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Abstract

Koopman et al. (2014) developed a method to consistently decompose gross exports in
value added terms, which accommodates infinite repercussions of international and inter-
sector transactions. This helps us better understand the Trade in Value Added (TiVA) in
global value chains (GVCs) as compared to the conventional gross exports accompanied
by double counting problems. However, the framework based on the monetary I-O tables
cannot distinguish prices from quantities, and thus unable to consider financial adjust-
ments through the exchange market. This paper proposes a framework based on a physical
I-O system, in its linear programming equivalent, which can clarify the various complexi-
ties relevant to the existing indicators, and is proved to be consistent with the Koopman’s
results when the physical decompositions are evaluated in monetary terms. While the
international monetary tables are generally described in current U.S. dollars, the physical
framework can elucidate the impact of price adjustments through the exchange market.
An iterative procedure to calculate the exchange rates is proposed, and some numerical
exercises with hypothetical data are conducted to demonstrate the significance of local
wages and capital flows, which are exogenous to the I-O system. The physical framework
is also convenient to consider the indicators associated with GHG emissions.

1 Introduction

The rise of global value chains (GVCs) during the last two decades has significantly changed
the nature and structure of international trade, with many new implications for policy making
(Baldwin and Robert-Nicoud, 2014; Timmer et al., 2013). One of the most important features
of GVCs is the transition of trade pattern from ”trade in goods” to ”trade in tasks” (see
Grossman and Rossi-Hansberg, 2008) in global production networks. This phenomenon has
also been explained as the so-called ”the second great unbundling” (see Baldwin, 2012). The
theoretical background is that the reduction of communication cost due to the IT revolution
has enabled the international unbundling of factories and offices, which means that tasks can
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also be traded globally. In other words, countries no longer have to build or host the entire
production chain, since they can integrate by developing or attracting productive capacity in
one link of the chain through fragmentation production where their comparative advantages fit
the best. As a result, more and more intermediate goods, such as parts and components, are
produced in sequential substages in different countries and then exported to other countries for
further production. This in turn, has significantly increased the complexity and sophistication
of international production networks, thus brought many new challenges on how to better
understand the creation, transfer and distribution of value added, income and job opportunities
in GVCs.

Policy-makers require well conceptualized indicators that can reveal the degree and nature of
the interaction of their country with her major economic partners, the degree of GVC participa-
tion, and the location of their country in GVCs (see OECD-WTO-UNCTAD, 2013). Along this
line, a lot of new indictors and measures based on input-output (I-O) data have been proposed.
For example, Hummels et al. (2001) used the ”import content of exports” indicator to measure
a country’s participation level in vertical specialization trade; Johnson and Noguera (2012)
proposed the ”Trade in Value-added” (TiVA) indictor to measure how a country’s value-added
is directly and indirectly absorbed by other country’s final demand through GVCs; Antràs et
al. (2012) developed a concept of ”distance” which is the number of stages that the product
goes through before reaching the final demand to measure the position of country or industry in
GVCs; Timmer et al. (2013) presented a new indicator for measuring the level of fragmentation
production; Koopman et al. (2014) developed a method to consistently decompose gross ex-
ports in value added terms, which helps better understanding on value-added trade in GVCs as
compared to the conventional gross exports accompanied by double counting problems. Wang
et al. (2014) further extended the work of Koopman et al. for consistently measuring value
added trade at bilateral and industrial levels.

However, the above efforts in developing the measurement of GVCs are all based on the
monetary I-O tables which cannot distinguish prices from quantities, and thus unable to con-
sider financial adjustments through the exchange market. This paper aims to propose a more
general framework based on a physical I-O system to clarify the various complexities relevant
to the existing I-O based GVCs indicators. Since the international monetary I-O tables are
generally described in current U.S. dollars, the physical framework can elucidate the impact
of price adjustments through the exchange market. An iterative procedure to calculate the
exchange rates is also proposed in the paper, and some numerical exercises with hypothetical
data are conducted to demonstrate the significance of local wages and capital flows, which are
exogenous to the I-O system. The physical framework proposed is convenient to consider the
indicators associated with GHG emissions as well.

In following, after reviewing the linear programming problem of the one country physical
input-output system, the problem for the world complete with two countries is formulated. With
the physical system, it is easy to calculate the contributions of individual sectors and countries
on each commodity price after considering infinite repercussions of intermediate trade. Once
such contributions are evaluated, it is easy to decompose the GDP of each country, which is the
sum of values added. In section 4, the system is generalized to include n sectors andm countries.
In section 5, the correspondence between physical and monetary systems are discussed to show
that our results are essentially the same as the ones in Koopman et al. Returning to the
physical system, the iterative process to endogenize the exchange rates is discussed in section
6. However, it presupposes the existence of the outside systems to determine the wage levels
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and capital flows; such as the labor and international financial markets. The greenhouse gases
(GHG) can also be incorporated in the commodities traded. Similar approach can be used to
determine who are ultimately responsible for emission after considering infinite repercussions,
which is the subject to be discussed in sections 7 and 8.

