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1. An introduction 

The subject of this study is a general problem for updating rectangular (or square) matrices, 

which can be formulated as follows. Let A be an initial matrix of dimension NM with row and 

column marginal totals MAeuA  , AevA N  where Ne  and Me  are N1 and M1 summation 

column vectors with unit elements. Further, let Auu   and Avv   be exogenous column vectors 

of dimension N1 and M1, respectively. The problem is to estimate a target matrix X of 

dimension NM at the highest possible level of structural similarity (or closeness, etc.) to initial 

matrix under N+М equality constraints 

uXe M ,                vXe N                                                   (1) 

and the consistency condition 

veue MN  .                                                               (2) 

Clearly, the system of equations (1) is dependent at consistency condition (2). However, any 

N+М–1 among N+М constraints (1) are mutually independent. 

It is assumed that initial matrix does not include any zero rows or zero columns, does not 

have less than N+М nonzero elements, does not include any rows or columns with a unique 

nonzero element, and does not contain any pairs of rows and columns with four nonzero elements 

in the intersections. Otherwise, it is expedient to “clear” matrix A of undesirable features before 

applying any matrix updating method in practice. 
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The aim of this paper is to make more operational and to advance the notion of angular 

measure for structural similarity between target and initial matrices introduced in Motorin (2014). 

2. The RAS multiplicative pattern 

The key idea of the well-known and widely used RAS method is a factorization of target matrix 

sArsArRASX ˆˆ                                                  (3) 

where r and s are unknown N1 and M1 column vectors. Here angled bracketing around a 

vector’s symbol or putting a “hat” over it denotes a diagonal matrix, with the vector on its main 

diagonal and zeros elsewhere (see  Miller and Blair, 2009, p. 697). 

Putting (3) into (1), we have the system of nonlinear equations 

urAsAsresAr  ˆˆˆ M ,            vrAssArsAre  ˆˆˆN .              (4) 

Proper transformations of system (4) lead to following pair of iterative processes: 

uvrAAr
11

)1()(



 ii ,      i = 1I;           vrAs
1

)()(


 II ;                    (5) 

vuAsAs
11

)1()(



 jj ,       j = 1J;          uAsr
1

)()(


 JJ                      (6) 

where i and j are iteration numbers. 

Thus, in RAS method the structural similarity between target and initial matrices is provided 

by (N+М)-parametrical multiplicative pattern 

nmmnnm asrx   ,    n = 1N,     m = 1M                                        (7) 

where the character “  ” between the lower and upper bounds of index’s changing range means 

that the index sequentially runs all integer values in the specified range. Note that pair of 

constraints (1) restricts the scattering of factors mn sr  around some constant level. Further, the 

multiplicative pattern (7) preserves zero elements of matrix A in the same positions inside X that 

seems to be a significant contribution to structural similarity between the initial and target 

matrices. 

In accordance with (7), the factorization (3) can be written as  

AsrX )(                                                                (8) 

where the character “  ” denotes the Hadamard’s product for two matrices of the same 

dimensions. Since the matrix sr   does not contain any zero elements, matrices A and X all have 

the same inner location of zeros. 

3. A general Hadamard-multiplicative model 

A natural way to generalize (N+М)-parametrical multiplicative pattern (8) is to replace factors 
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mn sr  with more common coefficients nmq  and to consider (NМ)-parametrical model 

AQX                                                                   (9) 

where Q is NM matrix of unknown coefficients nmq . 

It is easy to see that multiplicative model (9) is not strictly (or just) identifiable if the initial 

and target matrices do contain one or more zero elements. To illustrate this statement let us 

assume that matrices A and X are known both. Nevertheless, it does not allow to identify 

coefficient matrix Q as a unique one because 









;0 ifscalar,any 

;0 if,

nm

nmnmnm
nm a

aax
q          n = 1N,   m = 1M.                       (10) 

In the context of model’s identifiability consider a particular case of strict proportionality 

between row and column marginal totals Auu k  and Avv k  with the same multiplier k. It 

can be easily shown that under starting condition Ner )0(  or Mes )0(  the RAS method iterative 

process (5) or (6) demonstrates one-step convergence to pair of vectors Ner  , Mkes   or to 

Nker  , Mes  , respectively. Hence ksr mn   for any n and m, n = 1N, m = 1M, or in matrix 

notation MNk eesr   and X = kA. Further, it is easy to see that the replacing initial matrix A with 

its homothety kA leaves the RAS method iterations (5) and (6) invariant.  

From above, one can establish the fact of an excellent structural similarity of all matrices 

from homothetic family   AeeA MNkk  , k  0 in accordance with RAS logic. This conclusion 

may serve as a criterion base for constructing the operational method to estimate of unknown 

coefficients in multiplicative model (9) strictly. Indeed, setting a goal to dispose the target matrix 

as close to homothetic family kA as possible, we obtain a uniparametrical (with parameter k) 

optimization problem that prescribe to minimize a certain norm of matrix 

AeeQAX )( MNkk   subject to the pair of constraints ueAQ M)(   and vAQe  )( N . Note 

that this problem is represented here in preliminary formulation and is not quite operational yet. 

