the range is large); when sufficient resources are available to estimate
all unknown variables, the calculated bounds can still serve as a check
on the validity of collected data.

Although pioneering, the problem with Wolsky’s approach is four-fold
(Gillen & Guccione, 1990): first, what constitutes a negligibly small bound-
ing range of an unknown variable is unclear; second, although the number
of system unknowns is reduced though the identification of independent
variables (relative to the number of originally unknown technical coeffi-
cients), this does not necessarily translate to a reduction in the data collec-
tion effort required15; third, IO table-wide constraints are ignored (including
the constraint that the sum of a sector’s inputs must be less than unity and
the constraint that the sum of a sector’s intermediate outputs must be such
that final demand for the sector’s output is non-negative); and finally, the
technique is not easily scalable in terms of disaggregation of a sector into
more than two new sectors.

In response to these problems, Lindner et al. (2012) extended Wolsky’s
basic disaggregation technique in three directions: first, by generalising the
technique such that an original sector can be disaggregated into any num-
ber of new sectors; second, by incorporating IO table-wide constraints; and
third, by using a random walk algorithm16 to identify the bounding range
of distinguishing parameters. This work was motivated by a recognition
that it is not always possible to gather the necessary information needed to
uniquely define a disaggregated IO table, hence the uncertainty associated
with the full range of possible solutions to the disaggregation problem must
be investigated. Lindner and colleagues illustrated the value of the tech-
nique by disaggregating the Chinese electricity sector into three new sectors
representing renewables, subcritical coal and other fossil fuels, respectively,
finding that the emissions intensity factors of the new sectors could be twice
that of the initial estimate provided by the augmented matrix.

Summary

Integrated enterprise assessment is a relatively underdeveloped field of re-
search. Studies dealing specifically with the characterisation of enterprises
have been taken as far as the introduction of an enterprise as an additional
row and column within an economy-wide IO table, but without altering
the original IO table. For the case where the production activity of the en-
terprise is already captured in the aggregate IO data, this approach could
lead to significant levels of double-counting in the estimation of multipli-
ers, particularly for large enterprises that constitute a significant share of
sector-level production activity. Several important considerations relating to
the practical application of the approach have been raised in the literature,

15For example, to estimate the difference in demand of a particular input between the two new
sectors presumably first requires the demand for the input to be estimated for each sector in-
dividually, i. e., the relevant technical coefficients still need to be estimated (Gillen & Guccione,
1990).

16Stated simply, the random walk algorithm iteratively steps through the ’solution space’ defined
by inequality constraints on the distinguishing parameters, randomly selecting valid values for
each parameter in turn until the algorithm arrives at a complete solution, hence yielding a
sample distinguishing matrix. The procedure is repeated until the required number of sample
matrices have been constructed and evaluated.
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namely: the special treatment of the trade sector in IO tables; the issue of en-
terprise product-mix; and, the distinction of sales destined for intermediate
consumption and those destined for capital formation.

Although not dealing directly with enterprises, other related studies
have presented disaggregation techniques that could be applied to appro-
priately adjust an original IO table following the isolation of an enterprise
from an aggregate sector. If applied to enterprise-level analysis, such tech-
niques could provide a means of addressing double-counting issues. These
studies further indicate that even with limited information about a partic-
ular enterprise, stochastic modelling approaches can be used to gain an
understanding of the likely range of pertinent measures.

The further development of integrated enterprise assessment approaches to
include characterisations of multiple enterprises, based on deterministic or
stochastic disaggregation techniques, holds promise for the suitable meas-
urement of the influence that a group of enterprises may have over their
supply chain emissions. Applied to MRIO models with global coverage, such
approaches would allow global supply chains to be described while provid-
ing for the explicit treatment of double-counting.

1.4 Nested enterprise assessment

Nested enterprise assessment can be considered as a hybrid approach com-
bining the principles of isolated and integrated enterprise assessment. The ap-
proach originated in the field of LCA, under the name of integrated hybrid
LCA, as a means of overcoming the truncation error encountered when a
boundary is drawn around a process-level system under analysis (Heijungs
& Suh, 2002; Suh, 2004). Prior to its development other so-called hybrid
methods included tiered hybrid analysis (involving complementary, but es-
sentially separate, IOA and LCA analyses) and IO-based hybrid analysis (the
sector disaggregation approach discussed in Section 1.3); but it was only
with the development of integrated hybrid LCA that a detailed sub-system of
interdependent production processes could be fully nested in an economy-
wide IO framework (Heijungs et al., 2006; Suh & Huppes, 2005). The nested
approach has the particular advantage of providing an analysis framework
that not only retains the detailed process interactions within the sub-system
but that also allows overall interdependencies between the subsystem and
the rest of the economy to be evaluated (Hendrickson et al., 2006).

Only a single example of applied nested enterprise assessment has been
found in the literature: the work carried out by Lenzen et al. (2010a) in
their study of the University of Sydney. To capture both the internal inter-
dependencies among business units within the university and the external
interdependencies with the wider-economy, a monetary bi-regional input-
output model is developed. The university and its business units (structur-
ally considered as sectors within the framework) form one region, while
a conventional IO table of the Australian economy forms the other. Inter-
region transactions (i. e., the university’s intermediate requirements from
the wider-economy and the wider-economy’s intermediate requirements
from the university) are also represented forming an overall four-quadrant
IO table. Respective final demand and value-added components for each re-
gion are also characterised. Details on how the university’s accounts have
been restructured into an IO framework and mapped to the Australian IO

table sector classifications are given, illustrating the main limitation of the
approach: the extent of detailed cost data required to characterise the in-
ternal and external interdependencies of a large establishment is consider-
able. However, the procedure followed to ’strip-out’ the university from its
original aggregated presence within the Australian IO table is unclear: the
study indicates that the IO table was “netted by subtracting the turnover of
the university”. This suggests that the technical coefficients of the sector of
which the university was a part have remained unchanged, thus implying
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the assumption that either the university’s supply and demand structure
is the same as the sector average or that the turnover of the university is
very small relative to the sector total output. If this is the case and either
assumption is deemed unsatisfactory, then adoption of the disaggregation
techniques discussed in Section 1.3 would help ensure no double-counting
of economic effects occur during analysis.

In demonstrating the value of nested enterprise assessment not only for
financial analysis, but also, through extension, to the analysis of environ-
mental burdens and social outcomes, Lenzen and colleagues have opened
up a new avenue of research that is likely to expand in the coming years as
the pressure for corporate environmental and social management intensifies
and broadens in scope beyond the gates of the enterprise.

In a similar manner to the developments proposed for integrated enter-
prise assessment in the previous section, nested approaches could, in prin-
ciple, be suitably developed and applied to the evaluation of the influence
a group of enterprises may have over their supply chain emissions. Nested
approaches present the additional advantage of enabling the detailed char-
acterisation of important supply chains and interdependencies between the
enterprises under investigation. However, the data intensity of a nested ap-
proach, particularly for a large number of enterprises, is likely to restrict
the applicability of the approach. As such, the approach can be considered
most suited to the detailed measurement of the influence of an individual
enterprise.

2 measuring enterprise supply chain emissions

This section addresses the following question:

How can the global supply chain emissions stemming from the intermediate consump-
tion activity of (a) an individual enterprise and (b) a group of interdependent enter-
prises be estimated using publicly available data?

The review of enterprise-level IO methods revealed that:

1. The system boundaries imposed in process-based methods – includ-
ing conventional enterprise carbon footprinting methods and isolated
enterprise assessment methods – curtail supply chains stemming from
the intermediate consumption activity of an enterprise. The full com-
plexity of global supply chains is therefore not captured by these ap-
proaches.

2. Hybrid approaches could yield effective enterprise-level carbon foot-
prints but are too data-intensive for use with publicly available data
or the assessment of the emissions stemming from a large group of
enterprises.

3. Inferred enterprise assessment methods risk double-counting supply
chain emissions, impose the unsatisfactory assumption that an enter-
prise conforms to the industry average, and can not be applied to en-
terprises, or groups of enterprises, that span multiple industries and
regions.

4. Appropriate (deterministic or stochastic) disaggregation techniques,
that ensure the removal of double-counted terms, have yet to be ap-
plied to the integrated enterprise assessment approach. Integrated en-
terprise assessment has itself yet to be applied to enterprise carbon
footprinting or extended for use with global MRIO models.

5. Existing disaggregation techniques do not allow for the concurrent
disaggregation of multiple IO sectors.

In order to exhaustively measure the supply chain emissions stemming
from an individual enterprise and groups of enterprises, a Multi-Enterprise
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Multi-Regional Input-Output (MEMRIO) model is developed in this chapter
that selectively draws on the above mentioned techniques. In particular, ex-
isting disaggregation techniques, typically used to decompose highly ag-
gregated sectors into sub-sectors, are extended to allow multi-national an-
d/or multi-industry enterprises, and groups of such enterprises, to be char-
acterised within a global IO framework. Monte Carlo simulation techniques
are then used to stochastically estimate uncertain data.

2.1 A multi-enterprise multi-region model

In the MEMRIO model, interactions between national industries in the global
economy are captured through the use of MRIO tables. Enterprises are charac-
terised first by decomposing overall production activity into enterprise seg-
ments – that correspond to the regional and industrial classifications used in
an MRIO table – and second by introducing these segments in to the model
through the disaggregation of the corresponding MRIO sectors. Interactions
between enterprise segments and the wider-economy are treated stochastic-
ally to reflect uncertainty over enterprise inputs and outputs, thereby per-
mitting analysis based on limited, publicly available, data. The stochastic
component of the model is governed by a system of constraints that (a) re-
tains the overall balanced structure of inputs and outputs encoded in MRIO

data, and (b) reflects user assumptions over the extent to which an enter-
prise may deviate from sector average performance. Monte-Carlo simulation
is used to generate a sample set of disaggregated tables, each representing a
plausible configuration for how focal enterprises are integrated in the global
economy. Statistical enterprise assessments can then be performed over the
set of sample tables.