2 One-country physical table

The linear programming problem proposed by Dorfman et al. (1958) is convenient to formalize
the physical input-output system, and it might be beneficial to review the single country case
to start with. The problem is to find the output schedule x that minimize the labor cost to
satisfy the final demand requirement y:

min
x

{wa0x|(I − A)x ≥ y, x ≥ 0}, (1)

where w, a0, and A, respectively, are the prevailing wage, labor (value-added) input coefficient
vector, and input coefficient matrix.

The Lagrangian function for the problem can be written with the row vector of multipliers
p as follows:

L = wa0x+ p(y − (I − A)x). (2)

Then one of the first-order conditions would become:

∂L

∂x
= wa0 − p(I − A) ≥ 0, (3)

where p can be interpreted as the price vector.
When p is positive, then the usual output equation is obtained as the optimal solution, viz.,

x = (I−A)−1y. Conversely, when the output vector x is positive, the row vector of commodity
prices can be solved.

p = wa0(I − A)−1, (4)

which is positive when the wage is positive, the labor inputs are non-negative but non-zero,
and the Leontief inverse in positive definite.

Since (4) can be decomposed as the sum of geometric series,

p = wa0 + wa0A+ wa0A
2 + wa0A

3 + · · · ,

The first term represents the direct labor cost included in the product price while the second
term represents the first-round repercussion as intermediate inputs to another commodity, and
so forth.

When bij denotes the (i, j) element of the Leontief inverse, the price of commodity i can be
written as a weighted sum of the labor costs in all the sectors: pi = w

∑
j a0jbji. Then the

portion of the price of commodity i attributable to commodity j as an intermediate input can
be calculated as follows:

cji =
waojbji

pi
. (5)
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3 Two-country physical table

Similar discussion applies to the case when the commodity price composition in terms of origins
of intermediate inputs is considered. In this case, country 1’s problem is to minimize the costs
of labor and imported intermediate inputs required to produce the domestic outputs:

min
x1

{(w1a10 + p2A21)x1|(I − A11)x1 − A12x2 ≥ y11 + y12, x1 ≥ 0}, (6)

and the problem of country 2 would become as follows:

min
x2

{(w2a20 + p1A12)x2| − A21x1 + (I − A22)x2 ≥ y21 + y22, x2 ≥ 0}, (6′)

where the superscripts 1 and 2 indicate the respective countries. yrs represents the amounts of
country r’s products consumed as the final demand in country s, and Ars denotes the submatrix
of interregional input coefficient matrix. Each country regards the price of imports ps as well
as the domestic wage wr as being exogenous.

In these problems, each country regards the outputs of other country as being exogenous
to her. Then the problem can be described as a Nash problem, and x1 and x2 at the Nash
equilibrium are determined by solving (6) and (6’) simultaneously. The same output schedule
can be obtained from the world problem combining both countries.

minx1,x2 w1a10x
1 + w2a20x

2,

s.t. (I − A11)x1 − A12x2 ≥ y11 + y12,

−A21x1 + (I − A22)x2 ≥ y21 + y22,

x1 ≥ 0, and x2 ≥ 0, (7)

and the Lagrangian function for the problem can be written with the multipliers p1 and p2 for
respective countries:

L = w1a10x
1+w2a20x

2+p1(y11+y12−(I−A11)x1+A12x2)+p2(y21+y22+A21x1−(I−A22)x2). (8)

Some of the first-order conditions are obtained as follows:

∂L

∂x1
= w1a10 − p1(I − A11) + p2A21 ≥ 0

∂L

∂x2
= w2a20 + p1A12 − p2(I − A22) ≥ 0 (9)

If the output vectors are positive, the price vectors can be solved in the matrix form as follows:

(p1 p2) = (w1a10 w2a20)

(
I − A11 −A12

−A21 I − A22

)−1

= (w1a10 w2a20)

(
B11 B12

B21 B22

)
(10)

Denoting the transaction between sectors i and j in the submatrix Brs by brsij , the price of
commodity i produced in country 1 can be decomposed as follows:

p1i = w1
∑
j

a10jb
11
ji + w2

∑
j

a20jb
21
ji . (11)
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Then, in the two-country framework, the portions of the prices of country 1’s product that is
attributed to the values added originated in countries 1 and 2 can easily be calculated:

c11i =
w1∑

j a
1
0jb

11
ji

p1i
and c21i =

w2∑
j a

2
0jb

21
ji

p1i
.