4. A common approach to model identification  

The handling of optimization problem formulated above becomes more operational with its 

vectorization. Applying vectorization operator vec (see Magnus and Neudecker, 2007), which 

transforms a matrix into a vector by stacking the columns of the matrix one underneath the other, 

to each matrix in (9) gives multiplicative model 

qax ˆ                                                                  (11) 

where Xx vec , Aa vec  and Qq vec  are column vectors with dimension NM1. In general, 
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one can choose any other operator for vectorization of matrices X, Q and A. Note that diagonal 

matrix â  is singular whenever A contains at least one zero element. 

A quite explainable requirement to dispose the target vector x as close to vector homothety 

ka as possible entails uniparametrical optimization problem that prescribes to minimize a certain 

norm of vector )(ˆ NMkk eqaax   subject to constraints (1) properly transformed into 

vectorized forms (see Section 6 below). In order to make an objective function of this problem 

independent on initial data, it is expedient to transit into a system of relative coordinates by 

omitting diagonal matrix â  in right-hand side of latter equality and to minimize (subject to 

vectorized constraints) a norm of vector NMkeq   which measures a deviation of relative target 

vector q from relative homothetic ray NMke  at k  0. 

Optimization problem under consideration contains NM unknown variables q, one unknown 

scalar parameter k, and N+M constraints from which N+М–1 constraints are mutually 

independent. The main associated question is how to properly define a measure for similarity 

between a vector and a ray. 

5. Angular and homothetic measures for matrix similarity 

There are two essential ways to estimate a deviation of relative target vector q from homothetic 

ray NMke . First, most natural measure for similarity between a vector and a ray can be defined as 

a value of the angle between q and NMke , which is assumed to be acute. Secondly, the shortest 

path from the point q to the ray NMke  can serve as an alternative measure that is further called 

homothetic one. 

If (y, z) = y'z = z'y is an inner product of vectors y and z in NM-dimensional Euclidean 

space, then angle qe between target vector q and ray NMke  is determined (in radians) by well-

known formula 























 2121 )()(

arccos
),(

arccos
NMNM

NM

NM

NM

eeqq

qe

eq

eq
qe                           (12) 

where 21)( qqq  is a length of vector q. 

Orthogonal projection of q on the ray NMke  is determined by coefficient NMNMNMk eeqe   

from evident condition 0)(  
NMNM k eqe  and equals vector NMk e . Hence, the shortest path from 

the point q to the ray NMke  is lying along the vector 

q
ee

ee
Eeqδ 











 

NMNM

NMNM
NMNMk                                         (13) 
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where NME  is identity matrix of order NM. Note that the inner product of vectors  and 

NMe  equals 0 qeqeδe NMNMNM , so  is orthogonal to homothetic ray NMke  and besides has 

zero sum of elements.  

Thus, it is clear now how to specify a scalar at 0nma  in (10): to prevent an artificial 

increasing of vector ‘s length one must let this scalar be the average ratio xnm / anm on the subset 

of nonzero elements in A. From the parameter estimation theory viewpoint using (13) as a 

measuring vector corresponds to an unbiased estimation of q with least variance (see, e.g., 

Wackerly, Mendenhall and Scheaffer, 2008). 

It can be shown that symmetric idempotent matrix in parentheses in (13) has zero eigenvalue 

with unit multiplicity and corresponding eigenvector NMe , and also has unit eigenvalue with 

multiplicity NM–1 and corresponding eigenvector z from the hyperplane 0 zeNM , which is 

orthogonal to homothetic ray. So this singular matrix has rank NM–1. 

It is easy to detect a linkage between angular and homothetic measures for matrix similarity  

introduced above because a solution of the right triangle with the sides δeq  and , NMk  gives  

qq

δδ
qe 


2sin .                                                            (14) 

From geometrical viewpoint one can conclude that angular measure (14) and homothetic 

measure (13) are consistent only for any pair of relative target vectors q and p satisfying 

orthogonality condition 0)(  pqeNM , i.e., all testing target vectors must have the same 

orthogonal projection onto homothetic ray.  

As a conclusion, an angle between target vector q and homothetic ray NMke  at k  0 can be 

considered as a universal measure of structural similarity between target and initial matrices. 

Main “technical” disadvantage of angular measure appears to be the complexity of formulae (12) 

and (14) along with arising difficulties of using (14) to construct competing (in particular, with 

the RAS method) algorithms of matrix updating. Based on orthogonal projecting operation, 

homothetic measure (13) is the simplified version of an angular measure with some 

shortcomings. Nevertheless, homothetic measure demonstrates a row of helpful properties and 

may become operational in various algorithmic schemes. 

6. Vectorization of the linear constraints 

To apply the results obtained above for constructing certain algorithms of matrix updating, one 

needs to rewrite left-hand sides of the equations (1) in vector notation. It is easy to see that in this 

context the NNM matrix NM EeG  , which consists of M identity matrix NE  located 
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horizontally, and the MNM matrix NeEH  M  – N-fold successive replication of each column 

from identity matrix ME  – are the proper substitutes of summation vectors Me  and Ne  

respectively. Note that each column of G and H includes exactly one nonzero (unit) element such 

that NMMN eHeGe  . Thus, the system of equations (1) and multiplicative model (11) can be 

combined as follows: 

uqaGGxXe  ˆM ,               vqaHHxXe  ˆN .                           (15) 

Recall that under consistency condition (2) any N+М–1 among N+М constraints (15) are 

mutually independent. 