The research question is addressed in two stages. First, the Total Con-
sumption Attribution (TCA) method, developed in Skelton et al. (2011), is
adapted for use at the enterprise-level and applied to each sample table
compiled using the MEMRIO model. Applied to individual enterprises, the
TCA method calculates the global supply chain emissions stemming from
the intermediate consumption activity of the enterprise. Applied to enter-
prise groups, the TCA method calculates the global supply chain emissions
stemming from the overall intermediate consumption activity of the group
of enterprises. The risk of overestimating the supply chain emissions of a
group of enterprises – by not taking into account the fact that constituent
enterprises may fall within one another’s supply chains – is ameliorated
implicitly by the TCA method through the removal of double-counted terms.
These consumption-based accounts of emissions reflect the maximum poten-
tial influence an enterprise, or an enterprise group, has over global supply
chain emissions. However, each sample table yields a slightly different TCA

result.
Second, enterprise, or enterprise group, TCA distributions are then cal-

culated across the set of sample tables. The global supply chain emissions
stemming from intermediate consumption activity can then be reported as
a range of likely values.

The following section provides a brief summary of the MEMRIO model
before giving a more detailed description of the main model procedures17.
Several important terms used in the model description are defined in Table 1.
The application of the TCA method at the enterprise-level is discussed in
Section 2.3. In Sections 2.4–2.6 the MEMRIO model is run for hypothetical en-
terprises. Results from these tests are used to further explain how the model
functions and provide insights into how user assumptions over the uncer-
tainty associated with enterprise inputs and outputs can be reflected in the

17The MEMRIO model was developed using the Matlab programming language and consists of a
main script and a set of functions. A complete reproduction of the Matlab code can be provided
on request
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model. Finally, an assessment of factors affecting overall model uncertainty
is made in Section 2.7.

2.2 Overview of the MEMRIO model

The MEMRIO model, as its name suggest, starts with an existing MRIO model.
Following Dietzenbacher (2005) it is assumed that the MRIO model satisfies
the condition that final demand is non-negative with at least one positive
element. This condition is sufficient to guarantee the central requirement of
the open IO model: that the model yields a non-negative total output18. The
model also requires enterprise segment data19, which must conform to the
condition that a segment’s total output does not exceed the total output of
the sector to which it is classified. By extension, the sum of total outputs of
all segments ascribed to the same sector also cannot exceed the total output
of the sector itself.

The MRIO model and all enterprise segment data are initially loaded into
the model environment. A model set-up procedure is run with the primary
purpose of organising and keeping track of how and where enterprise seg-
ments are introduced into the MRIO framework. The following six model
procedures are executed sequentially:

1. Construct the default table – The first step involves the construc-
tion of an initial estimate of the MEMRIO table (the default table). The
MRIO table is disaggregated to include an additional row and column
for each enterprise segment. New coefficients are specified by apply-
ing the simplifying assumption that enterprise segments have the same
IO structure as their parent MRIO sectors (i. e., that they exhibit sector
average performance).

2. Adjust the default table – It is assumed that intra-enterprise trans-
actions are negligible (i. e., that an enterprise segment does not buy
from or sell to itself or other segments belonging to the enterprise).
The default table therefore requires adjustment to set intra-enterprise
coefficients to zero. This is done in such a way as to maintain the bal-
anced IO structure of the default table. The output of this step is the
adjusted table.

3. Specify stochastic coefficients – When the assumption of sector
average performance is relaxed, enterprise coefficients are unknown.
However, the majority of coefficients would have a negligible affect on
the supply chain emissions of the enterprise. An emission multiplier
cut-off parameter (specified by the user) is used to determine which
coefficients are treated stochastically in the model (floating coefficients).
Coefficients falling below the cut-off are fixed at their adjusted table
values. In addition, enterprise value-added coefficients are deemed to
be floating.

4. Specify model constraints – Upper and lower bounding constraints
are placed on each floating coefficient according to parameters set by
the user to reflect the estimated uncertainty in coefficient values. The
general IO table requirements that total inputs must equal total outputs
and that final demand must be non-negative places further system-
wide constraints on floating coefficients.

5. Construct sample tables – By randomly sampling individual float-
ing coefficients, a Monte-Carlo simulation is used to construct a set of
sample tables. Each sample table represents a plausible configuration
of how the enterprise is integrated within the global economy.

18This condition recognises that it is not strictly necessary for all technical coefficients to take a
value less than one for an IO model to be viable.

19The issues, and uncertainties, involved in specifying enterprise segments are discussed in Sec-
tion 2.7
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Figure 1: Illustration of the default table construction process.

6. Estimate supply chain emissions – The TCA method (introduced in
Skelton et al. (2011)) is applied to estimate enterprise supply chain
emissions in each sample table. The resulting enterprise TCA distri-
bution is then statistically analysed to provide a range in which the
supply chain emissions of the actual enterprise is likely to fall.

Each procedure is discussed in more detail below.

Constructing the default table

The first modelling step involves the construction of an initial estimate of the
MEMRIO technical coefficients matrix. This initial estimate is referred to as the
default table. The construction procedure builds on Wolsky’s (1984) approach
(discussed in Section 1.3) for disaggregating a single sector into two new sec-
tors by applying the simplifying assumption that both enterprise segments
and residual sectors have the same IO structure as their parent MRIO sectors.
That is, unit output of an enterprise segment requires the same production
recipe of inputs as the original MRIO sector from which it was disaggregated.
To ensure that the default table remains balanced, output coefficients are
adjusted according to entity weighting factors.

For example, Figure 1 provides an illustration of the disaggregation pro-
cess. The intersection of a steel sector and a motor vehicles sector in an
original MRIO table is shown on the left-hand-side of the diagram. Four tech-
nical coefficients are of interest: intra-sector requirements of both the steel
sector (as,s) and the motor vehicles sector (am,m); the steel sector’s require-
ment for motor vehicle inputs (am,s); and, the motor vehicle sector’s require-
ment for steel inputs (as,m). An enterprise segment is introduced into the
steel sector with a weighting factor of 0.2 (i. e., the enterprise segment pro-
duces 20% of the original steel sector’s output, with the residual sector left
to produce the remaining 80%), requiring an additional row and column
to be inserted in the MEMRIO table as shown on the right-hand-side of the
diagram. Four mapping processes are used to specify the MEMRIO technical
coefficients:

1. Mapping process A – Not all MRIO coefficients are affected by the dis-
aggregation process. Those that are not affected are mapped directly
to the MEMRIO table, as is the case for the intra-sector requirement of
the motor vehicles sector am,m.

2. Mapping process B – Since the inputs to both the enterprise segment
and the residual sector are assumed to be the same as those of the ori-
ginal steel sector, the input coefficients of the steel sector are mapped
directly to the residual sector in the MEMRIO table and duplicated
across to the new column representing the enterprise segment. For
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example, the enterprise segment’s requirement for motor vehicles is
simply am,s. MRIO coefficients undergoing column disaggregation cor-
respond to MEMRIO blocks of dimension 1 × number of column entities.

3. Mapping process C – The combined outputs of the enterprise segment
and the residual sector to other sectors must correspond to the outputs
of the original steel sector required by other sectors. Output coeffi-
cients are therefore mapped similarly to input coefficients but are, in
addition, adjusted according to the enterprise and residual weighting
factors. For example, say the motor vehicles sector requires 0.1 units
of input from the steel sector (as,m = 0.1), in the MEMRIO table this
would correspond to a requirement of 0.08 units (0.8 ×as,m) from the
residual steel sector and 0.02 units (0.2 ×as,m) from the enterprise seg-
ment. MRIO coefficients undergoing row disaggregation correspond to
MEMRIO blocks of dimension number of row entities × 1.

4. Mapping process D – MRIO coefficients undergoing both column and
row disaggregation are mapped through a combination of mapping
processes B and C, as is the case for the intra-sector requirement of
the steel sector as,s. Here, the residual sector and the enterprise are
assumed to require the same (intra-sector) steel inputs as the original
steel sector (mapping process B), but this requirement is now provided
by both the enterprise and the residual sector, again in accordance
to their weighting factors (mapping process C). MRIO coefficients un-
dergoing both column and row disaggregation correspond to MEMRIO

blocks of dimension number of row entities × number of column entities.

Adjustments to the default table

The construction of the default table implies the assumption that enterprises
engage in intra-enterprise20 transactions in much the same way as sectors
engage in intra-sector transactions. That is, it is assumed that an enterprise
will require a certain amount of input from itself in order to produce output.
Several cases need to be considered to assess the suitability of this assump-
tion:

1. An enterprise with activities only in a single sector may indeed use
some of its output as an input to its production processes. However,
this is typically accounted for internally and therefore not captured in
the national accounts data from which MRIO models are derived.

2. An enterprise with activities spanning several countries but within
a single industry may have relatively autonomous operations across
its different regions of activity, hence it may only report minor intra-
enterprise transactions.

3. A vertically integrated enterprise with activities spanning several dif-
ferent industries may report significant intra-enterprise transactions.
For example, an oil company which refines a major share of its ex-
tracted crude oil, may report the market price of crude oil purchased
by business units in the refining industry from units in the extraction
industry. Compliers of national accounts aim to capture these intra-
enterprise transactions that cut across different industries.

The validity of the assumption that enterprises engage in intra-enterprise
transactions is therefore dependent on the nature of the enterprises intro-
duced into the model. On one hand it may be appropriate to set all intra-
enterprise transactions to zero, but on the other, intra-enterprise transac-
tions could be the most significant transactions made by certain enterprise
segments.

