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Abstract A new technology is assessed by the state of welfare in the economy ex-
post of implementing that new technology to an economy-wide production system.
We model the transition of technological structure (substitution of technology), due
to the cost changes initiated by the introduction of a new technology. This structural
propagation is quantified by using a system of cost functions compatible with the CES,
Cobb-Douglas, and Leontief production functions whose parameters we estimate via
two timely distant input-output accounts. The economy-wide welfare gain obtainable
by introducing a new technology will be hence quantified via the technological struc-
ture ex-post of structural propagation. Welfare gain of productivity doubling in the
port operation industry is studied as an example.
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1 Introduction

Input-output analysis is now a standard tool for assessing new technology, whereby
estimating the direct and indirect economic costs and benefits, through an observed
technological structure of an economy-wide production. At the same time, we may ar-
gue that an input-output analysis is retrospective in the sense that a technology subject
to an assessment has no feedback upon the structure of production that the assessment
is based upon. In other words, input-output analysis is backward-looking, using previ-
ously observed structure of production (i.e., the input-output coefficient) for assessing
the costs and benefits of marginal changes in the final demand that characterize the
new technology in question.

In this study, we present a methodology that fully takes into account the feed-
back effect of introducing new technologies into the system economy-wide produc-
tion. More specifically, we take the technological substitution into account. While it is
known that technology will not substitute, (hence, technological structure will main-
tain) as far as the change in the final demand is concerned,1 this will not apply in the
case when any new technology is actually introduced in an industry; technology of any
industry can substitute according to the cost/price change in commodities initiated by
the introduction of a new technology in any industry.

The structural propagation analysis we outline in this paper is prospective (or, for-
ward looking) in the sense that a new technology is assessed based on the projected
technological structure ex-post of the technological substitution initiated by the in-
troduction of that new technology. Upon modeling structural propagation we use a
class of production function that is less restricted in regard to the elasticities of sub-
stitution. We estimate the elasticity of substitution for all industrial sectors using two
timely distant input-output accounts, which enables us to model a relevant structural
propagation, rather than using more restricted substitution patterns such as Leontief
and Cobb-Douglas.2

More specifically, we estimate the parameters for the system of multi-factor multi-
sector CES (constant elasticity of substitution) production functions, and therefore,
model the technological substitution using compatible system of unit cost functions
which enable us to handle the structural propagation in a recursive fashion. Sector-
wise CES parameters, namely, the share parameters and the elasticity, will be mea-
sured using two timely distant input-output accounts. The elasticity is measured so as
to minimize the potential discrepancies between the tow consistent share parameters
while the share parameters are measured so as to meet the latest cost share accounts.
CES production function also requires the sector-wise productivity to be estimated,
while this is measured by way of the two input-output accounts.

We may apply structural propagation analysis for any given new technology to
assess the prospective gains in the economy-wide costs and benefits. In this study
we use exogenous productivity doubling (as a proxy for introducing new technology)

1 This non-substitution theorem will hold under the conditions of constant returns to scale technology,
one-to-one correspondences between commodity and industry, and the oneness of the number of primary
inputs.

2 Nishimura (2002) studied structural propagation in regard to the structural viability (i.e., Hawkins-
Simon condition), based on a system of Cobb-Douglas technologies.
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in the port operation industry, for the sake of experiment. We will use the estimated
CES elasticity parameters while we also set them as unity and zero to compare the
outcomes based on Cobb-Douglas and Leontief production functions.

The remainder of the paper is organized as follows. In the next section we first
measure the sector-wise total factor productivity gain using input-output accounts. In
so doing, we aggregate labor and capital inputs so that there be a single primary in-
put besides intermediate inputs. Then, we measure the parameters for the multi-factor
multi-sector CES production function using two timely distant input-output accounts
and the measured sector-wise productivity gain. In section 3 we formulate the struc-
tural propagation under the system of multi-factor multi-sector CES production, and
demonstrate structural propagations triggered by some exogenously given productiv-
ity alteration. Section 4 is reserved for concluding remarks.
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2 Production Function

2.1 Productivity gain

We start with the production function of an industry (the index j is omitted):

y D zf .x0; x1; : : : ; xn/ D zf .x/ ; (1)

where we denote the output of this production by y, and the i th input by xi . Here, z

denotes the absolute productivity, which reflects the technology level of the industry
in question. Also, f .x/ is assumed to be homogeneous of degree one with respect to
the inputs (i.e., constant returns to scale). Taking the log and time derivative, we have