Note that these expressions can directly be extended to the multi-country case. Since the values
added can be attributed to each industry in each region, the portions of commodity i’s price
produced in country s that is attributable to industry j in country r, and their aggregation by
the originating country can be written, respectively, as follows:

crsji =
wrar0jb

rs
ji

psi
and crsi =

wr∑
j a

r
0jb

rs
ji

psi
(12)

4 Decomposition of GDPs

By definition, the GDP of country 1 is given by:

Y 1 = p1y11 + p2y21 + p1(y12 + A12x2)− p2(y21 + A21x1)

=
∑
i

p1i (y
11
i + y12i +

∑
j

a12ij x
2
j)−

∑
i

p2i
∑
j

a21ij x
1
j , (13)

where the first line represents the final demand for the domestic product p1y11 plus the exports
subtracted by the imports. The exports and imports include both final and intermediate
demands, and are evaluated by the prices of their origins. Likewise the GDP of country 2 can
be written as follows:

Y 2 = p2y22 + p1y12 + p2(y21 + A21x1)− p1(y12 + A12x2)

=
∑
i

p2i (y
22
i + y21i +

∑
j

a21ij x
1
j)−

∑
i

p1i
∑
j

a12ij x
2
j .

Utilizing the portions crsi defined in (12), these GDPs can be decomposed into the con-
tributions of respective countries, which considers the infinite repercussions of intermediate
transactions. That is, Y 1 = Y 11 + Y 21 and Y 2 = Y 22 + Y 12, where Y rs represents the part of
country s’s GDP that is eventually attributable to country r.

Y 11 =
∑
i

c11i p1i (y
11
i + y12i +

∑
j

a12ij x
2
j)−

∑
i

(1− c12i )p2i
∑
j

a21ij x
1
j ,

Y 21 =
∑
i

c21i p1i (y
11
i + y12i +

∑
j

a12ij x
2
j)−

∑
i

c12i p2i
∑
j

a21ij x
1
j ,

Y 22 =
∑
i

c22i p2i (y
22
i + y21i +

∑
j

a21ij x
1
j)−

∑
i

(1− c21i )p1i
∑
j

a12ij x
2
j ,

Y 12 =
∑
i

c12i p2i (y
22
i + y21i +

∑
j

a21ij x
1
j)−

∑
i

c21i p1i
∑
j

a12ij x
2
j . (14)

The second terms in the right hand sides of the above represent the imports. In the case of
Y 11, only the share of c22 is subtracted because the remainder, c12 is the portion attributable
to its own, which need not be subtracted. Likewise, the second term of Y 21 subtracts country
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1’s contribution from the import from country 2, since that part must be accounted for country
1 rather than country 2.1

Suppose there are i, j = 1, . . . , n commodities and r, s = 1, . . . ,m countries, and ps denotes
the (1× n) vector of f.o.b. prices in country s. Further introduce a diagonal matrix Crs com-
prising {crs1 , . . . , crsn } obtained in (12). Then the general formulae of the GDP decompositions
can be written as follows:

Y ss = psCss(
∑
r

ysr +
∑
r ̸=s

Asrxr)−
∑
r ̸=s

pr(In − Csr)Arsxs

Y rs = psCrs(
∑
r

ysr +
∑
r ̸=s

Asrxr)− prCsrArsxs, (r ̸= s). (15)

It is difficult to describe (15) in a simple matrix expression. For example, when there are three
countries, the below provides one of such expressions. Y 11 Y 12 Y 13

Y 21 Y 22 Y 23

Y 31 Y 32 Y 33


= P 0

 C11 C12 C13

C21 C22 C23

C31 C32 C33

 ∑
r y

1r +
∑

r ̸=1 A
1rxr 0 0

0
∑

r y
2r +

∑
r ̸=2 A

2rxr 0

0 0
∑

r y
3r +

∑
r ̸=3 A

3rxr


−

 0 p2(I − C12) p3(I − C13)
0 p2C12 0
0 0 p3C13

 0 0 0
A21x1 0 0
A31x1 0 0

−

 p1C21 0 0
p1(I − C21) 0 p3(I − C23)

0 0 p3C23

 0 A12x2 0
0 0 0
0 A32x2 0


−

 p1C31 0 0
0 p2C32 0

p1(I − C31) p2(I − C32) 0

 0 0 A13x3

0 0 A23x3

0 0 0

 , (16)

where P 0 denotes the (3× 3n) matrix of price vectors, viz. P 0 =

 p1 0 0
0 p2 0
0 0 p3

 .

Using the commodity based coefficients crsji in (12), the decomposition (15) may be rewritten
at the commodity level as follows:

Y ss
ji = psi c

ss
ji (
∑
r

ysri +
∑
r ̸=s

∑
j′

asrij′x
r
j′)−

∑
r ̸=s

pr(1− csrji )
∑
j′

arsij′x
s
j′ ,

Y rs
ji = psi c

rs
ji (
∑
r

ysri +
∑
r ̸=s

∑
j′

asrij′x
r
j′)− pri c

sr
ji

∑
j′

arsij′x
s
j′ , (r ̸= s), (17)

where Y rs
ji is the part of country s’s income from producing commodity i that is eventually

attributable to sector j in country r.

