Creating EXIOBASE in the Global Industrial Ecology Virtual Laboratory

Hagen Schulte in den Bäumen

ISA, School of Physics, The University of Sydney

Agenda

EXIOBASE is ...

- It has been successful in ...
- Many researchers use it for...
- However in order to update it ... is required every ... years
- In order to ensure consistency for users, a more streamlined, routine compilation process would be desirable.
- However the workload is high.
- Here is where the Virtual Lab idea comes to bear
- In this work we demonstrate an EXIOBASE update using the collaborative Global MRIO Lab
- 2) Methods
- 2.1) EXIOBASE
- 2.2) The Global MRIO Lab
- overview main paper
- 2.3) Modifications
- to EXIOBASE required to enable lab-based compilation and update (eg sigmas)
- and their theoretical impact on MRIO table features
- 2.4) Implementation
- data, machines
- 3) Results
- 3.1) Heat map
- 3.2) Uncertainty heat map (novel !!!)
- 3.3) Differences to published EXIOBASE (Matrix difference metrics see Arne)
- 3.4) Differences in multipliers (eg imports or value added)
- 4) Discussion and conclusions

EXIOBASE

THE UNIVERSITY OF

Building an MR EE IOT is time consuming, and thus far, only a handful of such databases are available. EXIOBASE was developed with support from the EU's Sixth and Seventh Framework Programmes, with economicenvironmental analyses in mind. The database provides data at an unprecedented level of consistent detail in terms of sectors, products, emissions and resources for all the countries covered.

EXIOBASE has the following characteristics:

- Covers 43 countries (95 % of the global GDP) with over 150 smaller countries combined in 5 'Rest of the World' groups by continent.
- Full trade matrices with insights on which product from which country is exported by which sector to which industry sector in another country.
- Base year 2007.
- Distinguishes over 160 industry sectors and 200 product categories by country.
- Covers the relations between industries and countries, not only in monetary value, but also in physical terms.
- Covers 40 emitted substances, land use, water use and 80 resources by industry.

Figure: Example of a MR EE IOT with three countries

What is it used for?

Arnold Tukker, Tatyana Bulavskaya, Stefan Giljum, Arjan de Koning, Stephan Lutter, Moana Simas, Konstantin Stadler, Richard Wood

The Global Resource Footprint of Nations

Carbon, water, land and materials embodied in trade and final consumption

Australia

1 692 Mm³

1 409 130 km²

81 m³

0.067 km²

Land area: 7 741 220 km²

GDP: 625 361 Mil. €

Australia has the highest per capita carbon, water and land footprint in the world, and ranks second only after Ireland, in terms of material footprint. Australia's land footprint is particularly high compared to the world average, reflecting the country's low population density. Australia is a net exporter of water, land and materials embodied in trade but a net importer of embodied carbon. Although Australia also has a high GDP per capita, the carbon footprint per unit of GDP is high.

Population: 21 015 900

NET TRADE

66 598 kt

589 836 kt

3 169 kg

28 066 kg

Carbon

1 Australia

World total

TRADE FLOWS BY PRODUCT

Shown below are the net trade of products imported/exported to/from a country (imports minus exports) – the products include products for both further processing into more advanced goods/services (that may be later exported) and for final consumption. Environmental impacts are shown for the complete up-stream international supply chain of each product.

Material 1 Ireland

Australia

3 Radio, television and communication equipment and apparatus 4 Iron ores 5 Other Bituminous Coal

```
RANKING
     World average per capita
                                  Water
                                      Australia
2 Luxembourg
                                     2 Luxembour
```

2 Canada 3 Luxembour **KEY IN DICATORS** Water Material GDP Carbon Land Population Resource footprints per € GDP 0.909 kt/Mil € 0.024 Mm³/Mil € 6.982 km²/Mil € 1.615 kt/Mil € Per capita footprints 4.73 2.80 15.67 4.86 relative to world averag Contribution to global total 1.50 % 0.89 % 4.96 % 1.54 % 1.53 % 0.32 % 37.97 Gt 1 660 560 Mm³ 88 031 435 km² 65 627 314 kt 40 744 556 Mil € 6 638 184 044 World average per capita 5 721 kg/cap 250 m³ 0.013 km² 9 886 kg

Land

Australia

Tukker et al., 2013

Detailing

Left : Original aggregate table;

Right : Draft big table

CREAA 7.2 (2014)

Trade preprocessing

CREAA 7.2 (2014)

MRIO construction

Global IElab

Fig. 1. Schematic of structure and functionality of the Industrial Ecology Lab.