Py

y
D

Pz

z
C

nX
iD0

�
@f .x/

@xi

xi

f .x/

�
Pxi

xi

: (2)

The term in parenthesis will be the cost share, which we denote by ˛i . This will be
true under the following monetary balance of constant returns to scale production:

py D pzf .x/ D

nX
iD0

pi xi ; pz
@f .x/

@xi

D pi

for which we may describe the cost share of input i as follows:

pi xi

py
D

@f .x/

@xi

xi

f .x/
D ˛i (3)

Thus, (2) can be reduced as the following formula for productivity growth,

� ln z D � ln y �

nX
iD0

˛i � ln xi ; (4)

where � indicates the observed differences between two periods. (4) can also be de-
scribed by way of monetary output Y D py and inputs Xi D pi xi i.e.,

� ln z D .� ln Y � � ln p/ �

nX
iD0

˛i .� ln Xi � � ln pi / (5)

Hence, productivity gain observed between two periods t D 0 and 1 for an indus-
trial sector j i.e., z1

j =z0
j D exp

�
� ln zj

�
can be calculated by way of input-output

accounts Xij and Yj , cost share accounts ˛ij , and the deflator for all commodity
prices p1

i =p0
i D exp .� ln pi /, using (5). For subsequent study we estimated total

factor productivity gain for 395 industrial sectors using the Japanese input-output ta-
bles (coefficients and transactions) and the official deflators for 2000–2005 (MIAC,
2009). Note that we aggregated fixed capital with labor inputs for simplicity so that
there be only one primary factor (i D 0). We used two-period average of monetary
input-output coefficients for the cost share accounts i.e., ˛ij D .a0

ij C a1
ij /=2. Figure

1 illustrates the estimated values of productivity gain z1
j =z0

j of sector j .3

3 The highest value corresponds to personal computers and related appliances.
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Fig. 1: Estimates of total factor productivity gain for various industrial sectors (z1
j =z0

j )
based on the official input-output accounts and deflators, for 2000–2005, in Japan. No-
table sectors with large numbers: Personal Computers (3.00); Electronic computing
equipment (ex. PCs) (2.26); Ships (ex. steel ships) (2.17); Video recording and play-
back equipment (2.02); Turbines (1.74).

2.2 Multi-factor CES production function

Our purpose here is to estimate the following multi-factor CES production function
of an industrial sector (index j omitted) such that,

y D zf .x/ D z

�
ı

1
�

0 x
��1

�

0 C ı
1
�

1 x
��1

�

1 C � � � C ı
1
�
n x

��1
�

n

� �
��1

; (6)

where we need the estimates for the share parameters (ıi > 0;
P

i ıi D 1) and the
elasticity of substitution � � 0. Note that, while share parameters are dependent on the
kind of inputs i , the elasticity of substitution is unique for each sector (Uzawa, 1962).
As we take for granted that productivity gain is available via the previous discussion,
we set the benchmark (t D 0) absolute productivity z0 D 1 and the ex-post (t D 1)
absolute productivity z1 D exp .� ln z/ in regard to (5).

The cost shares for the i th input under CES, while obtainable by applying (3) on
(6), can be monitored for two periods t D 0 and 1, are displayed below:

˛0
i D ıi

�
z0p0=p0

i

���1
; ˛1

i D ıi

�
z1p1=p1

i

���1
: (7)

The parameters ıi and � are assumed to be constant over time, but there is only a
small chance that these identities are simultaneously true. So, we take the strategy
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to find the parameters that are most fitting to the two observations. We first rewrite
(7) to describe the share parameter ıi as a function of � that is consistent with the
observations for two periods. That is,

ıi .� I t D 0/ � ˛0
i

�
z0p0=p0

i

�1��
; ıi .� I t D 1/ � ˛1

i

�
z1p1=p1

i

�1��
:

These parameters are constant per se, so we search for the � that these two parameters
are as close as possible. That is,

� D arg max
��0

Corr .ı.� I t D 0/; ı.� I t D 1// : (8)

where Corr stands for the Pearson correlation coefficient. Here, we use Corr for as-
sessing the similarities between two vectors. Note that cosine similarity, which is the
uncentered version of Pearson correlation, or many other vector distance metrics can
be used as a measure of vector similarity. Pearson correlation coefficient between two
vectors r D .r1; � � � ; rn/ and s D .s1; � � � ; sn/ is defined as