5 The monetary representation

Koopman et al. (2014) demonstrated a similar measure that evaluates the value added at-
tributable to each country after infinite repercussions of trade. Since their results are derived

1It can readily be seen Y 1 = Y 11 + Y 21, since c11 + c21 = 1 and c22 + c12 = 1 by definition.
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from the monetary table, it is important to confirm that our results are consistent with theirs
when our formulas are transformed into the monetary terms.

The relationship between the physical and monetary inter-regional input coefficients, arsij and
αrs
ij , can be established as follows:

αrs
ij =

prix
rs
ij

psjX
s
j

=
pri
psj
arsij . (18)

Similarly, with the physical primary input Ls
j , the relationship for the value-added input coef-

ficients, as0j and αs
0j, can also be established.

αs
0j =

wsLs
j

psjX
s
j

=
ws

psj
as0j (19)

For simplicity, let us consider a two-country, two-commodity monetary table as shown in
Table 1. With the physical and monetary input coefficients, the output equation for the first
line of the table can be written as follows:

p11X
1
1 = p11a

11
11X

1
1 + p11a

11
12X

1
2 + p11a

12
11X

2
1 + p11a

12
12X

2
2 + p11y

11
1 + p11y

12
1

= p11α
11
11X

1
1 + p12α

11
12X

1
2 + p21α

12
11X

2
1 + p22α

12
12X

2
2 + p11y

11
1 + p11y

12
1

= α11
11X̂

1
1 + α11

12X̂
1
2 + α12

11X̂
2
1 + α12

12X̂
2
2 + ŷ111 + ŷ121 = X̂1

1 ,

where X̂r
i = priX

r
i and ŷrsi = priy

rs
i represent the monetary values of Xr

i and yrsi , respectively.

Table 1: Framework of a two-country, two-commodity monetary table.

country 1 country 2 final demand

country 1 p11x
11
11 p11x

11
12 p11x

12
11 p11x

12
12 p11y

11
1 + p11y

12
1

p12x
11
21 p12x

11
22 p12x

12
21 p12x

12
22 p12y

11
2 + p12y

12
2

country 2 p21x
21
11 p21x

21
12 p21x

22
11 p21x

22
12 p21y

21
1 + p21y

22
1

p22x
21
21 p22x

21
22 p22x

22
21 p22x

22
22 p22y

21
2 + p22y

22
2

values added w1a101X
1
1 w1a102X

1
2 w2a201X

2
1 w2a202X

2
2

Denoting the 4× 4 matrix of inter-regional monetary input coefficients by Â, the system of
output equations in the above table can be summarized as:

ÂX̂ + ŷ = X̂, (20)

where X̂ and ŷ are the column vectors of monetary outputs and final demands, respectively. To
clarify the relationship between monetary and physical expressions, it is necessary to establish
the relationship between Leontief inverse matrices in monetary and physical terms. In the
two-country and two-commodity setting, the monetary inverse can be transformed as follows:

(I − Â)−1 =


β11
11 β11

12 β12
11 β12

12

β11
21 β11

22 β12
21 β12

22

β21
11 β21

12 β22
11 β22

12

β21
21 β21

22 β22
21 β22

21

 =


1− α11

11 −α11
12 −α12

11 −α12
12

−α11
21 1− α11

22 −α12
21 −α12

22

−α21
11 −α21

12 1− α22
11 −α22

12

−α21
21 −α21

22 −α22
21 1− α22

21


−1
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=



1− p11
p11
a1111 −p11

p12
a1112 −p11

p21
a1211 −p11

p22
a1212

−p12
p11
a1121 1− p12

p12
a1122 −p12

p21
a1221 −p12

p22
a1222

−p21
p11
a2111 −p21

p12
a2112 1− p21

p21
a2211 −p21

p22
a2212

−p22
p11
a2121 −p22

p12
a2122 −p12

p21
a2221 1− p22

p22
a2221



−1

=




p11 0 0 0
0 p12 0 0
0 0 p21 0
0 0 0 p22




1− a1111 −a1112 −a1211 −a1212
−a1121 1− a1122 −a1221 −a1222
−a2111 −a2112 1− a2211 −a2212
−a2121 −a2122 −a2221 1− a2221




1
p11

0 0 0

0 1
p12

0 0

0 0 1
p21

0

0 0 0 1
p22




−1

=
(
P (I −A)P−1

)−1
= P (I −A)−1P−1 = P


b1111 b1112 b1211 b1212
b1121 b1122 b1221 b1222
b2111 b2112 b2211 b2212
b2121 b2122 b2221 b2221

P−1, (21)

where P denotes the diagonal matrix of 2× 2 prices.
Reciprocally, the physical inverse matrix B can also be written in terms of monetary inverse

matrix B̂.2

B = (I − A)−1 = P−1(I − Â)−1P = P−1B̂P (21)′

Accordingly, the expressions in (12) can easily be rewritten with monetary coefficients:

crsji =
wrar0jb

rs
ji

psi
=

wr

psi
(
prj
wr

)αr
0j(

psi
prj
)βrs

ji = αr
0jβ

rs
ji and crsi =

∑
j

αr
0jβ

rs
ji . (22)