20Intra-enterprise transactions include both intra- and inter-segment transactions between all
segments belonging to a given enterprise.
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Based on these considerations, the specification of intra-enterprise trans-
actions is treated exogenously to the sampling procedure for unknown coef-
ficients. For the purposes of the current model description it is assumed that
intra-enterprise transactions are negligibly small. The default table there-
fore requires adjustment to set intra-enterprise coefficients to zero. How-
ever, simply setting intra-enterprise coefficients to zero would affect the
underlying IO structure of the default table. Returning to the example il-
lustrated in Figure 1, if the intra-enterprise coefficient contained in the steel
intra-sector block (corresponding to mapping process D) were set to zero,
then overall steel inputs to the enterprise, and overall enterprise outputs to
the steel sector, would be under-reported. Hence, whole blocks containing
intra-enterprise transactions must be adjusted to retain the underlying IO

structure.
The adjustment procedure is inspired by Wolsky’s (1984) idea of a dis-

tinguishing matrix parameterised by independent variables used to relate a
default – or augmented – matrix with an under-defined disaggregated matrix.
Considering the case of a single sector disaggregated into a single enterprise
segment (s) and a residual sector (r) and using Wolsky’s formulation, the
intra-sector coefficients block can be fully described by(

Arr Ars

Asr Ass

)
= δ

(
ws −wr

ws −wr

)
+ σ

(
1 1

−1 −1

)

+ ε

(
ws −wr

−ws wr

)
+

(
Hrr Hrs

Hsr Hss

)
(1)

where,Aij are unknown coefficients,Hij are default coefficients,wi are weight-
ing factors, δ and σ are independent variables that determine the difference
between segment and residual sector demand for input from, and supply
of output to, the disaggregated sector, respectively, and ε is a further inde-
pendent variable that determines intra-aggregate exchanges.

To achieve the objective of resetting intra-enterprise coefficients to zero
while maintaining the default IO structure between segments and residual
sectors implies that only the intra-aggregate exchange variable ε can be used.
Hence, the adjusted coefficients block, corresponding to the case above, can
be fully described by(

Jrr Jrs

Jsr Jss

)
= ε

(
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)
+

(
Hrr Hrs

Hsr Hss

)
(2)

where, Jij are adjusted coefficients and the matrix containing weighting
factors is referred to as the intra-aggregate multipliers. For this most simple
of cases, the adjustment procedure is straightforward: determine the intra-
aggregate exchange variable by solving the linear equality expressed in
Equation 3 and calculate the adjusted technical coefficients block using Equa-
tion 2.

Jss = εwr +Hss = 0 (3)

The adjustment procedure becomes more involved for the case of a single
sector disaggregated into two segments (s1 and s2) and a residual sector
(r). In this case, two intra-aggregate exchange variables must be specified
(Equation 4), and the corresponding set of simultaneous linear equations
(Equations 5 and 6) solved, to calculate the adjusted intra-sector coefficients
block.(
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(4)
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Js1s1 = ε1(1−ws1) + ε2ws2

ws1

1−ws2

+Hs1s1 (5)

Js2s2 = ε1ws1

ws2

1−ws1

+ ε2(1−ws2) +Hs2s2 (6)

The computational procedure developed to adjust the default table provides
a generalised approach for specifying intra-aggregate multiplier matrices.
This allows adjustments to be made to default coefficient blocks of any given
size. Adjustments are made to every default coefficient block containing an
intra-enterprise coefficient. The resulting adjusted table is taken as the refer-
ence point for the subsequent stochastic analysis.

Specifying stochastic coefficients

To construct the default and adjusted tables it was assumed that enterprise
segments and residual sectors exhibit the same supply and demand struc-
ture as the original sector from which they were disaggregated. This assump-
tion of average performance is relaxed for the construction of sample tables,
reflecting the reality that enterprise segments will typically differ, perhaps
significantly so, from aggregate sector performance. For example, a motor
vehicle manufacturer specialising in the production of high-performance
vehicles may require less input of basic metal products per unit output than
the sector average, with high-technology inputs and in-house value-adding
processes instead accounting for a major share of end-product value.

The first step in constructing a sample table is to identify floating coef-
ficients. Floating coefficients are defined as technical and value-added coef-
ficients that become nondetermined when the assumption of average per-
formance is relaxed. In principle, this includes all supply (row) and demand
(column) technical coefficients and all value-added coefficients of disaggreg-
ated entities. However, the emissions multipliers associated with many MRIO

coefficients are negligibly small: meaning that corresponding sampled coef-
ficients would have a negligible bearing on the calculation of enterprise
supply chain emissions. A further consideration is the computational re-
quirements of the sampling process. Calculation time grows dramatically as
the number of floating coefficients increases.

These considerations are reflected in the model through the use of a user-
control parameter that specifies an emissions multiplier cut-off value: only
technical coefficients corresponding to emissions multipliers with a value
higher than the cut-off are assumed to be floating. For example, a cut-off
value of 0.01 implies emissions multipliers Mij that represent less than 1%
of a sector’s total emissions multipliermj to be negligibly small; correspond-
ing blocks of MEMRIO coefficients Aij are fixed at adjusted table values. The
emissions multiplier cut-off is used to control the scale of the sampling pro-
cedure (i. e., the stochastic component of the model) and hence the overall
computational requirements.

Specifying a system of constraints

Following the identification of floating coefficients, the next step involves
the specification of a system of equality and inequality constraints that de-
termines the envelope of possible values these coefficients can take. Four
types of constraints are considered:

1. Coefficient bounding constraints – In principle, each floating tech-
nical coefficient has a lower bound equal to zero – reflecting the IO

model requirement for positive transactions (i. e., producing sectors
sell products to purchasing sectors) – and an upper bound equal to
one – reflecting the requirement that inputs must be equal to outputs.
However, inaccuracies from procedures used to balance MRIO tables
can, although rarely, result in technical coefficients with a value greater
than one. Relaxation of this upper bound constraint also implies value-
added coefficients can take negative values to maintain overall balance

21



dimensional parameter symbol value

Number of MEMRIO blocks containing floating
technical coefficients

Nblock
1

Number of MEMRIO columns containing floating
coefficients

Ncol
3

Number of MEMRIO rows containing floating coef-
ficients

Nrow
3

Number of floating technical coefficients Ntech
9

Number of floating value-added coefficients Nva Ncol = 3

Total number of floating coefficients Nfloat Ntech +Nva = 12

Table 2: Example dimensional parameters.

between inputs and outputs. Within the model, a means of controlling
upper and lower coefficient bounds is required to reflect the estimated
extent to which enterprise segments can differ from sector average per-
formance. This is achieved using two user-control parameters: one to
control upper and lower bounds on floating technical coefficients BA

and the other to control upper and lower bounds floating value-added
coefficients Bu.

2. Column sum constraints – For each purchasing (column) entity, the
sum of technical and value-added coefficients must be equal to one,
again reflecting the IO model requirement that total inputs must be
equal to total outputs. Since a proportion of technical coefficients are
fixed, this column constraint can be restated: the sum of floating tech-
nical and value-added coefficients must be equal to one less the sum
of fixed technical coefficients.

3. Row sum constraints – For each producing (row) entity, the sum of
intermediate transactions must be less than or equal to its total output,
reflecting the IO model requirement for non-negative final demand
transactions. Since a proportion of technical coefficients and corres-
ponding intermediate transactions are fixed, this row constraint can
be restated: the sum of floating intermediate transactions must be less
than or equal to total output less the sum of fixed intermediate trans-
actions.

4. Coefficient block constraints – The weighted sum of each MEMRIO

technical coefficients block must be equal to its parent MRIO coefficient.
That is, the disaggregation process must be reversible.

Steps taken to specify the system of constraints are illustrated below for
the case of a single sector (t) disaggregated into two segments (s1 and s2)
and a residual sector (r). For the purposes of this example, it is assumed
that floating technical coefficients are found only in the coefficient block(

Arr Ars1 Ars2

As1r As1s1 As1s2

As2r As2s1 As2s2

)
corresponding to sector t’s intra-sector demand Att. In ad-

dition, each of the three disaggregation entities has a floating value-added
coefficient (ur us1 us2 ). Several dimensional parameters can also be specified
(Table 2). For this simple example, each of the four constraint types are con-
sidered in turn below.

Coefficient bounding constraints – The upper and lower bounding
constraints on the 12 floating coefficients are expressed by(

blower
A

blower
u

)
= blower 6 ξ =

(
ξA

ξu

)
6 bupper =

(
bupper

A

bupper
u

)
(7)

where, ξ is the floating coefficients vector (of size Nfloat× 1) consisting of
technical coefficients ξA and value-added coefficients ξu, blower is the lower
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bounds vector (of size Nfloat× 1) consisting of technical coefficient lower
bounds blower

A and value-added coefficient lower bounds blower
u , and bupper is

the upper bounds vector (of size Nfloat× 1) consisting of technical coefficient
upper bounds bupper

A and value-added coefficient upper bounds bupper
u . In

the example case, these vectors are given by
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where, Aij are floating technical coefficients, uj are floating value-added coef-
ficients, Jij are adjusted technical coefficients, vj are default value-added coef-
ficients, and BA and Bu are user-control parameters. BA determines floating
technical coefficient bounds as a percentage of the corresponding value in
the adjusted table. For example, BA = 0.1 would yield bounds ±10% of ad-
justed table values. Similarly, Bu determines floating value-added coefficient
bounds as a percentage of the corresponding value in the default table21.

Column sum constraints – Floating coefficient column sum constraints
are expressed in the form of inequalities22 by

INEQcol_A ξ 6 ineqcol_A (11)

where, ξ is again the floating coefficients vector, INEQcol_A is a matrix of
multipliers (of size Ncol ×Nfloat) pertaining to floating coefficient column
sum inequalities, and ineqcol_A is the corresponding vector of inequality con-
straints (of size Ncol× 1). The inequality multiplier matrix and constraints
vector for the example are given by

INEQcol_A =
(

1 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1 0 0 1

)
(12)

ineqcol_A =
(

1
1
1

)
−
( cr

cs1

cs2

)
(13)

where, cj are the column sum of fixed technical coefficients for each disag-
gregation entity.