7. Minimization of angular measure via homothetic measure  

The expression (14) in conjunction with monotonicity of function x2sin  at acute angles x 

generates the following nonlinear programming problem: to minimize the fractional quadratic 

objective function or, as it is sometimes called, Rayleigh quotient 

qq

q
q

ee

ee
Eq

qq
q



















)f(1
)F(

NMNM

NMNM
NM                                        (16) 

subject to linear constraints (15). Note that angular measure (16) has the same value F(q) along a 

straight line kq at any k  0. Recall that symmetric idempotent matrix in parentheses has rank 

NM–1. Singularity of this matrix serves as an obvious technical obstacle for the analytical solving 

of constrained minimization problems (16), (15), but this obstacle can be bypassed in a special 

way proposed below. 

The function f(q) in the numerator of Rayleigh quotient (16) can be rewritten as 

)()()f( NMNM qq eqeqq   where NMNMNMkq eeqe    is average value of elements in q. As 

shown above, this function expresses the length’s square for the shortest path from the point q to 

homothetic ray and vanishes whenever target vector q and homothetic ray tend to be collinear. 

Hence, nonlinear programming problem (16), (15) with auxiliary constraint kq   (where k is 

assumed to be an arbitrary constant) is equivalent to quadratic optimization problem that 

prescribes to minimize uniparametrical objective function 

)()();(f NMNM kkk eqeqq                                                (17) 

subject to constraints (15) and orthogonality condition  

0)(  NMNM keqe                                                        (18) 

in which k is playing the role of an instrumental variable. Clearly, the solution point q for this 

quadratic optimization problem is lying on the hyperplane (18), which is orthogonal to 

homothetic ray and crosses it at the point NMke . As established earlier, angular measure (14) and 
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homothetic measure (13) are consistent on this orthogonal hyperplane. 

Thus, the solution of nonlinear programming problem (16), (15) can be obtained in two 

stages. At first stage one needs to solve quadratic optimization problem (17), (15), (18) for every 

k and to find uniparametrical vector family )(kq  that provides a local constrained minimum of 

homothetic measure 

 0)(,ˆ,ˆ);(fmin)(f  NMNM kkk eqevqaHuqaGq
q

                       (19) 

on each hyperplane (18). As a result, we obtain a geometric place of feasible points located at a 

minimal distance from points NMke  on homothetic ray at various values of parameter k. 

At second stage the unconstrained minimum  
















)()(

)(f
)F(minF

kk

k
k

k qq
                                               (20) 

is to be found together with corresponding vector q  as the optimal solution of angular measure 

minimization problem (16), (15). Besides, the other unconstrained minimum 

 )(fminf k
k

                                                          (21) 

corresponds to global minimization of homothetic measure along homothetic ray. 

8. Uniparametrical constrained minimization of homothetic measure 

In conjunction with (17) and general least squares (GLS) principles consider a uniparametrical 

family of functions 

)()();(f NMNM kkk eqWeqq                                               (22) 

where k is unknown scalar parameter, and wW ˆ  is a nonsingular diagonal matrix of order NM  

with the relative reliability (relative confidence) factors for elements of vector q. In terms of GLS 

NMke  can be interpreted as a mean of random vector q, and W – as a inverse covariance matrix 

for q in case of zero autocorrelations. Usually vector w is assumed to be normalized by 

multiplying it on a proper factor, i.e., 1 weNM . 

The objective function (22) appears to be similar to the one proposed by Harthoorn and van 

Dalen (1987). Nevertheless, there are at least two significant distinctions between them. First, 

Harthoorn and van Dalen have used metric measure based on vector x – a, and secondly, they 

have not used the operation of orthogonal projecting onto a homothetic ray. 

The Lagrange function for problem to minimize objective function (22) subject to linear 

constraints (15) and GLS-analog of (18) with scalar parameter k is 

)()ˆ()ˆ()()();,,;(Lf NMNMNMNMNM kγkkk WeeWqevqaHμuqaGλeqWeqμλq      (23) 
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where  and  are vectors of Lagrange multipliers with dimension N1 and M1, and  is a 

scalar Lagrange multiplier. By setting the partial derivatives of (23) with respect to q, , ,   

equal to zero, we obtain the system of NM+N+M+1 linear equations 

NMNMNM γk 0WeμHaλGaeqW  ˆˆ)(2 ,   N0uqaG ˆ ,   M0vqaH ˆ ,   0 NMNMNM k WeeWqe . 

While W is nonsingular matrix, the first equation can be resolved with respect to q as 

  NMNM γk eμHλGaWeq
2

1
ˆ

2

1 1   . 