Then the GDP decompositions may be calculated by plugging these coefficients into (17).
While Koopman et al. (2014) illustrates the case with single commodity, it can easily be

extended to the case with multiple commodities. The domestic value-added coefficient vsj for
sector j corresponds to αs

0j in our notation. Recalling that an element of the monetary Leontief
inverse is denoted by βrs

ij , their country shares of values added are calculated for the two
commodity case as follows:

v11 0 0 0
0 v12 0 0
0 0 v21 0
0 0 0 v22




β11
11 β11

12 β12
11 β12

12

β11
21 β11

22 β12
21 β12

22

β21
11 β21

12 β22
11 β22

12

β21
21 β21

22 β22
21 β22

22

 =


α1
01β

11
11 α1

01β
11
12 α1

01β
12
11 α1

01β
12
12

α1
02β

11
21 α1

02β
11
22 α1

02β
12
21 α1

02β
12
22

α2
01β

21
11 α2

01β
21
12 α2

01β
22
11 α2

01β
22
12

α2
02β

21
21 α2

02β
21
22 α2

02β
22
21 α2

02β
22
22

 (23)

Let p̂sj denote the dual variable for the monetary system. Then by definition, it will become
unity, and is calculated as follows:

p̂sj =
∑
i

∑
r

αr
0iβ

rs
ij = 1.

Hence, the column sums of (23) must equal to one, and each element represents the share of
the value added eventually attributable to the relevant sector and country.

2Considering that X̂ = PX and ŷ = Py, the monetary output equation (20) can be written as

P (I −A)−1P−1Py = P (I −A)−1y = PX.

By pre-multiplying P−1, this becomes equivalent to its physical counterpart.
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6 Exchange rate

Return to the physical system, it is possible to calculate the effective exchange rate from the
balance of payments. If there are m countries, one currency must be regarded as the numéraire,
and other currencies are valued relative to it. In the two country case, it is reasonable to regard
the currency of country 1 as the numéraire, and let µ denote the exchange rate for country 2.
Then the price equations for each country can be written as follows:

p1A11 + µp2A21 + w1a10 = p1

p1A12 + µp2A22 + µw2a20 = µp2 (24)

By limiting the number of sectors to 2, for simplicity, the trade balance of country 1 can be
written as follows:

p11a
12
11x

2
1 + p12a

12
21x

2
1 + p11a

12
12x

2
2 + p12a

12
22x

2
2 + p11y

12
1 + p12y

12
2

− µ(p21a
21
11x

1
1 + p22a

21
21x

1
1 + p21a

21
12x

1
2 + p22a

21
22x

1
2 + p21y

21
1 + p22y

21
2 ) = 0

If there is no income transfer and capital flows between two countries, the exchange rate µ is
determined solely from the above. However, it is unlikely so that the net capital flow F into
country 1 is introduced. Then the equation is modified to include F .3

p11a
12
11x

2
1 + p12a

12
21x

2
1 + p11a

12
12x

2
2 + p12a

12
22x

2
2 + p11y

12
1 + p12y

12
2 + F

− µ(p21a
21
11x

1
1 + p22a

21
21x

1
1 + p21a

21
12x

1
2 + p22a

21
22x

1
2 + p21y

21
1 + p22y

21
2 ) = 0 (25)

In the world complete with two countries, the balance of payments for country 2, where the
capital flow is given by −µF , brings no additional information. Then the exchange rate is
directly calculated from (25).

µ =
p11a

12
11x

2
1 + p12a

12
21x

2
1 + p11a

12
12x

2
2 + p12a

12
22x

2
2 + p11y

12
1 + p12y

12
2 + F

p21a
21
11x

1
1 + p22a

21
21x

1
1 + p21a

21
12x

1
2 + p22a

21
22x

1
2 + p21y

21
1 + p22y

21
2

(26)

In the present framework, where the final demands in physical units are given exogenously,
the physical outputs can be determined independent of the price system. Thus the solution to
the problem (7) can readily be calculated.(

x1

x2

)
=

(
I − A11 −A12

−A21 I − A22

)−1 (
y11 + y12

y21 + y22

)
(27)

However, monetary variables wr and pri are to be determined through an iterative process. When
wages (w1, w2) are appropriately given, the corresponding price vectors (p1, p2) are calculated
by (10). Then given capital flow F , the initial exchange rate µ̃(0) is determined by (26). While
the wages must be evaluated in the local currency, our initial setup is denominated in the
common currency. Hence, the wage in country 2 must be revised to reflect the provisional
exchange rate µ = µ̃(0), in step k = 1.

(p1 p2) = (w1a10 µw2a20)

(
I − A11 −A12

−A21 I − A22

)−1

=

(
w1a10B

11 w1a10B
12

µw2a20B
21 µw2a20B

22

)
.