21Value-added coefficients are unaffected by the default table adjustment procedure, hence de-
fault table values are used. In addition, although the adjustment procedure set intra-enterprise
transactions to zero (i. e., in the example both As1s1 and As2s2 are set to zero), the model does
not consider these coefficients to be strictly fixed. For computational convenience (and flexibil-
ity for model extensions) they are instead included in the floating coefficients system, but with
lower and upper bounds that effectively constrain the coefficient to zero

22Strictly, column sum constraints that include value-added coefficients are equalities. However,
rounding errors arising from model calculations can lead to inaccurate conflicts when column
sum constraints are defined as equalities. The use of inequalities provides a more flexible en-
vironment in which value-added coefficients are effectively treated as having two components:
a component that is randomly sampled along with floating technical coefficients (the reason
why this is desirable is discussed in the following section) and a further component that is de-
termined as a result of the sampling procedure. That is, inequality constraints ensure sampled
coefficients do not violate the requirement that total inputs are not greater than total outputs,
while the resulting difference between a column entity’s inputs and total output relates to the
non-sampled component of value-added.
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Row sum constraints – Floating intermediate transaction row sum con-
straints are expressed in the form of inequalities by

INEQrow_Z ξ 6 ineqrow_Z (14)

where, ξ is the floating coefficients vector, INEQrow_Z is a matrix of multi-
pliers (of size Nrow ×Nfloat) pertaining to floating intermediate transaction
row sum inequalities, and ineqrow_Z is the corresponding vector of inequal-
ity constraints (of size Nrow× 1). The inequality multiplier matrix and con-
straints vector for the example are given by

INEQrow_Z =

(
xr xs1 xs2 0 0 0 0 0 0 0 0 0
0 0 0 xr xs1 xs2 0 0 0 0 0 0
0 0 0 0 0 0 xr xs1 xs2 0 0 0

)
(15)

ineqrow_Z =
( xr

xs1

xs2

)
−
( rr

rs1

rs2

)
(16)

where, xj in the inequality multiplier matrix are column entity total outputs,
xi in the inequality constants vector are row entity total outputs, and ri are
the row sum of fixed intermediate transactions for each disaggregation en-
tity. Column and row sum constraints are concatenated into a single system
of inequalities as expressed by(

INEQcol_A

INEQrow_Z

)
ξ = INEQ · ξ 6 ineq =

(
ineqcol_A

ineqrow_Z

)
(17)

Coefficient block constraints – Floating technical coefficient block
constraints are expressed in the form of equalities by

EQblock ξ = eqblock (18)

where, ξ is the floating coefficients vector, EQblock is a matrix of multipliers
(of size Nblock ×Nfloat) pertaining to floating coefficient block equalities, and
eqblock is the corresponding vector of equality constraints (of size Nblock×
1). The equality multiplier matrix and constants vector for the example are
given by

EQblock = (wr ws1 ws2 wr ws1 ws2 wr ws1 ws2 0 0 0 ) (19)

eqblock = Att = i ′
(

wrArr ws1Ars1 ws2Ars2

wrAs1r ws1As1s1 ws2As1s2

wrAs2r ws1As2s1 ws2As2s2

)
i (20)

where, wj are column entity weighting factors, Att is the MRIO coefficient
corresponding the sole MEMRIO block containing floating coefficients, and
i is a summation vector. The re-aggregation formula for the disaggregated
block is shown on the right-hand-side of Equation 20, which illustrates the
rational behind the equality multiplier matrix. Additional blocks of float-
ing coefficients would introduce further rows of equality multipliers and
corresponding MRIO technical coefficient.

Constructing sample tables

Having split the MEMRIO model into deterministic and constrained-stochastic
parts, the central modelling procedure involves the construction of a set
of sample MEMRIO tables using a Monte-Carlo simulation approach. Each
sample table is constructed by randomly sampling floating coefficients within
the imposed system of constraints. When an individual floating coefficient is
sampled its value becomes fixed within the current sample table. This affects
the system of constraints imposed on subsequently sampled coefficients: the
envelope of possible values a floating coefficient can take becomes increas-
ingly restricted as more coefficients are sampled. Consequently the system
of constraints must be adjusted after each coefficient has been sampled.
When all floating coefficients have been sampled the sample table becomes
fully defined and represents just one possible solution to the stochastic
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MEMRIO model. Sample tables can be stored for later analysis or analysed
within the Monte-Carlo loop. The system of constraints must be reset to
initial values before the next sample table can be constructed.

The order in which floating coefficients are sampled is important. For
example, if the coefficients in a given column are sampled sequentially from
top to bottom, then a bias could be introduced into the set of sampled tables:
coefficients near the top of the column would exhibit a wider distribution of
values then those at the bottom. To ensure that no bias is introduced into the
system, a random permutation of the floating coefficient sampling order is
used23. A linear optimisation routine is used to sample floating coefficients,
which consists of the following steps:

1. Construct an objective function that identifies the coefficient to be
sampled as the object for linear optimisation.

2. Use linear optimisation to estimate the minimum value the coefficient
can take within the current system of constraints24.

3. Make the negative of the coefficient the object for linear optimisation.

4. Use linear optimisation to estimate the maximum value the coefficient
can take.

5. Randomly sample the coefficient from the range of possible values de-
lineated by the estimated minimum and maximum permissible values,
assuming a probability density function of continuous uniform distri-
bution (i. e., all values within the range have an equal likelihood of
being sampled).

6. Introduce the sampled coefficient into the current system of constraints
in the form of an equality.

The steps taken to sample a floating coefficient are illustrated below by
continuing with the example of a single sector (t) disaggregated into two
segments (s1 and s2) and a residual sector (r). Say the random permuta-
tion of the sampling order determined that floating coefficient As1s2 is the
first to be sampled. The minimum value linear optimisation problem and its
required objective function objmin

As1s2

are expressed by

objmin
As1s2

= ( 0 0 0 0 0 0 0 0 1 0 0 0 ) (21)

Amin
s1s2

= min
ξ

objmin
As1s2

· ξ subject to

{
INEQ·ξ6 ineq
EQblock ξ= eqblock
blower 6ξ6bupper

(22)

and the maximum value linear optimisation problem and its required object-
ive function objmax

As1s2

are expressed by

objmin
As1s2

= ( 0 0 0 0 0 0 0 0 −1 0 0 0 ) (23)

Amax
s1s2

= min
ξ

objmax
As1s2

· ξ subject to

{
INEQ·ξ6 ineq
EQblock ξ= eqblock
blower 6ξ6bupper

(24)

where, ξ is the floating coefficients vector, INEQ and ineq are the inequality
multiplier matrix and constants vector, respectively (Equation 17), EQblock
and eqblock are the block equality multiplier matrix and constants vector,
respectively (Equation 18), and bupper and blower are the upper and lower

23Random permutations of the floating coefficients sampling order are specified using in-built
functionality of the Matlab language that draws from a uniformly distributed pseudorandom
number generator.

24Linear optimisation is performed using inbuilt linear programming functionality of the Matlab
language. Specifically, a medium-scale active-set linear programming algorithm, within the
linprog function, is used, although the model could be readily modified to accommodate an
alternative algorithm.
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coefficient bounds vectors (Equation 7). The range of possible values As1s2

can take is then given by

Amin
s1s2

6 As1s2 6 Amax
s1s2

(25)

When a value is randomly sampled from the range the coefficient be-
comes fixed within the current sample table Afixed

s1s2
. The induced change in

the system of constraints caused by defining Afixed
s1s2

is captured by specifying
the following additional system of equalities

EQcoeff ξ = eqcoeff (26)

where, EQcoeff and eqcoeff are the coefficient equality multiplier matrix and
constants vector, respectively. Following the sampling of the first floating
coefficient As1s2, the equality multiplier matrix and constants vector are
given by

EQcoeff = ( 0 0 0 0 0 0 0 0 1 0 0 0 ) (27)

eqcoeff = A
fixed
s1s2

(28)

For each additional coefficient that is sampled, a further row is added to
the coefficient equality multiplier matrix and the constants vector. The final
stage is to concatenate all equalities into a single system of equalities as
expressed by(

EQblock

EQcoeff

)
ξ = EQ · ξ = eq =

(
eqblock

eqcoeff

)
(29)

The updated system of equalities is taken as input to the next sampling
routine.

Model checks

Model checks are performed during the construction of the MEMRIO default,
adjusted and sample tables. All tables are assessed against four test criteria to
ensure that they have been constructed correctly:

1. Non-negative coefficient test – A general requirement of IO tables
is that all technical coefficients are non-negative. Any coefficients found
to be less than zero would indicate that an error has occurred during
the construction of the table.

2. Column sum test – The column sum of technical coefficients plus
value-added coefficients must be equal to one, ensuring that total in-
puts equal total outputs.

3. Non-negative final demand test – A fundamental requirement of IO

tables is that final demand is non-negative with at least one positive
element (Dietzenbacher, 2005).

4. Re-aggregation test – Re-aggregation of a MEMRIO table according to
the MRIO sector classification must yield the original MRIO table.

Default and adjusted tables are recalculated if they fail any of these test.
Sample tables that fail the tests are flagged as invalid within the Monte-
Carlo simulation.

2.3 Estimating enterprise supply chain emissions

The MEMRIO model provides a means of assessing the role of individual en-
terprises, or a group of enterprises, within the context of the global economy.
Using the model the overall production activity of a multi-national and/or

26



multi-industry enterprise is decomposed into enterprise segments that cor-
respond to the regional and industrial classifications used in an MRIO model.
The MEMRIO model has been designed to depend only on publicly available
enterprise data. It is assumed that this data is sufficient to accurately estim-
ate enterprise total output (revenue) from production activity in each seg-
ment25, but is insufficient to estimate enterprise segment production recipes
and detailed sales structures. That is, enterprise technical coefficients cor-
responding to purchases from and sales to MRIO sectors cannot be uniquely
specified. To accommodate this lack of detailed data, the MEMRIO model
treats enterprise technical coefficients stochastically: sample MEMRIO tables
are constructed that present plausible configurations of how an enterprise
is integrated within the wider economy. Measures of interest can then be
statistically analysed across the set of sample tables.