Putting this expression into fourth equation gives 

 μHλG
Wee

ae
e 





NMNM

NM
NMγ , 

and after backward substitution we obtain 

 μHλG
Wee

ae
aWeq 











 

NMNM

NM
NMk ˆ

2

1 1 .                              (24) 

The second and the third equations from system above and (24) can be combined into N+M 

equations with Lagrange multipliers  and  as unknown variables: 

 Gauμπλπμ
Wee

HaGa
HaWaGλ

Wee

GaGa
GaWaG k

NMNMNMNM
























  2ˆˆˆˆ 1211

11 ,    (25) 

 Havμπλπμ
Wee

HaHa
HaWaHλ

Wee

GaHa
GaWaH k

NMNMNMNM
























  2ˆˆˆˆ 2221

11 .    (26) 

It can be shown that NMN 0eπeπ  1211 , MMN 0eπeπ  2221 , i.e., the columns of symmetric 

matrix , which is formed by blocks 22211211 ,,, ππππ , are linearly dependent. Thus, the general 

solution to homogeneous system corresponding (25), (26) is  
Nceλ 0 ,  

Mceμ 0  with the 

same scalar constant c. 

Since general solution to nonhomogeneous linear system equals the sum of general solution 

to corresponding  homogeneous system and any particular solution to nonhomogeneous system, 

let    10 λλλ   and    10 μμμ  , where  1λ ,  1μ  is particular solution to system (25), (26). 

Recall that NMNN eHeGe  , so putting these formulae into round-bracketed expression in the 

right-hand side of (24) gives 

             111111 μHλGμHλGeeμeHλeGμHλG  NMNMMN kkkk . 

Therefore, to find any particular solution of system (25), (26) means to solve constrained 

minimization problem with objective function (22) subject to linear constraints (15) and GLS-

analog of (18). 
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9. Analytical solutions for Lagrange multipliers 

The Lagrange multipliers  and  can be found from system (25), (26) in two ways.  

Since any N+М–1 among N+М constraints in set (15) are mutually independent under 

consistency condition (2), without loss of generality any one of them can be eliminated from the 

system. The details of analytical solution to similar reduced systems of linear constraints are 

discussed in Motorin (2014). 

Another way is based on the “easy-to-check” fact that matrix  is singular, but its square 

blocks 11π  and 22π  are not if matrix A does not have zero rows and columns. So one can resolve 

(25) with respect to  and (26) with respect to  as 

μππGauπλ 12
1

11
1

11 )(2   k ,           λππHavπμ 21
1

22
1

22 )(2   k ,               (27) 

and after that the crossing substitutions give two equations as follows: 

λΠcλππππHavπππGauπλ NN kkk   )(22 21
1

2212
1

11
1

2212
1

11
1

11 )()( ,           (28) 

μΠcμππππHavπGauπππμ MM kkk   )(22 12
1

1121
1

22
1

22
1

1121
1

22 )()( .           (29) 

Further, the square matrices N  and M have the properties as 

NNMMNNN eeππeππeππππeππππeΠ  
11

1
1112

1
1122

1
2212

1
1121

1
2212

1
11 , 

MMNNMMM eeππeππeππππeππππeΠ  
22

1
2221

1
2211

1
1121

1
2212

1
1121

1
22 , 

but they are not stochastic because may have some negative entries. Since   NNNN 0eΠE   and 

  MMMM 0eΠE  , the matrices EN – N  and EM – M with linearly dependent columns are 

singular, so that we can not solve the matrix equations (28) and (29) in the usual way. 

Formally, one can write the solutions to (28) and (29) as  

)(
0

kN
i

i
N cΠλ  





,                   )(
0

kM
j

j
M cΠμ  





.                              (30) 

However, the row marginal totals in partial sums of matrix power series in (30) increase 

unboundedly, since NN
i
N eeΠ   and MM

j
M eeΠ  . Thus, an existence of solutions (30) is 

questionable and needs to be studied. 

From the theory of homogeneous Markov chains it is known that stochastic matrix Π  has a 

marginal property veΠΠ  



i

i
lim , where Πvv   is the left eigenvector of matrix Π  

corresponding to unit eigenvalue (for more details in transposed case of right eigenvector, see 

Bellman, 1960, pp. 256 – 258). Despite the matrices N  and M are not stochastic because of 

negative entries, they have matrix norms with unit upper bound and demonstrate similar features: 

NNN
i
N

i
veΠΠ  


lim ,                 MMM

j
M

j
veΠΠ  


lim  
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where NNN Πvv   and MMM Πvv   are the left eigenvectors of NΠ  and MΠ  both corresponding 

to unit eigenvalues. It is easy to show that 11πev NN c   and 22πev MM c   where c is an arbitrary 

constant. Indeed, e.g., NNMNNN ccc vπeπππeπππππeΠv  
1121

1
222221

1
2212

1
1111 . Using these 

matrix algebra results it can be establish that )(kN
i
N cΠ  and )(kM

j
M cΠ  tend to nill vectors with 

proper dimensions as i  and j . 

Consider the marginal vectors for matrix power series (30) by regrouping relevant summands 

in right-hand sides of (28) and (29) as 

aGHππeevππueecvecΠ )()( 1
2212

1
2212N 22)()(  

NNNNNNNN ckckk , 

aHGππeeuππveecvecΠ )()( 1
1121

1
1121M 22)()(  

MMMMMMMM ckckk . 