Corr .r; s/ D

P
i .ri � Nr/ .si � Ns/qP

i .ri � Nr/2
qP

i .si � Ns/2

where, Nr D
P

i ri =n and Ns D
P

i si =n.
Figure 2 shows the estimated values for 395 industrial sectors using the Japanese

input–output tables for 2000 and 2005 (MIAC, 2009). For about 100 sectors the pro-
duction functions were estimated to be Leontief (� D 0), while the remaining sectors
were evenly divided for being sub-Cobb–Douglas (� < 1) and meta-Cobb–Douglas
(� > 1).4 In Figure 3 we display the maximized Corr for all j sectors (Corrj ), upon
estimating the elasticity of substitutions displayed in Figure 2. Note that Pearson cor-
relation coefficient will reach unity when the two vectors are proportional (i.e., r D �s
with � being a scalar). However, since

P
i ıij D 1 for all j , reflecting constant returns

to scale, proportionality of two vectors will indicate accordance in this case.
Further, for the subsequent analysis of structural propagation, we calibrated the

sector-wise CES parameters, namely ıij , to meet the latest technological structure
(i.e., 2005 input-output coefficients) under the estimated marginal elasticity of sub-
stitution �j , while resetting the relative productivity gain zj to unity. In other words,
we set the parameters according to the latter equilibrium price pj , and cost shares
aij (or input-output coefficients), for the reference period as they satisfy the following
identity:

ıij D aij

�
pj =pi

�1��j (9)

Note that because CES comprehends both Cobb–Douglas (�j D 1) and Leontief
(�j D 0) with regard to the elasticities, ıij equals the monetary input-output co-
efficient (aij ) for Cobb–Douglas, and the physical input-output coefficient (�ij D

aij

�
pj =pi

�
) for Leontief, in light of (9).

4 For asymptotic equivalences between CES, Cobb-Douglas and Leontief production functions, see for
example, Saito (2012).
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Fig. 2: Estimates of CES marginal elasticity of substitution for various industrial sec-
tors (�j ) based on the official deflator, for 2000–2005, in Japan.
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Fig. 3: Vector similarity (Corrj ) upon estimating �j via (8).
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3 Propagation Analysis

3.1 Technological structure

Below is the unit cost function for the multi-factor CES production function for an
industrial sector (index j omitted), compatible with (6):

h .p0; p1; � � � ; pnI z/ D
1

z

�
ı0p1��

0 C ı1p1��
1 C � � � C ınp1��

n

�1=.1��/

We abbreviate the system of above unit cost functions by

h .p0; pI z/ D .h1 .p0; pI z1/ ; � � � ; hn .p0; pI zn// : (10)

Applying Shephard’s Lemma on h .p0; pI z/ we have,266666664

@h1.p0;pIz1/
@p0

@h2.p0;pIz2/
@p0

� � �
@hn.p0;pIzn/

@p0

@h1.p0;pIz1/
@p1

@h2.p0;pIz2/
@p1

� � �
@hn.p0;pIzn/

@p1

:::
:::

: : :
:::

@h1.p0;pIz1/
@pn

@h2.p0;pIz2/
@pn

� � �
@hn.p0;pIzn/

@pn

377777775 D

"
r0h .p0; pI z/

rh .p0; pI z/

#
(11)

Note that r0h .p0; pI z/ is the ex-post physical primary input coefficients vector, and
rh .p0; pI z/ is the ex-post physical input-output coefficient matrix, for which we oth-
erwise call technological structure. Moreover, it should be worthwhile mentioning that
innovation (as represented by the productivity gain z) has the influence of changing
the technological structure, according to (11). Structural propagation designates this
influence in particular.

3.2 Structural propagation

For obvious reasons, the ex-post equilibrium price under given z is needed, to examine
the ex-post technological structure of (11). As equilibrium price will coincide with the
unit cost under prefect competition, we have the following identity:

p D h .p0; pI z/ (12)

Let � .z/ D .�1.z/; � � � ; �n.z// be the solution for (12), given the numéraire price
p0. The ex-post propagated equilibrium technological structure is the technological
structure (11) evaluated at this equilibrium solution, as stated below:

�0 .z/ � r0h .p0; pI z/ jpD�.z/; „ .z/ � r0h .p0; pI z/ jpD�.z/ : (13)