Specifically, the MEMRIO model was developed to assess enterprise sup-
ply chain emissions. This is achieved using the TCA method developed in
Skelton et al. (2011). The total consumption attribution of an enterprise (e)
with multiple segments characterised in a MEMRIO sample table is given by

TCAe = f∗(I − A∗)−1A:exe + fexe (30)

where f∗ is a sub-vector of the emissions intensity row vector where the
elements ascribed to enterprise segments have been stripped out, I is an ap-
propriately sized identity matrix, A∗ is a sub-matrix of the sampled MEMRIO

technical coefficients matrix where rows and columns ascribed to enterprise
segments have been stripped out, A:e is another sub-matrix of the sampled
MEMRIO matrix where the rows ascribed to enterprise segments and columns
ascribed to all other entities have been stripped out (i. e., ‘:’ denotes all
entities except enterprise segments), and fe and xe are sub-vectors of the
emissions intensity row vector and total output column vector, respectively,
where elements not belonging to the enterprise have been stripped out.

The supply chain emissions perspective of an enterprise estimates indir-
ect emissions from all supply chains stemming from the enterprise and the
direct emissions of the enterprise itself: it provides a measure of global emis-
sions embodied in the total output of goods and services produced by the
enterprise. The application of the TCA method across a set of sample tables
yields a distribution of possible values. This distribution can then be stat-
istically analysed to give a value-range in which the actual enterprise TCA

is likely to fall. Section 2.4 provides a detailed explanation of TCA distribu-
tions provided by the MEMRIO model by analysing results for a hypothetical
enterprise.

The MEMRIO model includes three user-control parameters that allow an
analyst to control the scale of the stochastic part of the model. Section 2.5
considers how the model responds to changes in user-control parameters,
again by drawing on results for the same hypothetical enterprise reported
in Section 2.4. The aim of this exercise is not to provide a comprehensive
sensitivity analysis of the model to user-control parameters (since model
response to these parameters is dependent on the nature of the enterprise
under analysis), but rather to develop an understanding of the underly-
ing mechanisms that translate changes in parameter value into observed
changes in enterprise TCA distributions.

The estimation of the supply chain emissions of a group of interdepend-
ent enterprises is discussed in Section 2.6. Results are analysed for a hypo-
thetical group of three enterprises, with the aim of highlighting the import-
ance of how the TCA method implicitly removes the risk of double-counting
emissions, which arises from enterprises falling within one another’s supply
chains.

The analysis of hypothetical enterprises in Sections 2.4–2.6 use the Global
Trade Analysis Project (GTAP) Version 8 GMRIO model as input into the
MEMRIO model.

25The feasibility of this assumption is considered in Section 2.7
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user-control parameter symbol value

Emissions multiplier supply cut-off parameter Cs
1

Emissions multiplier demand cut-off parameter Cd
0.01

Floating technical coefficient bounding parameter BA
0.5

Floating value-added coefficient bounding parameter Bu
0.5

Number of sample MEMRIO tables N 500

Table 3: Base case specification of user-control parameters for Enterprise 1.

2.4 Distributions of enterprise supply chain emission

The application of the TCA method across a set of sample MEMRIO tables
gives a stochastic estimate of enterprise supply chain emissions. This sec-
tion outlines the stages involved in constructing a set of sample tables for
a hypothetical enterprise and the subsequent statistical analysis of the en-
terprise’s TCA distribution. The aim of this section is two-fold: to provide
an example of the type of results generated by the MEMRIO model and how
they can be evaluated; and to provide an understanding of the underlying
mechanisms that lead to a distribution in TCA values across a set of sample
tables.

For the purposes of this exercise, a hypothetical enterprise (enterprise
1) is specified as an automobile manufacturer characterised by a single seg-
ment ascribed to the German Motor Vehicles & Parts sector in the GTAP-
GMRIO model26. The total output (revenue) of the segment is $50 bn, which
accounts for 13% of the segment’s parent MRIO sector’s total output. In addi-
tion, user-control parameters taken as inputs into the model were specified
according to Table 3.

Both floating coefficient bounding parameters (BA and Bu) were set to
0.5, implying that all technical and value-added coefficients that are treated
stochastically in the model must be sampled from a range of ±50% of their
adjusted table values. To simplify the analysis, the emissions multiplier cut-
off parameter is split into two parameters: one to control the segment and
residual sector demand (input) coefficients (Cd), the other to control their
supply (output) coefficients (Cs). The supply and demand cut-off’s were set
to 1 and 0.01, respectively. This forces the model to only specify floating
coefficients in segment and residual sector columns: those with correspond-
ing MRIO emissions multiplier’s greater than 1% of the total emissions multi-
plier of the German Motor Vehicles & Parts sector. All segment and residual
sector row coefficients are fixed at adjusted table values.

Construction of the adjusted table

A default MEMRIO table H is first constructed by disaggregating the MRIO

table. This involves splitting the row and column of the German Motor
Vehicles & Parts sector into a row and column representing the enterprise
segment (s) and a row and column representing the residual sector (r). For
the newly disaggregated entities, default technical coefficients are specified
by assuming sector average performance. The intersection of the segment
row and column represents the only intra-enterprise transaction within the
MEMRIO model. The adjusted table J is therefore constructed by re-balancing

26The hypothetical enterprise was selected on the basis that the narrative relating to the diverse
and emissions-intensive supply chains stemming from automobile manufacture is relatively
easy to communicate. For example, the production of an automobile requires inputs of metal
products from first-tier suppliers, these suppliers need steel inputs from second-tier suppliers,
who in turn purchase electricity from third-tier suppliers. Germany was selected on the basis
that it has a prominent automotive industry dominated by several large manufacturers.
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the intra-sector coefficients block so as to set the intra-enterprise transaction
to zero. The results of this procedure are given by

Hrs =
(

Hrr Hrs
Hsr Hss

)
=
(
0.172 0.172
0.024 0.024

) ∑
col

Hrs = ( 0.196 0.196 )

ZH
rs =

(
ZH

rr ZH
rs

ZH
sr ZH

ss

)
=
(
62194 8615
8615 1193

) ∑
row

ZH
rs =

(
70809
9808

)
Jrs =

(
Jrr Jrs
Jsr Jss

)
=
(
0.169 0.196
0.027 0

) ∑
col

Jrs =
∑
col

Hrs

ZJ
rs =

(
Z

J
rr Z

J
rs

Z
J
sr Z

J
ss

)
=
(
61001 9808
9808 0

) ∑
row

ZJ
rs =

∑
row

ZH
rs (31)

where, Hrs is the default intra-sector coefficients block containing the intra-
enterprise transaction (Hss), ZH

rs is the corresponding default intermediate
transactions block, Jrs is the adjusted intra-sector coefficients block, and ZJ

rs
is the corresponding adjusted intermediate transactions block. The results
confirm that the desired outcome was achieved: the intra-enterprise transac-
tion has been set to zero while maintaining the overall supply and demand
structure of the disaggregated entities.

Specification of stochastic coefficients

The emissions multiplier demand cut-off Cd was pre-specified as 0.01. This
implies that segment and residual sector column technical coefficients are
considered to be floating only if their corresponding MRIO emissions mul-
tiplier is greater than 1% of the total emissions multiplier of the German
Motor Vehicles & Parts sector.

The total emissions embodied in a unit of output from the German Motor
Vehicles & Parts sector is calculated to be 293 t CO2. 13 emission multipliers
individually accounted for more than 1% of this value27. These multipliers
correspond to a total of 28 MEMRIO technical coefficients: 12 multipliers each
map to a pair of MEMRIO coefficients (i. e., following mapping process B as il-
lustrated in Figure 1) and one multiplier maps to a block of four coefficients
(i. e., following mapping process D). To simplify the analysis, the emissions
multiplier supply cut-off Cs was set to one, implying that all segment and re-
sidual sector row coefficients (i. e., those following mapping process C) are
fixed. Hence, the only MEMRIO columns containing floating technical coef-
ficients are those corresponding to the residual sector and the enterprise
segment. Therefore, only two value-added coefficients are specified to be
floating. A total of 30 floating coefficients are treated stochastically in the
construction of each sample table.

Distribution of sampled coefficients

A total of 500 sample tables were constructed and validated against the four
test criteria outlined in Section 2.2. However, the linear optimisation routine
reported errors during the construction of 8 sample tables. The errors re-
late to overly stringent constraints caused by finite computational precision.
In such cases, the optimisation routine minimises the worst case constraint
violation. In the case of the MEMRIO model, errors introduced by compu-
tational precision are negligible compared with the uncertainty associated
with IO data. All 500 sample table could therefore be safely taken forward
for analysis. However, given the small number of samples reporting optim-
isation errors, and to avoid the potential risk of including erroneous results,
sample tables with reported errors are excluded from the analysis.

27Collectively, these 13 emission multipliers account for 58% of the total emissions multiplier,
indicating that even with so few coefficients deemed to be floating (only 0.18% of the possible
7353), a major proportion of the enterprise’s supply chain emissions will be accessed stochastic-
ally within the MEMRIO model.
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Figure 2 conveys four pieces of information about each of the 30 floating
coefficients and their sampled values across the set of 492 sample tables:

1. The value of the coefficient in the adjusted table (indicated by a white
dot).

2. The lower and upper bounding constraints placed on the coefficient
(indicated by black dots).

3. The distribution of the sampled values (indicated using a box plot:
values falling between the 25th and 75th percentiles are shown by the
width of the black box, values falling between the 0th and 25th percent-
iles and between the 75th and 100th percentiles are shown by vertical
black lines and the median sample value is shown by a white hori-
zontal line).

4. The relative importance of each coefficient as measured by its corres-
ponding MRIO emissions multiplier’s share of the column entity’s total
emissions multiplier (indicated by a grey dot along a dashed line plot
and used to determine the order technical coefficients take along the
x-axis).

The figure is divided into three charts. Chart A includes the floating
technical coefficients that relate to the inputs to the enterprise. These are
numbered 1-14, corresponding to the supplier sectors detailed in the key
(located at the bottom right of the figure). Chart B includes floating technical
coefficients for the same 14 supplier sectors, this time relating to inputs to
the residual sector. Finally, Chart C includes the two floating value-added
coefficients, one for the enterprise and one for the residual sector. Inspection
of Figure 2 allows the following observations to be made:

1. The relative contributions of input sectors to the overall embodied
emissions per unit output of the German Motor Vehicles & Parts sec-
tor is given by the grey line plot (read off the right-hand axis). Import-
ant contributors include the German electricity, transport, and metals
industries. However, the most important contribution (almost 20%)
comes from intra-sector inputs. For example, a motor vehicle manu-
facturer may purchases sub-components from a motor vehicle parts
manufacturer. Such transactions manifest as intra-sector transactions
due to the level of aggregation in the MRIO model.