Since 2212 πeπe MN   and 1121 πeπe NM  , we have 0)()( 1
1121

1
2212   veueuππvevππue MNMN  

in accordance with the consistency condition (2). Further, the statement 

NMNMNMNMMN 0eeGeHeHGππeGHππe   )()( 1
1121

1
2212  

immediately follows from the definitions of matrices G and H (see Section 6 above).  

Hence, the eigenvectors of matrices NΠ  and MΠ  are orthogonal to )(kNc  and )(kMc  

respectively, so NN k 0cΠ  )(N  and MM k 0cΠ  )(M . Of course, the statements proved serve as 

necessary conditions for an existence of solutions (30). Formally, they are not sufficient to 

provide a convergence of matrix power series in (30). However, in practice such series appear to 

converge rather fast, and it is expedient to calculate the partial sums in (30) subject to terminal 

criteria resembling )(kN
i
N cΠ  and )(kM

j
M cΠ  where  is a small positive value. 

So the solutions of equations (25) and (26) can be represented by vector-valued linear 

functions of k as 

NN kk ψφλ 22)(   ,              MM kk ψφμ 22)(                                     (31) 

where 









 


  )( 1

2212
1

11
0

lim vππuπΠφ
I

i

i
N

I
N ,         









 


  aGHπππΠψ )( 1

2212
1

11
0

lim
I

i

i
N

I
N , 









 



 )( 1

1121
1

22
0

lim uππvπΠφ
J

j

j
M

J
M ,         









 



 aHGπππΠψ )( 1

1121
1

22
0

lim
J

j

j
M

J
M   

are the recursively computable vectors with dimensions N1 and M1 respectively.  

Note that for finding Lagrange multipliers  and  by solving system (25), (26) each formula 

in (31) must be used together with a complimentary formula from (27). In particular, if N < M, it 

is better to calculate NN kk ψφλ 22)(   as in (31) and then to determine )(kμ  by second formula 

(27), which becomes 
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)()()( 21
1

2221
1

2221
1

22
1

22 22)(2)( NN kkkk ψπHaπφπvπλππHavπμ   .       (32) 

Vice versa, if N > M, the choice of MM kk ψφμ 22)(   from (31) is more preferable with 

successive applying first formula (27), which becomes 

)()()( 12
1

1112
1

1112
1

11
1

11 22)(22)( MM kkkk ψπGaπφπuπμππGauπλ   .       (33) 

These iteration-based results express, in general, two different particular solutions of system 

(25), (26) and do not coincide among themselves, as well as RAS solutions (5) and (6). It is 

important to note that in constrained minimization problem with objective function (22) subject 

to linear constraints (15) and GLS-analog of (18) the Lagrange multipliers  and  are 

represented by vector-valued linear functions of the instrumental variable k. 

10. The solutions of minimization problems for homothetic measure 

As it was shown in Section 8, the round-bracketed vector in the right-hand side of (24) does not 

depend on a choice of certain particular solution to system (25), (26). Applying the first formula 

(31) in a pair with (32) gives 

   HaπHψππHGφππHGvπHμHλG 1
2221

1
2221

1
22

1
22 )()( 22)()(   NN kkk , 

whereas mutual using the second formula (31) and (33) leads to 

   GaπGψππGHφππGHuπGμHλG 1
1112

1
1112

1
11

1
11 )()( 22)()(   MM kkk . 

Hence, this vector can be represented by vector-valued linear function of k as follows: 

yzμHλG kkk 22)()(                                                        (34) 
where 

MN φππGHuπGφππHGvπHz )()( 12
1

11
1

1121
1

22
1

22
  , 

GaπGψππGHHaπHψππHGy 1
1112

1
11

1
2221

1
22 )()(   MN  

are both NM-dimensional vectors. It is important to note that according to (31) vector y does not 

depend on u and v (marginal totals for target matrix) in contrast to the vector z. 

Now a general solution of constrained minimization problem for homothetic measure (22), 

(15) with GLS-analog of (18) can be derived by putting (34) into (24). Thus, we have 

uniparametrical vector family 

  )(ˆ)( 1 yzDeyz
Wee

ae
aWeq kkkkk NM

NMNM

NM
NM 











 

                    (35) 

which is obtained in accordance with a requirement formulated in (19). Note that D is a square 

matrix of order NM. Along with (22) and (35) scalar function (19) becomes polynomial of second 

order as 

WDyDyWDzDyWDzDzyzWDDyz  
22)(f )()( kkkkk                 (36) 
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These analytical results complete a first stage of solving process for nonlinear programming 

problem (16), (15). 

Formula (35) describes a geometric place of feasible points )(kq  located at a minimal 

distance from points NMke  on homothetic ray at various values of parameter k. It is important to 

emphasize that vector )()( yzDeq kkk NM   is orthogonal to homothetic ray at any k by 

model construction because of GLS-analog of (18) among constraints. Indeed, 

NM
NMNM

NM
NMNM 0aa

Wee

ae
aWWeWDe 











  ˆ1                           (37) 

so that   0)()(   yzWDeeqWe kkk NMNMNM  at any k.  