3To be exact, the balance of payments is obtained as the sum of trade balance, income transfer, and capital
flows. Here the sum of the latter two is simply called ”capital flow”.
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When these revised price vectors are plugged into (26), the incremental exchange rate µ̃(k)

is obtained. The convergence is reached when |µ̃(k) − 1| < ϵ is satisfied with sufficiently small
ϵ > 0. Otherwise, the above process must be repeated with the exchange rate µ =

∏k
i=0 µ̃

(i) in
step k+1. If the process converged at step ℓ, the exchange rate and corresponding country 2’s
wage in the local currency are obtained, respectively, as follows:

µ =
ℓ∏

k=1

µ̃(i) and ŵ2 = µw2.

When there exist m > 2 countries, m − 1 independent exchange rates are determined. The
balance of payments for country r can be written as follows:

µr
∑
i

pri
∑
s ̸=r

(
∑
j

arsij x
s
j + yrsi ) =

∑
s ̸=r

µs
∑
i

psi (
∑
j

asrij x
r
j + ysri ) (28)

By letting µ1 = 1, the exchange rates µr(r = 2, . . . ,m) can be solved from m−1, out of the sum
of m, equations (28) using the similar iterative process as described above. In any case, it must
be emphasized that the exchange rates crucially depend on how the wage levels in individual
countries and capital flows among them are specified.

7 GHG emissions

Consider a world of two countries where GHG emissions are not priced. The output system
can be written exactly as the constraints in problem (7).

(I − A11)x1 − A12x2 = y11 + y12,

−A21x1 + (I − A22)x2 = y21 + y22.

Let arg be the unit emission vector from production activities, and erg be the same from con-
sumption of final products in country r.4 Then the emission in each country is calculated as
follows:5

g1 = a1gx
1 + e1g(y

11 + y21) and g2 = a2gx
2 + e2g(y

12 + y22)

Since the Leontief inverse represents the infinite repercussions of inter-sector and international
transactions, it is straightforward to assess the impact of each final demand segment on GHG
emission of each country.(

g1

g2

)
=

(
a1g 0
0 a2g

)(
x1

x2

)
+

(
e1g e1g
0 0

)(
y11

y21

)
+

(
0 0
e2g e2g

)(
y12

y22

)

=

(
a1gB

11 + e1g a1gB
12 + e1g

a2gB
21 a2gB

22

)(
y11

y21

)
+

(
a1gB

11 a1gB
12

a2gB
21 + e2g a2gB

22 + e2g

)(
y12

y22

)
(29)

4The seminal article by Leontief (1970) only considers pollutants from production sectors. However, the
emission from the final demand sectors cannot be ignored when GHG is concerned.

5When the gas in concern is unique, arg becomes a row vector of size n, but it can easily be extended to
cover k kinds of gases. In that case, arg becomes a k × n matrix. Moreover, the same formulation can also be
applied to water resources. In that case, arg and erg are interpreted as the unit water demand associated with
the production process, and with the final demand consumption, respectively.
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Each country is responsible for the emissions accrued from her final demand. For example,
country 1’s emission g1 can be decomposed into the two parts, viz. g11 and g12, for which
country 1 and 2 are responsible, respectively.

g11 = (a1gB
11 + e1g)y

11 + (a1gB
12 + e1g)y

21 and g12 = a1gB
11y12 + a1gB

12y22.

Likewise, country 2’s emission g2 can also be decomposed:

g21 = a2gB
21y11 + a2gB

22y21 and g22 = (a2gB
21 + e2g)y

12 + (a2gB
22 + e2g)y

22.

Similarly as crsi in (12), it is possible to define the ratio f rs of gas emission in country r, for
which country s is responsible, in a multi-country setting as follows:6

f rr =

∑
ℓ(a

r
gB

rℓ + erg)y
ℓr

argx
r + erg

∑
ℓ yℓr

and f rs =
arg
∑

ℓ B
rℓyℓs

argx
r + erg

∑
ℓ yℓr

(r ̸= s) (30)

with
∑

s f
rs = 1 being satisfied by definition. Alternately, the above expressions can be detailed

to the commodity level:

f rr =

∑
i(a

r
gi

∑
ℓ

∑
j b

rℓ
ijy

ℓr
j + ergi

∑
ℓ y

ℓr
i )∑

i(a
r
gix

r
i + ergi

∑
ℓ y

ℓr
i )

and f rs =

∑
i a

r
gi

∑
ℓ

∑
j b

rℓ
ijy

ℓs
j∑

i(a
r
gix

r
i + ergi

∑
ℓ y

ℓr
i )

(r ̸= s) (31)

In the matrix form, equation (29) can easily be extended to the multi-country case by defining
the following matrices:

Ag =


a1g 0 · · · 0
0 a2g · · · 0
...

...
. . .

...
0 0 · · · amg

 , B =


B11 · · · B1m

...
. . .

...
Bm1 · · · Bmm

 , Eg =


e1g e1g · · · e1g
e2g e2g · · · e2g
...

...
. . .