2. The relative embodied emissions contributions of the input sectors do
not necessarily correspond to their relative importance as suppliers to
the sector (as measured by their technical coefficients). For example,
the German Business Services sector (represented by technical coeffi-
cient 9) has a high technical coefficient relative to its share of embodied
emissions and the German Electricity sector (represented by technical
coefficient 3) has a low technical coefficient relative to its share of em-
bodied emissions. This can be explained by the high embodied emis-
sions intensity of the electricity sector and the low embodied emissions
intensity of the business services sector.

3. The enterprise’s requirement from the residual German Motor Vehicles
& Parts sector (coefficient 1, Chart A) is likely to predominantly de-
termine the distribution of the enterprise’s sample TCAs given such a
high and wide range of sample coefficient values and the importance
of this input in terms of embodied emissions.

4. In some cases the sample range (represented by the box plots) does
not cover the full range permitted by the individual constraints placed
on the coefficient (indicated by black dots). This is the case for the re-
sidual sector’s coefficients (shown in Chart B), and occurs primarily
due to the difference in size of the enterprise and the residual sector.
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Figure 2: Distributions of sampled floating coefficients.
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Figure 3: Distribution of hypothetical enterprise TCAs.

The residual sector has an 87% share of the aggregate sector’s total
output, therefore a relatively large change in an enterprise coefficient
will lead to a relatively small change in the corresponding residual sec-
tor coefficient as a result of the coefficient block constraints imposed
on the model.

5. The interdependence of coefficient sample values is further complic-
ated by the presence of system-wide (column sum and row sum) con-
straints. This is most notably observed in the distribution of the re-
sidual sector’s value-added coefficient (shown in Chart C). The value
of this coefficient is not directly tied to the enterprise’s value-added
coefficient, so that fact that the sample does not exploit the full range
permitted by the coefficient’s upper and lower bounding constraints
can only be explained by the fact that wider model constraints are
binding.

Distribution of enterprise TCAs

The distribution of the enterprise’s TCA across the set of sample MEMRIO

tables is shown in Figure 3 as a probability density histogram. The sample
mean (x̄) and standard deviation (s) of the distribution are given by

x̄ =
1

n

n∑
i=1

TCAi (32)

s =

√√√√ 1

n

n∑
i=1

(TCAi − x̄)2 (33)

where, TCAj is the enterprise’s total consumption attribution estimated us-
ing sample table i, and n is the total number of sample tables.

The enterprise’s TCA distribution, with user-control parameters specified
according to Table 3, is found to have a mean of 14.29 Mt CO2, a standard
deviation of 0.98 Mt CO2, and it can be concluded that the supply chain
emissions of the enterprise are likely to fall between 12.7 and 15.9 Mt CO2

(5th–95th percentiles). The following section considers how this base-case
distribution is affected by the choice of user-control parameters.

2.5 Model response to user-control parameters

User-control parameters affect the scale of the stochastic component of the
MEMRIO model. At the extremes, setting both emissions multiplier cut-off
parameters (Cd and Cd) to 1 forces the model to fix all coefficients at their
adjusted table values, thereby rendering the model fully deterministic, while
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setting these parameters to zero forces the model to treat all disaggregated
coefficients stochastically (i. e., all coefficients in the segment and residual
sector columns and rows would be considered to be floating). Having spe-
cified which coefficients are to be modelled stochastically, the bounding
parameters (BA and Bu) are used to control the extent to which individual
coefficients can deviate from their adjusted table values. At the extremes,
setting both bounding parameters to zero would again render the model
fully deterministic since upper and lower bounds would converge to adjus-
ted table values, while setting these parameters to 1 would allow floating
coefficients to range from zero to +100% of adjusted table values.

The model response to user-control parameters is evaluated in this sec-
tion by systematically adjusting the emissions multiplier demand cut-off
(Cd) and both bounding parameters (BA and Bu) for the case of the hypo-
thetical automobile manufacturer introduced in the previous section. The
parameter values used in the previous section are taken as a base-case scen-
ario. Over a further six MEMRIO model runs, the values of Cd, BA, and Bu are
individually halved and then doubled with respect to these base-case values,
as outlined in Table 4 The aim of this exercise is to develop an understanding
of the underlying mechanisms that translate changes in user-control para-
meters into observed effects on the hypothetical enterprise TCA distribution.
The extent to which these findings help inform about the general model
response to user-control parameters is also considered.

Response to cut-off parameter Cd

Figure 4 shows the effect of halving (model run 2) and doubling (model run
3) the emissions multiplier demand cut-off parameter Cd on the enterprise
TCA distribution. Charts A, B and C show the enterprise TCA distribution
for the base case, and model runs 2 and 3, respectively. For each model
run, the probability density distribution of observed values is represented
by a 20-bin histogram. For each model run the distribution sample mean,
standard deviation, full range, and 5th–95th percentile range are reported
in Table 4. A smooth probability density function (PDF) is also fitted to aid
the comparison of distributions shown together in Chart D28.

In the case of the hypothetical automobile manufacturer, Figure 4 shows
that the TCA distribution is insensitive to the choice of cut-off parameter
value: the sample mean remains almost constant, increasing by 0.07% when
the parameter is halved and decreasing by 0.28% when doubled; the sample
standard deviation increases slightly in both cases, by 1% and 4%, respect-
ively; halving the parameter decreases the sample range by 3.49% but in-
creases the 5th-95th percentile range by 2.85%, when doubled both ranges
increase by 5.34% and 4.43%, respectively. Effects of this magnitude are
within the variability expected across multiple model runs of the base-case
scenario.

Figure 5 helps to explain this apparent insensitivity to the cut-off para-
meter. The figure shows how the number of emissions multipliers falling
above the cut-off increases as the parameter value tends to zero (read off
the right-hand axis), and how this affects the share of the total emissions
multiplier that is stochastically captured in the MEMRIO model (read off the
left-hand axis).

When the cut-off parameter is doubled (Cd = 0.02) five emissions mul-
tipliers that were accounted for in the base-case scenario drop below the
cut-off value. Together, these five multipliers account for 6.8% of the total
emissions multiplier. For the enterprise, the five multipliers correspond to
coefficients 10–14 in Chart A of Figure 2. Inspection of Figure 2 Chart A
shows that these coefficients have relatively low and narrow sample value
ranges compared to coefficients 1–9. This helps to explain why the removal

28The smooth PDF is estimated using the built-in kernel smoothing functionality of the Matlab
language.
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Figure 4: Response of enterprise TCA distribution to cut-off parameter Cd.

Figure 5: Interpreting insensitivity to cut-off parameter Cd.

35



of coefficients 10–14 from the stochastic component of the model has a negli-
gible effect on the enterprise TCA distribution. If the cut-off parameter were
to be set even higher at 0.5, then coefficients 4–9 would also be fixed at their
adjusted table values. Further inspection of Figure 2 Chart A shows that
these coefficients have relatively high and wide sample value ranges, indic-
ating that setting the cut-off parameter at 0.5 would significantly reduce the
spread of the enterprise TCA distribution.

When the cut-off parameter is halved (Cd = 0.005) 16 additional coef-
ficients are treated stochastically in the model. It would be reasonable to
anticipate that this would significantly increase the spread of the enterprise
TCA distribution. However, the sample standard deviation and the 5th–95th
percentile range increase only slightly and the full sample range actually
decreases. These results can be partly explained by the fact that as the num-
ber of floating coefficients increases, the likelihood of randomly sampling
coefficients that yield the minimum or maximum possible TCA value is re-
duced. That is, the effects of individual sample coefficient values are more
likely to cancel each other out within a given sample table29. A larger set of
sample tables is therefore required to capture the full extent of the sample
distribution. Decreasing the cut-off parameter further still is very unlikely
to significantly alter the distribution.

Overall, the base-case estimate that the enterprise’s supply chain emis-
sions are likely to fall between 12.7 and 15.9 Mt CO2 is shown to be robust
for cut-off parameter values between 0 and 0.02. Hence there is no a pri-
ori reason, other than computational resource considerations, for selecting a
cut-off value between this range. Cut-off parameter values greater 0.02 are,
however, likely to reduce the width of the range in which the enterprise’s
supply chain emissions are estimated to fall. The point at which estimates
of enterprise supply chain emissions become sensitive to the choice of cut-
off parameter depends greatly on the input structure of the MRIO sectors in
which enterprise segments are located. The inspection of emissions multipli-
ers (e. g., Figure 5) and coefficient sample value distributions (e. g., Figure 2)
can assist the analyst in selecting an appropriate cut-off parameter value
that balances the trade-off between a robust distribution estimate and the
computational resources required to perform the analysis.

Response to bounding parameter BA

Figure 6 shows the effect of halving (model run 4) and doubling (model run
5) the floating technical coefficient bounding parameter BA on the enterprise
TCA distribution. Charts A, B and C show the enterprise TCA distribution
for the base case, and model runs 4 and 5, respectively. Chart D provides
a comparison of the distributions using smooth PDFs. For each model run
the distribution sample mean, standard deviation, full range, and 5th–95th
percentile range are reported in Table 4.

The floating technical coefficient bounding parameter does not affect the
number of coefficients that are treated stochastically in the model. Hence,
the same coefficients as those shown in Figure 2, for the base-case scenario,
are sampled within the Monte-Carlo simulation for both model run 4 and
5. The bounding parameter does, however, have the effect of changing the
sample value distributions of each individual technical coefficient. The base-
case parameter value of 0.5 places upper and lower bounds on technical
coefficients of ±50% of the adjusted table value. Halving the parameter
tightens coefficient constraints to ±25%, while doubling the parameter re-
laxes constraints to ±100%.