The first and the second derivatives of quadratic function (36) with respect to k are defined 

as 

WDyDyWDzDy  k
k

k
22

d

)(df
,                   02

d

)(fd
2

2

 WDyDy
k

k
. 

Clearly, this convex function of k has a unique minimum at the parameter value that equals 

WDyDyWDzDy k (here the first derivative vanishes). 

As a result, the global minimum of homothetic measure along homothetic ray 

 0)(,ˆ,ˆ);(fminminf  NMNM
k

kk eqWevqaHuqaGq
q

, 

which corresponds to a requirement formulated in (21), is achieved according to (35) at the point 

)()( Dye
WDyDy

WDzDy
DzDyeDzq 




  NMNMk                             (38) 

with the objective function value 

      
WDyDy

WDzDy
WDzDz

WDyDy

WDzDy

WDyDy

WDzDy
WDzDz













222 )()()(

2f            (39) 

where z and y are NM-dimensional vectors defined below (34). It can be shown that formulae 

(38) and (39) also define the solution of a quadratic programming problem, in which it is required 

to minimize the objective function (22) subject to linear constraints (15) and  unknown parameter 

k is determined from a statement that vector NMkk eq  )(  is to be orthogonal to homothetic ray. 

This problem is considered in details in Motorin (2014). 

11. The solution of unconstrained minimization problem for angular measure 

At second stage of solving process for nonlinear programming problem (16), (15) we have a new 

objective function 
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   )()()()(

)(f
)F(

)()(

yzDeWyzDe

yzWDDyz

qWq kkkk

kk

kk

k
k

NMNM 










                    (40) 

that is obtained by substituting (36) and (35) into the function in braces from (20). In accordance 

with a requirement formulated in (20) it is to be minimized. However, this function of k is 

fractional quadratic and, hence, can have more than one minimum. 

Putting (37) into the denominator of (40) gives 

    )()(2)()( yzWDDyzWeeyzDeWyzDe kkkkkkk NMNMNMNM    

so F(k)  1 at any values of k. Note that the maximum of F(k) equals 1 and is achieved at zero 

value of k. 

It can be shown that first derivative of the fractional quadratic function (40) with respect to k 

is defined as 

 22 )()(
)(2

d

)(dF

yzWDDyzWee

WDyDzWDzDzWee

kkk

kk

k

k

NMNM

NMNM







. 

It seems clear that function (40) has a unique maximum at k = 0 and a unique minimum at 

WDzDyWDzDzWDyDzWDzDz k . The first case concerns an orthogonality of 

the relative target vector to homothetic ray whereas the second one is associated with a minimal 

angle between the relative target vector and homothetic ray. 

As a result, the global minimum of angular measure  )F(minF k
k

 , which corresponds to a 

requirement formulated in (20), is achieved at the point 

)()( Dye
WDzDy

WDzDz
DzDyeDzq 




 
NMNMk                            (41) 

with the objective function value 



















 
































 






y
WDzDy
WDzDz

zWDDy
WDzDy
WDzDz

zWee
WDzDy
WDzDz

y
WDzDy
WDzDz

zWDDy
WDzDy
WDzDz

z

NMNM

2F           (42) 

where z and y are NM-dimensional vectors defined below (34). Thus, formulae (41) and (42) 

define the solution of a nonlinear programming problem in which it is required to minimize the 

objective function (16) subject to linear constraints (15). 

12. Notes on sensitivity analysis of the obtained solutions 

Three optimization problem is considered in this paper: 

 to minimize the quadratic objective function (22) with scalar parameter k subject to linear 

constraints (15) and GLS-analog of (18), i.e., uniparametrical minimization problem for 
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homothetic measure; 

 to minimize the quadratic objective function (22) subject to linear constraints (15) with finding 

unknown parameter k from a minimum condition for univariate function (36) or (as in 

Motorin, 2014) from an orthogonality condition for vector NMkk eq  )(  and homothetic ray, 

i.e., global minimization problem for homothetic measure; 

 to minimize the fractional quadratic objective function (16) subject to linear constraints (15) 

with finding unknown parameter k from a minimum condition for univariate function (40) , 

i.e., global minimization problem for angular measure. 

Applying a technique of partial derivatives for sensitivity analysis in this context represents a 

quite complicated task because of mutually dependent linear constraints (15). In such cases the 

Lagrange multipliers can not be uniquely identified. For sensitivity analysis in first and second 

above-mentioned problems one can use simple instrumental approach developed in Motorin 

(2014). 

Any disturbance of marginal total vector u through the frame of consistency condition (2) 

generates some compensating changes in the elements of v, and vice versa. Clearly, some 

disturbances lead to an increasing of constrained minimum for objective function (22), while 

others contribute to decrease it. 

Along with vector-valued linear function μHλG  , NM-dimensional matrix  

)()( MNMNMNMNNMNM kkkk eμeeeλeeeeμeeλμeeλL    

is invariant under any change of parameter k. It is easy to see that its element nml  can be 

considered as a coefficient of the constrained minimum’s sensitivity under impact of the 

simultaneous increasing un and vm by the same small value . Thus, to decrease the minimum  

)(f),(f k vu  a small scalar  is to be chosen with the sign reversed from the sign of nml . 