Also, note that ex-post element-wise physical input-output coefficients can be derived
for CES production function as follows:

�ij .z/ D
@hj

�
p0; pI zj

�
@pi

ˇ̌
pD�.z/

D ıij z
�j �1

j

�
�j .z/

�i .z/

��j

D aij .z/
�j .z/

�i .z/
(14)
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We may then use (13) to perform ex-post input-output analysis, for example, in
the following way:

L .z/ D p0�0 .z/
D
ŒI � „ .z/��1 Nd0

E
D a0 .z/

D
ŒI � A .z/��1

h� .z/i Nd0
E

(15)

where L .z/ D .L1 .z/ ; � � � ; Ln .z// denotes the sector-wise primary factor (in mon-
etary terms) required for the economy to be able to consume a fixed amount (vector)
of final demand which we denote by Nd D

�
Nd1; � � � ; Ndn

�
. Note that the second identity

is due to the third identity for (14), and that angle brackets indicate diagonalization.
So the question finally comes down on how to solve (12). Although we may have

analytical solution for specific cases i.e., ı D 1 (Cobb–Douglas) and ı D 0 (Leontief),
for which we present in the Appendix, there are no analytical solution otherwise. Still,
we can use the recursive methodology, since the system of unit cost functions (10)
is strictly concave with respect to the entries p. In other words, we may apply (12)
recursively, whereby feeding back the output into the input iteratively, to eventually
reach at the equilibrium solution. That is,

ptC1
D h

�
p0; pt

I z
�

; lim
t!1

pt
D � .z/ (16)

where pt denotes the price vector for the t th iteration.
Below we present the results obtained for calculating L .z/ where we used z D

zPO, or a doubling of port operation productivity (zPO D .1; � � � ; 1; zPO; 1; � � � ; 1/,
where zPO D 2), as the trigger of structural propagation. We have obtained ex-post
equilibrium price via (16) with 20 iterations.5 Figures 6, 4, and 5, display the pri-
mary input saved i.e., �L D L .1/ � L .zPO/ for CES, Cobb–Douglas, and Leontief
productions, respectively. Naturally, we used the estimated sector-wise elasticity of
substitution (Figure 2) for CES productions while setting all the elasticities unity for
Cobb–Douglas and zero for Leontief productions. The sum of the saved primary fac-
tor i.e., �L10 is displayed in Table 1. Also, displayed is the kurtosis that measures the
degree of polarization of the sector-wise distribution of the savings �L.

Table 1: Saved primary input by port operation productivity doubling in different func-
tional forms. (unit: Million JPY)

Cobb–
Douglas Leontief CES

�L10 927,494 726,101 875,729
kurtosis (114) (342) (182)

As it is observed from the numbers displayed in Table 1, the magnitude of prop-
agation is relatively large for Cobb-Douglas than Leontief, whereas the sector-wise
distribution is polarized for Leontief than Cobb-Douglas. It is imaginable that inflexi-
bility of technology (zero elasticity) can consolidate the potential propagation effects

5 Note that the final differential (numbers between the 19th and the 20th iteration) was negligibly small.
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Fig. 4: Propagation of port operation productivity doubling under Cobb-Douglas pro-
duction.
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Fig. 5: Propagation of port operation productivity doubling under Leontief production.
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Fig. 6: Propagation of port operation productivity doubling under CES production.

while flexibility of technology (nonzero elasticity) can do the opposite. Our estimates
on CES production indicate that the propagation effects, both in terms of magnitude
and distribution, lie in between for Cobb-Douglas and Leontief. This result is closely
related to our estimates on the elasticities whose sector-wide average was 0.784, which
is sub-Cobb-Douglas and meta-Leontief, on average.
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4 Concluding Remarks

To this date input-output analysis has been extensively used for assessing the costs and
benefits of new goods and new innovations. Taken for granted is that these studies has
relied upon the non-substitution theorem that allows the investigator to study under
a fixed technological structure, while restricting the subjects of the analyses to the
transformations within the final demand. Nevertheless, substitution of technology will
prevail in any industry when a new technology/innovation is actually introduced into
any component (industry) of the economy. Larger influence is typically foreseeable for
intermediate industry’s technologies, as they have much larger and wider feedback on
the economy-wide system of production.