Lenzen et al. 2014

Experiments

TABLE 1.	Databases	used for	this study.	
----------	-----------	----------	-------------	--

No	IE data set	Const. data set	Construction	Short	Notes
1	EXIOBASE v1.0	EXIOBASE v1.0	EXIOBASE v1.0	XXX	Database not con- structed during this project, but used as a reference
2	EXIOBASE v2.0	EXIOBASE v2.0	EXIOBASE v2.0	CCC	Database not con- structed during this project, but used as a reference
3	Eora	Eora	Eora	EEE	Database not con- structed during this project, but used as a reference
4 5 6	EXIOBASE v1.0 EXIOBASE v2.0 Eora	EXIOBASE v2.0 EXIOBASE v2.0 EXIOBASE v2.0	Eora Eora Eora	XCE GCE ECE	see Section 2.4.1
7 8	EXIOBASE v1.0 EXIOBASE v2.0	Eora Eora	Eora Eora	XEE GEE	see Section 2.4.1

Notes: The databases numbered 1–3 were used as reference tables for this study. The databases 4–6 were reconciled according to the EXIOBASE v2.0 constraints set, the remaining databases were reconciled according to the Eora constraints set.

Geschke et al. 2014

Heatmap

Global root classification

12

A. TUKKER AND E. DIETZENBACHER

TABLE 1. Review of the main GMRIO databases.

Database name	Countries	Туре	Detail $(i \times p)^*$	Time	Extensions	Approach
EORA	World (around 150)	MR SUT/IOT	Variable (20–500)	1990–2009	Various	Create initial estimate; gather all data in original formats; formulate constraints; detect and judge inconsistencies; let routine calculate global MR SUT/IOT
EXIOPOL	World (43 + RoW)	MR SUT	129 × 129	2000	30 emissions, 60 IEA energy carriers, water, land, 80 resources	Create SUTs; split use into domestic and imported use; detail and harmonize SUTs; use trade shares to estimate implicit exports; confront with exports in SUT; RAS out differences; add extensions
WIOD	World (40 + RoW)	MR SUT	35 × 59	1995–2009, annually	Detailed socio- economic and environmental satellite accounts	Harmonize SUTs; create bilateral trade database for goods and services; adopt import shares to split use into domestic and imported use; trade information for RoW is used to reconcile bilateral trade shares; add extensions
GTAP-MRIO	World (129)	MR IOT	57 × 57	1990, 1992, 1995, 1997, 2001, 2004, 2007	5 (GWP), Land use (18 AEZ), energy volumes, migration	Harmonize trade; use IOTs to link trade sets; IOT balanced with trade and macro-economic data
GRAM	World (40)	MR IOT	48 × 48	2000, 2004	Various	Use harmonized OECD IOTs; neglect differences like ixi and pxp; use OECD bilateral trade database to trade link
IDE-JETRO	Asia-Pacific (8: 1975) (10: 1985–2005)	MR IOT	56 × 56 (1975) 78 × 78 (1985– 1995), 76 × 76 (2000, 2005)	1975–2005	Employment matrices (2000, 2005)	Harmonize IOTs based on cross- country survey information; link via trade, manual balancing to reduce discrepancies within a certain bounds

i = number of industries, p = number of products, The follow-up project CREEA constructs the EE GMRIO for 2007.

sectoral and/or regional coverage

International databases	Type of data	Years	Classifications	No of countries	Industry levels	No of products	No of services	Comments
Trade Analysis System on Personal Computer (PC-TAS HS revision 2)	Import/Export	2007 - 2011	HS1996	176	6-digit	5114	0	No services data
Trade Analysis System on Personal Computer (PC-TAS SITC revision 3)	Import/Export	2006 - 2010	SITC rev 3	181	5-digit	3121	0	No services data
Industrial Statistics Database 3- and 4- level of ISIC (INDSTAT4 2012)	Output/Employmt	1990 - 2011	ISIC rev 3	59	4-digit	148	146	Limited country coverage
Industrial Commodity Statistics Database ICS	Output	1950 - 2008	CPC v1.1	200	5-digit	1152	970	Lack of monetary value data
UN Comtrade Database	Import/Export	1962 - 2013	SITC rev 1-4, HS1992- HS2012	292 41(SITC),	5-digit(SITC), 6- digit(HS) 5-digit(SITC), 6-		0	No services data Limited to OECD country data and trade
OECD database	Import/Export	1988 - 2013	SITC rev 2-3, HS1988-2007	37(HS)	digit(HS)			partner
UN Main Aggregates Database	Value Added	1970 - 2012	ISIC rev 3	218	n/a	3	4	Aggregated to 7 ISIC classifications
UN Official Country data	Value Added	1970 - 2013	ISIC rev 3	66	n/a			Aggregated to 27 ISIC classifications
UN Service Trade Database	Import/Export	2000 - 2013	EBOPS	199	n/a			Limited services classification
UNCTAD Database	Import/Export	1980 - 2013	SITC rev.3	237	3-digit	3121	0	Aggregated classification on services

Lenzen et al. 2015