In this context the larger absolute values of matrix L’s elements are of great interest. Let nml  

be an element with the largest absolute value of any one in matrix L. Then the best strategy for a 

local enhancing of constrained minimum is to disturb un and vm by the same small value 

)sgn( nml  where  > 0 and sgn() is a signum function. 

Further, let 0l  and 0l  be a maximal and a minimal elements of L respectively. Then 

the best two-component strategy for a local enhancing  of constrained minimum at the fixed 

grand total veueX MNσ   is to decrease the elements of u and v corresponding to l  by – and 

to increase the elements of u and v corresponding to l  by  simultaneously.  

In general, total sensitivity effect is formulated as 
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vuvuvu ΔμλΔvuΔvΔuΔΔ   )()()( ,f,f,f ,                        (43) 

where vectors uΔ  and vΔ  are exogenous disturbances for u and v respectively satisfying the 

consistency condition ΔXvu ΔeΔe σMN  . To express the right-hand side of (43) in matrix L 

terms it is necessary to consider two cases, namely, 0ΔXσ  and 0ΔXσ . 

The disturbances uΔ  and vΔ  with zero sums 0 ΔXvu ΔeΔe σMN  play an important role in 

statistical practice. They entail the redistributions of u’s and v’s components while the grand total 

ΔXX σσ   is being fixed. It is easy to see from (43) that the total redistribution effect depends on 

the marginal totals of matrix L and is estimated by 

vuvuΔXvu LΔeLeΔΔeμeλΔΔΔ NMMN NM
σ   11

0, )()()(f .          (44) 

Here the first summand implies that in the total effect calculation an each value n)( uΔ  is 

uniformly distributed among M components of vΔ  and generates M elementary effects, sum of 

which is proportional to a row marginal total n for L divided by M. By analogy, the second 

summand in (44) implies that an each value m)( vΔ  is uniformly distributed among N components 

of uΔ  and generates N simple effects, sum of which is proportional to a column marginal total m 

for L divided by N.  

On the other hand, the bilinear function of disturbances vuLΔΔ  can be transformed as 

follows: 

)()()()( vuΔXvuvuvuvu ΔμλΔΔμeΔΔeλΔΔμeeλΔLΔΔ  σNMNM . 

Hence, the total sensitivity effect may be represented as  

vu
ΔX

vuΔXvu LΔΔΔμλΔΔΔ 
σ

σ
1

0, )(f                                (45) 

where the disturbance grand total ΔXσ  is assumed to be nonzero. Recall, that in contrast to (45) 

formula (44) is well defined only for the redistribution case 0ΔXσ . 

Sensitivity analysis in the third above-mentioned problem can not be implemented within 

described approach. However, since the solutions of second and third problems are rather close to 

each other, the sensitivity analysis results for global minimization of homothetic measure may be 

delivered to global minimization of angular measure without a significant loss of accuracy. 

13. Numerical examples and concluding remarks 

Consider the Eurostat input–output data set given in “Box 14.2: RAS procedure” (see Eurostat, 

2008, p. 452) for compiling several numerical examples. The 34-dimensional initial matrix A 
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combines the entries in intersections of the columns “Agriculture”, “Industry”, “Services”, “Final 

d.” with the rows “Agriculture”, “Industry”, “Services” in “Table 1: Input-output data for year 

0”. Note that all the elements of this matrix are nonzero. The row marginal total vector u of 

dimension 31 is the proper part of the column “Output” in “Table 2: Input-output data for year 

1”, and the column marginal total vector v  of dimension 14 involves the proper entries of the 

row “Total” in the near-mentioned data source.  

Initial matrix A and marginal totals u, v  are presented in the left half of Table 1. The first 

numerical example is to handle the data set available by RAS method with iterative processes (5) 

or (6) and by methods (38), (39) and (41), (42) proposed to solve the constrained minimization 

problem for homothetic and angular measures (22), (15) and (16), (15) – briefly, by HOM and 

ANG methods respectively. The computation results at NMNMNMNM eEeEW   are grouped in 

the right half of Table 1 for RAS method and in Table 1a for HOM and ANG methods; they seem 

to be very similar among themselves. 