In order to take full technology substitution possibilities into account, we proposed
in this study a methodology to measure the sector-wise elasticity of substitution for
CES production function, in stead of using uniform a priori elasticity of substitution
(such as zeros and ones), when modeling the economy-wide multi-sector multi-factor
production system. Recursive method in the dual (i.e., unit cost functions) was used to
evaluate the influences upon the general equilibrium technological substitutions and
eventually upon the social costs and benefits, called structural propagation, initiated
by the introduction of new technology/innovation for which we treat it as the gain in
productivity.

We have found that more elastic production functions (Cobb-Douglas in this case)
have more significant and wider propagation effects, whereas those for inelastic pro-
duction functions (Leontief) were relatively less and polarized; and those for the mea-
sured CES production functions laid in between. After all, the reliability of this ana-
lytical framework comes down to the measurement of sector-wise technological elas-
ticities, for which we obtained in this study as the maximizer of the correlation be-
tween the two observation-consistent share parameters. Naturally, different metrics
(e.g., Euclidean distances, cosine similarity, and others) can be tested for vector sim-
ilarity evaluation. Application and extensions of structural propagation analysis can
be immense, including internationalization, dynamicalization, quality consideration,
structural viability assessment and so on, all remaining for future investigations.
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Appendix

Here, we present analytical solution to (12) for solvable two cases, namely, Cobb–
Douglas (� D 1) and Leontief (� D 0).

Cobb–Douglas Production

We write down below the Cobb–Douglas unit cost functions of j th industry for both
ex-post and benchmark. That is,

�j .z/ D
1

zj

nY
iD0

�
�i .z/

aij

�aij

; Npj D

nY
iD0

�
Npi

aij

�aij

(17)

Here, aij denotes j th industry’s output elasticity for the i th input, which is assumed
to be constant under Cobb–Douglas production. Note that aij is also identical to
the benchmark cost share of i th input for j th industry’s output (or the benchmark
monetary input-output coefficient). Also, we note that Npi denotes benchmark (i.e.,
�i .1/ D Npi ) equilibrium price.

By taking the log and subtraction on (17), we obtain

ln �j .z/ � ln Npj D

nX
iD0

aij

�
ln �j .z/ � ln Npj � ln zi

�
(18)

Rewriting (18) for an n � n multiple-industry setting we have,

ln � .z/ � ln Np D Œln � .z/ � ln Np � ln z� A (19)

where we abbreviate, for example, ln � D .ln �1; � � � ; ln �n/, etc. Then we may solve
(19) for � .z/ to obtain the analytical solution to (12). That is,

� .z/ D Np
D
exp

�
� .ln z/ ŒI � A��1

�E
(20)

Furthermore, following identities must hold for �j D 1 and z D 1 in regard to (14).

ıij D aij .z/ ; ıij D aij .1/ D aij (21)

Thus, we see that aij .z/ will remain unchanged. In other words, we may substitute
ex-post input-output coefficients with those of the benchmark i.e.,

a0 .z/ D a0; A .z/ D A (22)

Hence, for Cobb–Douglas production, (15) can be evaluated as follows:

L .z/ D a0

D
ŒI � A��1

D
exp

�
� .ln z/ ŒI � A��1

�E
h Npi Nd0

E
(23)
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Leontief Production

Below we write down the ex-post equilibrium monetary balance for j th industry:

yj �j .z/ D �0 .z/ x0j C �1 .z/ x1j C � � � C �n .z/ xnj

Let us arrange this formula for further investigation:

�j .z/ D �0 .z/
x0j

yj

C �1 .z/
x1j

yj

C � � � C �n .z/
xnj

yj

D �0 .z/ �0j .z/ C �1 .z/ �1j .z/ C � � � C �n .z/ �nj .z/

D �0 .z/
�0j

z0

C �1 .z/
�1j

z1

C � � � C �n .z/
�nj

zn

(24)

Note that the last identity can be derived by applying �j D 0 and z D 1 in (14), which
we describe below:

�ij .z/ D ıij z�1
j ; �ij .1/ D �ij D ıij

Thus, (24) can be reduced as follows:

� .z/ hzi D �0 C � .z/ „ D a0 Np C � .z/ h Npi
�1 A h Npi (25)

where we normalized prices using �0 D Np0 D 1. For the second identity we used
�ij D aij Npj = Npi . Now, (25) can be solved for � .z/ as follows:

� .z/ D a0 Œz � A��1
h Npi (26)

Hence, for Leontief production, (15) can be evaluated as follows:

L .z/ D a0

D
Œz � A��1

h Npi Nd0
E

(27)
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