...
emg emg · · · emg

 ,

where Ag, B and Eg are the matrices of size m × mn, mn × mn, and m × mn, respectively.
Further define

X =


x1

...
xm

 , Y =


y11 · · · y1m

...
. . .

...
ym1 · · · ymm

 , g =


g1

...
gm

 ,1 =


1
...
1

 ,

which are a column vector of size mn, a matrix of size mn×m, a column vector of size m, and
the all-one vector of the same size, respectively. Then the decomposition of GHG emissions
from the production process can be written in the following matrix formula:

AgX = AgBY 1.

With the operator Diag(•) to extract the diagonal elements of square matrices, the emissions
from final demand consumption can be written as Diag(EgY )1. Thus the emission vector G
can be written, in a matrix form, as follows:

g = (AgBY +Diag(EgY ))1. (32)

6In the case of price decomposition, crsi represents the share of country s’s product i that comes from country
r. When comparing the sums

∑
r c

rs
i = 1 and

∑
s f

rs = 1, the superscripts in frs may seem confusing as they
represent the opposite direction. This reflects the fact that TiVA represents the backward linkage while emission
responds to the forward linkage.
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The decomposition of GHG emissions over the countries can then be obtained using (30):

G =


g11 g12 · · · g1m

g21 g22 · · · g2m

...
...

. . .
...

gm1 gm2 · · · gmm

 =


g1 0 · · · 0
0 g2 · · · 0
...

...
. . .

...
0 0 · · · gm




f 11 f 12 · · · f 1m

f 21 f 22 · · · f 2m

...
...

. . .
...

fm1 fm2 · · · fmm

 = diag(g)F.

(33)

8 The problem with GHG abatement

While the model in the previous section is open-ended in the sense that it simply calculate
the GHG emissions and clarify the responsibility of each country without considering environ-
mental restrictions. In contrast, when such restrictions along with the pollution abatement
activity are introduced, it is possible to assess the fair penalty for the GHG discharged to the
environment. In the case of an isolated country with two industrial and one abatement sectors,
the environmental restriction is normally given by the following form:

ag1x1 + ag2x2 + aggxg + eg1y1 + eg2y2 − xg ≤ g, (34)

where g is the amount of GHG permitted to the environment, xg is the amount of GHG
eliminated, and agg is the GHG emission by the abatement activity. Likewise the output
requirement for industrial sectors can be written with aig, the input requirement for a unit
reduction of GHG, as follows:

xi − ai1x1 − ai2x2 − aigxg ≥ yi (i = 1, 2).

Considering the direction of inequalities, the linear programming problem similar to (1) can
be formulated with the labor input in the abatement sector a0g.

minx1,x2,xg w(a01x1 + a02x2 + a0gxg),

s.t. (1− a11)x1 − a12x2 − a1gxg ≥ y1,

−a21x1 + (1− a22)x2 − a2gxg ≥ y2,

−ag1x1 − ag2x2 + (1− agg)xg ≥ eg1y1 + eg2y2 − g,

x1, x2, xg ≥ 0. (35)

The solution to this problem is readily be obtained.7 x1

x2

xg

 =

 1− a11 −a12 −a1g
−a21 1− a22 −a2g
−ag1 −ag2 1− agg


−1 y1

y2
eg1y1 + eg2y2 − g

 (36)

7According to the weak-solvability, the solution to the Leontief model, x = (I − A)−1y, is guaranteed non-
negative when the Leontief matrix (I −A) is positive definite and y is non-negative (see e.g. Nikaido, 1968). In
this case, however, such conditions does not necessarily apply since eg1y1 + eg2y2 − g could be negative in an
unrealistic case where the environmental restriction is very loose and no need for abatement.
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When λ denotes the Lagrangian multiplier assigned to (34), it is interpreted as the price of unit
GHG emission. All the price variables, including λ, are obtained from the dual system.

(p1 p2 λ) = w(a01 a02 a0g)

 1− a11 −a12 −a1g
−a21 1− a22 −a2g
−ag1 −ag2 1− agg


−1

(37)

In order to extend the problem with the GHG abatement sector to the world problem com-
prising two countries, the output equations are formulated for individual countries as follows:

x1
1

x1
2

x1
g

−


a1111 a1112 a111g

a1121 a1122 a112g

a1g1 a1g2 a1gg




x1
1

x1
2

x1
g

−


a1211 a1212 a121g

a1221 a1222 a122g

0 0 0




x2
1

x2
2

x2
g

=


y111 + y121

y112 + y122

e1g1(y
11
1 + y211 ) + e1g2(y

11
2 + y212 )− g1




x2
1

x2
2

x2
g

−


a2111 a2112 a211g

a2121 a2122 a212g

0 0 0




x1
1

x1
2

x1
g

−


a2211 a2212 a221g

a2221 a2222 a222g

a2g1 a2g2 a2gg




x2
1

x2
2

x2
g

=


y211 + y221

y212 + y222

e2g1(y
12
1 + y221 ) + e2g2(y

12
2 + y222 )− g2


Here transportation of GHG across countries is precluded; i.e., production activity in a country
does not discharge GHG in the other country.8

For convenience sake, let Ã11, Ã12, Ã21, and Ã22 respectively denote the matrices of input
coefficients in the order as they appeared in the above two equations. Also let u1 and u2 denote
the column vectors in the right hand side of the above equations. Moreover, the augmented
column vector of outputs and row vector of labor inputs are defined as follows:

x̃r = (xr
1 xr

2 xr
g)

′ and ãr0 = (ar01 ar02 ar0g).