Adjusting the technical coefficient bounding parameter in this way has
a statistically significant effect on the enterprise TCA distributions. Halving
the parameter decreases the spread of the distribution: the sample stand-
ard deviation, value range, and 5th–95th percentile range decrease by 42%,

29A similar effect occurs in the estimation of national carbon footprints....
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Figure 6: Response of enterprise TCA distribution to technical coefficient bounding
parameter BA.
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29%, and 43%, respectively. Conversely, when the parameter is doubled the
spread of the distribution increases: the same measures increase by 65%,
74%, and 64%, respectively.

The observed effects on the enterprise TCA distribution are explained
by dramatic shifts in bounding constraint range placed on several floating
coefficients. For example, Figure 2 Chart A indicates that the enterprise’s
requirement for residual sector inputs (coefficient 1) has a bounding range
of 0.01–0.29. When the bounding parameter is halved this range shrinks to
0.15–0.25, and expands to 0–0.39 when the parameter is doubled. For the
later case, if coefficient 1 is sampled at close to zero, then the coefficient
would make a negligible contribution to the enterprise’s TCA; but if it is
sampled close to the upper bound of 0.39, then the coefficient would account
for a major share of the TCA. Coefficients 4–9 similarly exhibit significant
shifts in their bounding constraint range between the halving and doubling
scenario.

The sample mean decreased slightly by 2.7% when the bounding para-
meter was doubled. Although this observed effect is relatively small, it may
be explained by the interplay of system-wide constraints. For example, if the
enterprise’s requirement for residual sector inputs were to be the first coef-
ficient sampled and it took a value near its upper bound, then this would
tighten the constraints on the other enterprise input coefficients due to the
specification of column sum constraints. Since residual sector inputs to the
enterprise are particularly emissions-intensive, this sampling order would
lead to a high enterprise TCA. However, the sampling order is randomly
(uniformly) specified for each sample table. With more coefficients likely to
be sampled before the residual sector requirement than after it, and with all
floating coefficients able to take higher values when the bounding parameter
is doubled, this has the effect of constraining the residual sector requirement
to slightly lower values thus causing the sample mean of the distribution to
decrease.

Overall, as the bounding parameter tends to zero, the spread of the dis-
tribution tightens and the sample mean tends toward the enterprise TCA

estimated using the adjusted table (14.52 Mt CO2). As the bounding para-
meter increases, up to a point, the spread of the distribution increases and
the sample mean decreases slightly. Beyond a certain point however, the
lower bounds on coefficients will be overridden by the requirement for non-
negativity, while upper bounds will be overridden by the other model equal-
ity and inequality constraints.

Response to bounding parameter Bu

Figure 7 shows the effect of halving (model run 6) and doubling (model
run 7) the floating value-added coefficient bounding parameter Bu on the
enterprise TCA distribution. Charts A, B and C show the enterprise TCA

distribution for the base case, and model runs 6 and 7, respectively. Chart
D provides a comparison of the distributions using smooth PDFs. For each
model run the distribution sample mean, standard deviation, full range, and
5th–95th percentile range are reported in Table 4.

The floating value-added bounding parameter has the effect of changing
the sample value distributions of the two valued-added coefficients shown
in Figure 2 Chart C. The base-case parameter value of 0.5 places upper and
lower bounds on these coefficients that are ±50% of the adjusted table value.
Halving the parameter tightens coefficient constraints to ±25%, while doub-
ling the parameter relaxes constraints to ±100%. The effect on the sample
mean is not statistically significant.

Halving the parameter decreases the spread of the distribution: the sample
standard deviation, value range, and 5th–95th percentile range decrease by
15%, 22%, and 15%, respectively. Conversely, when the parameter is doubled
the spread of the distribution increases: the same measures increase by 14%,
50%, and 13%, respectively. This observed effect is explained by the column
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Figure 7: Response of enterprise TCA distribution to value-added coefficient bound-
ing parameter Bu.
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sum constraints that are imposed in the model. For example, halving the
parameter has the effect of reducing the likelihood that floating technical
coefficients can take values significantly above or below their respective ad-
justed coefficient values, leading to a reduction in the spread of the enter-
prise TCA distribution.

2.6 Enterprise group supply chain emissions

The MEMRIO model was not only developed to assess individual enterprise
but also groups of interdependent enterprises. The estimation of the sup-
ply chain emissions of an enterprise group must account for the fact that
constituent enterprises may fall within one another’s supply chains. Fail-
ure to do so would lead to the double-counting of emissions and the risk
of severely overestimating the supply chain emissions of the group as a
whole. For example, consider an automobile manufacturer supplied by an
auto-parts maker. If the supply chain emissions of each enterprise were es-
timated separately and simply added together, then emissions released by
the auto-parts company in producing parts for the automobile manufac-
turer would be counted twice. Furthermore, since a portion of the auto-parts
supply chain (including, steel producers and electricity providers, etc.) also
forms part of the automobile manufacturer’s supply chain, then emissions
released all along common supply chains would be also be counted twice.
Such double-counting must be stripped-out to evaluate the combined influ-
ence these two enterprises have over their collective supply chain emissions.

By disaggregating enterprise segments from MRIO sectors, the MEMRIO

model enables the estimation of enterprise group supply chain emissions
free from double-counting, no matter how many supplier-tiers separate con-
stituent enterprises. This is achieved simply by applying the TCA method
(Equation 30) with respect to all enterprise segments associated with a group
of enterprises. The TCA method is introduced in Skelton et al. (2011) and
implicitly tackles the double-counting issue through the removal of feed-
back loops and intra-group transactions. Returning to the example, the TCA

method, as applied to the dual-enterprise group, would effectively sever the
direct supply chain link between the two enterprises. In addition, any feed-
back loops – whereby the output of either enterprise gets taken into each
other’s extended supply chains – would be removed. The importance of
removing double-counted components is demonstrated below through the
assessment of a hypothetical group of three enterprises.

Two additional enterprises (enterprise 2 and 3) characterised by single
segments are introduced into the German Motor Vehicles & Parts sector
alongside the hypothetical automobile manufacturer (enterprise 1) assessed
in Section 2.4. The segment total outputs of enterprise 2 and 3 are specified
as $40 bn and $30 bn (the total output of enterprise 1 is specified as $50

bn). A single model run, with a sample size of 500, is performed with the
same user-control parameters as the base-case scenario in Section 2.5 (Cs =

1, Cd = 0.01, BA = 0.5, and Bu = 0.5). TCA distributions for each individual
enterprise are shown in Figure 8 Charts A–C. The TCA distribution of the
three enterprises treated as a group is shown in Chart D. Smooth PDFs are
fitted to the distributions in Charts A–D and compared against one another
in Chart E. In addition, the TCA of individual enterprises calculated for each
sample MEMRIO table were added together to create a ‘sum of enterprise TCA’
distribution, which is also shown in Chart E as a smooth PDF.

Again, 13 emissions multipliers fall above the demand cut-off parameter.
However, as there are now three enterprise segments located within the
same sector, these multipliers correspond to a total of 64 floating technical
coefficients (including 16 coefficients from the intra-disaggregated sector
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Figure 8: TCA distributions for three enterprises in the same sector.
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block alone30) and 4 floating value-added coefficients (one for each of the
enterprises and one for the residual sector). The difference in enterprise TCA

distributions is explained simply by the different total outputs of the three
enterprises (12.7%, 9.7%, and 7.3% of the German Motor Vehicles & Parts
sector total output, respectively).

The distribution of the group TCA (Chart D) strips out duplicated emis-
sions sources found across the set of individual enterprise TCAs. For ex-
ample, a given sample may determine that Enterprise 1 has a significant
requirement for inputs from Enterprise 2, causing a proportion of the emis-
sions embodied in Enterprise 2’s total output to also become embodied in
the output of Enterprise 1. Hence simply adding the TCA of each enterprise
together would result in a degree of double-counting. The error caused by
double-counting is shown in Chart E where the group TCA distribution
is shown alongside the ‘sum of enterprise TCA’ distribution. The distribu-
tion sample mean is 6% lower when the double-counting of emissions is
removed in the group calculation.

The risk of over estimating the supply chain emissions of a group of
enterprises is dependent on the extent to which constituent enterprises fall
within one another’s supply chains. The inputs to the MEMRIO model, as de-
scribed in this chapter, do not detail specific supply chain linkages between
enterprises. Instead, the inputs and outputs of enterprise segments, includ-
ing inter-enterprise transactions, are treated stochastically in the model. The
TCA distribution of an enterprise group captures a spectrum of plausible con-
figurations for supply chain overlap and ultimately provides a value range
in which the actual supply chain emissions of the group is likely to fall.
Model extensions are discussed in the following section that allow known
supply chain links to be encoded in the model.

2.7 Discussion & conclusion

A ‘new wave of globalisation’ has seen the fragmentation of production
across enterprises and national borders, leading to the widespread emer-
gence of global supply chains that are typically coordinated by large, lead
enterprises (Milberg & Winkler, 2013; Gereffi & Lee, 2012). Within this con-
text, the MEMRIO model provides a foundation for the future assessment
of lead enterprises in the global economy. Interactions between national
industries in the global economy are captured in the model through the
use of MRIO tables. Enterprises, that are characterised as a set of sector-
classified segments, are introduced through the disaggregation of national
industries. Interactions between enterprise segments and the wider eco-
nomy are treated stochastically to reflect uncertainty over enterprise inputs
and outputs, thereby permitting analysis based on limited, publicly avail-
able, data. The stochastic component of the model is governed by a system
of constraints that (a) retains the overall balanced structure of inputs and
outputs encoded in MRIO data, and (b) reflects user assumptions over the
extent to which an enterprise may deviate from sector average performance.
Monte-Carlo simulation is used to generate a sample set of disaggregated
tables, each representing a plausible configuration for how focal enterprises
are integrated in the global economy. Statistical enterprise assessments can
then be performed over the set of sample tables.