Then the world problem with GHG abatement activity can be formulated in a matrix form.

minx̃1,x̃2 w1ã10x̃
1 + w2ã20x̃

2

s.t. (I − Ã11)x̃1 − Ã12x̃2 ≥ u1 (38)

−Ã21x̃1 + (I − Ã22)x̃2 ≥ u2 (39)

x̃1, x̃2 ≥ 0,

By denoting the row vectors of Lagrange multipliers attached to (38) and (39) as q1 and q2,
respectively, the Lagrangian function for the problem can be written as follows:

L = w1ã10x̃
1 + w2ã20x̃

2 + q1(u1 − (I − Ã11)x̃1 + Ã12x̃2) + q2(u2 + Ã21x̃1 − (I − Ã22)x̃2). (40)

With the non-negative constraints, the first-order conditions would become:

∂L

∂x̃1
= w1ã10 − q1(I − Ã11) + q2Ã21 ≥ 0

∂L

∂x̃2
= w2ã20 + q1Ã12 − q2(I − Ã22) ≥ 0 (41)

8It must be noted that the combination of traded final demands is different for the GHG line from the rest
of commodities.
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Thus the multipliers are determined as follows:

(q1 q2) = (p11 p12 λ1 p21 p22 λ2) ≤ (w1ã10 w2ã20)

(
I − Ã11 −Ã12

−Ã21 I − Ã22

)−1

(42)

When the vector (x̃1, x̃2) are positive, (42) holds in equality. However, it is not necessarily true
with very loose environmental restrictions since the GHG emission may become a ”free good”
(λr = 0) in that case.

Suppose all the constraints are binding, and B̃rs denotes the element of Leontief inverse in
(42). Then the responsibilities of GHG emissions are distributed over the countries similarly
as in the case without abatement activity.(

g11 g12

g21 g22

)
=

(
(ã1gB̃

11 + ẽ1g)ỹ
11 + (ã1gB̃

12 + ẽ1g)ỹ
21 ã1gB̃

11ỹ12 + ã1gB̃
12ỹ22

ã2gB̃
21ỹ11 + ã2gB̃

22ỹ21 (ã2gB̃
21 + ẽ2g)ỹ

12 + (ã2gB̃
22 + ẽ2g)ỹ

22

)
, (43)

where vectors ãrg, ẽ
r
g, and ỹrs are also augmented to include the abatement.

ãrg = (arg1 arg2 argg), ẽrg = (erg1 erg2 0), and ỹrs = (yrs1 yrs2 0)′.

By the same token, the values added can also be decomposed as follows:(
Y 11 Y 12

Y 21 Y 22

)
=(

q1C̃11(ỹ11 + ỹ12 + Ã12x̃2)− q2C̃22Ã21x̃1 q1C̃12(ỹ21 + ỹ22 + Ã21x̃1)− q1C̃21Ã12x̃2

q2C̃21(ỹ11 + ỹ12 + Ã12x̃2)− q2C̃12Ã21x̃1 q2C̃22(ỹ21 + ỹ22 + Ã21x̃1)− q1C̃11Ã12x̃2

)
, (44)

where the diagonal matrix C̃rs is augmented to include the decomposition of GHG abatement
cost λs.

In this article, we demonstrated that the linear programming equivalent of the physical input-
output system can decompose not only values added, but also GHG emissions to the ultimate
beneficiaries or causes in a consistent manner. The GHG emissions are likely proportional to
the physical amounts produced or consumed than their monetary values. For example, fuel
efficiency would better be evaluated by the liters rather than dollars of gasoline burned, and
thus, the use of physical system seems more appropriate. When the GHG abatement activity
is introduced, the price for emission right can be endogenized. Then the question is how to
determine the fair allocation of emission permits g (see Uzawa, 2003). The tradable emission
permits introduce income transfer among countries. Besides when the domestic labor market
and international financial market are properly combined, the physical framework can also
endogenize the exchange rates. Annexing several markets outside the input-output system, the
system becomes closer to the spatial computable general equilibrium (SCGE) model (see e.g.
Ando and Meng, 2014).

Although the physical input-output system has several desirable properties, the problem is
that the physical (international) tables are not available. Then our task will be to compile a
non-survey physical table from existing monetary tables, and derive some meaningful analytical
results. However, such a task is beyond the scope of this article, and has been left in the future.
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