Specifically, the MEMRIO model was developed to address the question
of how can the global supply chain emissions stemming from the intermediate con-
sumption activity of (a) an individual enterprise and (b) a group of interdependent
enterprises be estimated using publicly available data?. This is achieved through
the application of the TCA method across a set of sample MEMRIO tables and
the subsequent statistical analysis of enterprise TCA distributions. In the case

30In constructing the adjusted technical coefficient matrix, only the intra-enterprise transactions
were set to zero, inter-enterprise transactions are permitted within the MEMRIO model (e. g.,
Enterprise 1 can requires inputs from Enterprise 2 and 3).
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of an individual enterprise, the TCA method estimates global emissions that
are embodied in the goods and services sold by that enterprise, while in
the case of a group of interdependent enterprises, the TCA method estimates
global emissions that are embodied in the products sold externally by the
enterprise group. The risk of overestimating the supply chain emissions of
a group of enterprises – by not taking into account the fact that constituent
enterprises may fall within one another’s supply chains – is ameliorated
implicitly by the TCA method through the removal of double-counted terms.
These measures of supply chain emissions represent the quantity of poten-
tially abatable emissions that an enterprise, or a group of enterprises, has
influence over.

In this section, three important areas of model uncertainty are considered:
sources of uncertainty associated with underlying MRIO data that are com-
pounded in MEMRIO model results; additional sources of uncertainty asso-
ciated with the specification of enterprise segments; and, the uncertainty
over enterprise inputs and outputs that is analysed stochastically within
the model. These three areas of uncertainty, and related options for model
refinement, are discussed in turn below.

MRIO model uncertainty

The MEMRIO model requires a pre-existing MRIO model. The sources of un-
certainty associated with MRIO models fall into two main categories:

1. Errors in underlying source data – Errors and omissions in original
survey data, the imputation of missing data, and table balancing pro-
cedures generate inaccuracies in national IO tables (Lenzen, 2000; Her-
twich & Peters, 2009). The aggregation of economic activity according
to broad industries and the assumption that economic transactions
correspond proportionally to the physical flow of products introduce
further uncertainty (Yamakawa & Peters, 2009; Wilting, 2012). In ad-
dition, errors are also found in the bilateral trade data required to
construct MRIO tables (Lenzen et al., 2004).

2. Model construction uncertainties – The harmonisation of national
tables and bilateral trade data into an integrated MRIO table introduces
several additional sources of uncertainty. Sectoral and spatial aggreg-
ation bias and temporal discrepancies are introduced by dissimilar
national classification schemes, the unavailability of tables for some
regions, and the use of tables produced for different time period, re-
spectively (Lenzen et al., 2004; Peters et al., 2011). The choice over meth-
ods used to harmonise valuation systems, adjust currencies, estimate
trade flow matrices, and ultimately balance the MRIO table also add
layers of uncertainty (Lenzen et al., 2010b, 2012).

Previous studies have used Monte-Carlo simulation techniques to assess
how the various sources of uncertainty associated with IO tables manifest
as overall uncertainty in IO multipliers (Lenzen, 2000; Yamakawa & Peters,
2009; Lenzen et al., 2010b; Wilting, 2012). Results indicate that there is a
cancelling-out effect caused by the matrix inversion involved in calculat-
ing IO multipliers. This suggests that although the sources of uncertainty
in MRIO models are numerous, they may not have a significant affect on
the distributions of enterprise supply chain emissions estimated using the
MEMRIO model. Nevertheless, the MEMRIO model could be extended to ac-
count for MRIO coefficient uncertainty within the existing Monte-Carlo sim-
ulation loop31.

31A model extension such as this would benefit from Wiedmann et al.’s (2011) called for the
compilers of national IO tables and MRIO models to estimate standard errors in their data
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Uncertainty in the specification of enterprise segments

The description of the MEMRIO model in Section 2.2 began with known en-
terprise segment data. However, the process of specifying an enterprise as a
set of segments is not straightforward and can introduce a significant source
of model uncertainty. The specification of enterprise segments requires over-
all enterprise production activity to be mapped to the sector classification
scheme of the MRIO model taken as input into the MEMRIO model. In prin-
ciple, the information required to do this can be derived from publicly avail-
able sources such as corporate annual reports (specifically, consolidated fin-
ancial statements) and databases that aggregate such information32.

For the case where the activity of an enterprise is entirely located in a
single sector, two issues need to be addressed: the enterprise must be cor-
rectly mapped to the relevant MRIO sector and reported enterprise revenue
must be adjusted to the MRIO valuation system. The former can be addressed
with reference to the standard classification system used in the compilation
of National Accounts – the International Standard Industrial Classification
of all Economic Activities (ISIC) Revision 4 (United Nations et al., 2008) – and
the concordance tables that map ISIC codes to MRIO model-specific sectors.
The latter requires knowledge of the MRIO valuation system and the account-
ing standards followed by the enterprise. Enterprises follow slightly differ-
ent accounting standards depending on where they are headquartered. This
has implications for what is included (e. g., sales and export taxes, shipping
costs, cost of returned goods, etc.) in an enterprise’s consolidated revenue.
It is conventional for MRIO tables to use basic prices. If the accounting con-
ventions followed by the enterprise lead to a reported revenue that does not
correspond to basic prices, then appropriate adjustments are required: for
example, sales taxes (e. g., VAT) may need to be deducted from the reported
revenue.

For the case where the activity of an enterprise spans multiple MRIO sec-
tors, an additional issue concerning the aggregation of enterprise financial
data in consolidated statements needs to be addressed. For example, an
automobile manufacturer with factories spread across Europe may report
a single revenue figure for the overall enterprise, rather than a breakdown
of revenue by region. This has major implications for the ease with which
enterprise activity can be mapped to MRIO sector. However, International
Accounting Standard 14 (ISA14) establishes principles for reporting financial
information about the different types of goods and services an enterprise
produces and the different geographical areas in which it operates, with
the aim of helping users of financial statements make more informed judge-
ments about the enterprise as a whole (International Accounting Standards
Board, 2005). Enterprises following ISA14 (i. e., most publicly listed enter-
prises) present revenue figures for business segments and for geographical
segments33. For example, in its 2009 annual report, BP disclosed revenue
by two geographic segments – US and non-US – and by three business seg-
ments – Exploration & Production, Refining & Marketing, and Other Busi-
ness & Corporate – (BP, 2009). ISA14 also stipulates that inter-segment trans-
actions should be reported where such transactions represent a significant
share of the overall revenue realised by individual business or geographic
segments.

32For example, Mergent Online provides a 10 year archive of over 300,000 annual reports from
globally listed companies. For enterprises with operations in the US, the US Securities and
Exchange Commission (SEC) provides an additional source of enterprise information through
compulsory enterprise filings.

33The International Accounting Standards Board (2005) define a business segment as a “distin-
guishable component of an [enterprise] that is engaged in providing an individual product
or service or a group of related products or services and that is subject to risks and returns
that are different from those of other business segments”, and a geographical segment as a
“distinguishable component of an [enterprise] that is engaged in providing products or ser-
vices within a particular economic environment and that is subject to risks and returns that are
different from those of components operating in other economic environments”.
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Knowledge of business and geographic segments can help in the specific-
ation of enterprise segments required by the MEMRIO model. However, the
accounting standards do not stipulate the resolution at which business and
geographic segments should be reported. Furthermore, business and geo-
graphic segments are reported separately34. This mismatch in reported and
required segment resolution presents an important source of uncertainty in
the MEMRIO model.

The MEMRIO model could be extended to account for the uncertainty
associated with the specification of enterprise segments. For example, seg-
ment total outputs could be sampled from estimated bounds during the
Monte-Carlo simulation35. A more sophisticated development would be to
stochastically model the process of mapping enterprise activity to specific
MRIO sectors. For example, it might be known that an enterprise is active in
a single industry but regionally spread across Europe; plausible configura-
tions of segments located in different European countries could be sampled.

Uncertainty over enterprise inputs and outputs

The inputs to and outputs from an enterprise are treated stochastically in
the MEMRIO model. The overall uncertainty associated with these coefficients
can be specified using three user-control parameters. Section 2.5 provided
important insights into how the model responds to the choice of control
parameter. The emissions multiplier cut-off parameter is used to control the
number of coefficients that are treated stochastically, while the two bound-
ing parameters control the user-estimated uncertainty of these stochastic
coefficients.

Ideally, the cut-off parameter would be disregarded so that all enterprise
input and output coefficients are included in the Monte-Carlo simulation.
However, by imposing an appropriate cut-off value, a user can minimise
the computational requirements of the model without significantly affecting
model results. This is achieved by assessing relevant emissions multipliers
(e. g., Figure 5) and the adjusted table values of corresponding technical
coefficients (e. g., Figure 2). An option for model development could be to
automate this trade-off decision.

Ideally, the choice of bounding parameter would be informed by sec-
ondary data or expert option. However, for the case where the uncertainty
in technical and value-added coefficients is unknown, it is recommended
that a sensitivity analysis of model results to bounding parameters be per-
formed. For a given enterprise, the inspection of consolidated financial state-
ments, required to specify enterprise segments, is likely to also provide an
indication of the value-added by the enterprise. Value-added includes, for
example, compensation of employees and taxes on production and approx-
imates to the difference between the cost of sales and overall enterprise rev-
enue. Such knowledge would allow value-added coefficients to be determ-
inistically defined or specified with relatively tight bounding constraints.

Some users may have assess to additional information that could be used
to refine the model for a particular analysis. For example, significant intra-
enterprise transactions may be disclosed by an enterprise; known values can
be specified during the construction of the adjusted table instead of assum-
ing such transactions are negligible. Similarly, known transactions within an
enterprise group can be specified. Access to detailed cost and sales data of
an enterprise would allow all major enterprise coefficients to be determinist-
ically defined; the stochastic component of the model could then be shifted
to higher-order supplier tiers where data is unavailable. Finally, information

34For example, BP’s annual report does not specify what share of revenue gained from Explora-
tion & Production pertains to US or non-US operations (BP, 2009).

35Similarly, enterprise segment emissions intensities could also be sampled: the model currently
assumes that segments have the same emissions intensities as their parent MRIO sectors, when
in fact significant variability may exist within a sector.
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about the heterogeneity of different industries can allow for the use of sector-
specific bounding parameters. For example, if inputs to the steel industry
are known to be relatively homogeneous across different steel makers, then
tighter bounds can be set for that particular sector.
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