Table 1. Initial matrix A with nonzero elements and RAS results for its updating 

 A     Au  u  RAS X     Xu  u  
 20.00 34.00 10.00 36.00 100.00 94.78  17.94 32.77 9.76 34.31 94.78 94.78 

 20.00 152.00 40.00 188.00 400.00 412.86  19.36 158.08 42.12 193.30 412.86 412.86

 10.00 72.00 20.00 98.00 200.00 212.68  9.98 77.17 21.70 103.84 212.68 212.68

Av  50.00 258.00 70.00 322.00 700.00  Xv 47.28 268.02 73.58 331.44 720.32  

v  47.28 268.02 73.58 331.44  720.32 v 47.28 268.02 73.58 331.44  720.32

Table 1a. HOM and ANG results for updating of data set from Table 1 

HOM X     Xu  u  ANG X     Xu  u  
 18.35 32.41 10.03 33.99 94.78 94.78  18.33 32.41 10.04 34.00 94.78 94.78 

 19.07 158.82 42.60 192.37 412.86 412.86  19.08 158.81 42.58 192.40 412.86 412.86

 9.86 76.79 20.95 105.08 212.68 212.68  9.87 76.80 20.96 105.04 212.68 212.68

Xv  47.28 268.02 73.58 331.44 720.32  Xv 47.28 268.02 73.58 331.44 720.32  

v  47.28 268.02 73.58 331.44  720.32 v 47.28 268.02 73.58 331.44  720.32

Nevertheless, HOM and ANG methods demonstrate the stable 5-percentage advantage 

over RAS method both in homothetic measure of matrix similarity (13) and in angular measure 

(14) as follows: 

RASδ = 0.0549,          HOMδ = 0.0522,          ANGδ = 0.0522,           RASHOM δδ = 95.10%; 

RAS
qe = 3.1161,          HOM

qe = 2.9677,         ANG
qe = 2.9675,           RASANG

qeqe  = 95.23%. 

The next numerical example is assigned to test the methods’ response to zero elements in the 

initial matrix. So let us disturb one element of our data set, say (3, 1), by putting it equal to zero 
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for years 0 and 1. After recalculation of the marginal totals we get the data set in the left half of 

Table 2. 

The results of computations are collected in the right half of Table 2 for RAS method and in 

Table 2a for HOM and ANG methods; as earlier, they seem to be very similar among themselves. 

Table 2. Initial matrix A with zero element and RAS results for its updating 

 A     Au  u  RAS X     Xu  u  
 20.00 34.00 10.00 36.00 100.00 94.78  18.02 32.74 9.75 34.27 94.78 94.78 

 20.00 152.00 40.00 188.00 400.00 412.86  19.46 158.05 42.11 193.25 412.86 412.86

 0.00 72.00 20.00 98.00 190.00 202.88  0.00 77.23 21.72 103.92 202.88 202.88

Av  40.00 258.00 70.00 322.00 690.00  Xv 37.48 268.02 73.58 331.44 710.52  

v  37.48 268.02 73.58 331.44  710.52 v 37.48 268.02 73.58 331.44  710.52

Table 2a. HOM and ANG results for updating of data set from Table 2 

HOM X     Xu  u  ANG X     Xu  u  
 18.36 32.40 10.04 33.98 94.78 94.78  18.35 32.40 10.05 33.98 94.78 94.78 

 19.12 158.80 42.58 192.37 412.86 412.86  19.13 158.78 42.55 192.39 412.86 412.86

 0.00 76.82 20.96 105.10 202.88 202.88  0.00 76.84 20.98 105.07 202.88 202.88

Xv  37.48 268.02 73.58 331.44 710.52  Xv 37.48 268.02 73.58 331.44 710.52  

v  37.48 268.02 73.58 331.44  710.52 v 37.48 268.02 73.58 331.44  710.52

Again, HOM and ANG methods still keep on the 5-percentage advantage over RAS method 

both in homothetic and angular measures as follows: 

RASδ = 0.0543,          HOMδ = 0.0516,          ANGδ = 0.0516,           RASHOM δδ = 95.04%; 

RAS
qe = 3.0805,          HOM

qe = 2.9291,         ANG
qe = 2.9286,           RASANG

qeqe  = 95.07%. 

An advantage of HOM and ANG methods observed here is not so impressive because of 

small number of “free” variables NM – (N + M) in our numerical examples. However, if the 

dimensions of updating matrix tend to grow, then this advantage rapidly increases. At the 

dimensions more than 37 (73) and 45 (54) a total amount of free variables starts to exceed 

total number of RAS variables, so flexibility of HOM and ANG methods substantially grows. 

Computational experiments with 1520-dimensional matrices indicates that HOM and ANG 

methods seem to be almost twice more effective than RAS in the sense of homothetic measure 

(13) and angular measure (14). 

As it is well-known, “… RAS can only handle non-negative matrices, which limits its 

application to SUTs that often contain negative entries…” – see Temurshoev et al. (2011, p. 92). 

So the final numerical example is assigned to test the methods’ response to negative elements in 

the initial matrix. Let us disturb three elements of our data set, say (1,3), (3, 1) and (3,3), by 

reversing their sign for years 0 and 1. After proper recalculation of the marginal totals we obtain 
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the data set in the left half of Table 3. 

The results of computations are grouped in the right half of Table 3 for RAS method and in 

Table 3a for HOM and ANG methods; now they demonstrate wide differences in the elements of 

three target matrices calculated, especially in x13, x23, x24 and x33 . 

Table 3. Initial matrix A with zero element and RAS results for its updating 

 A     Au  u  RAS X     Xu  u  
 20.00 34.00 -10.00 36.00 80.00 74.50  17.09 31.06 -6.18 32.53 74.50 74.50 

 20.00 152.00 40.00 188.00 400.00 412.86  20.13 163.54 29.12 200.07 412.86 412.86

 -10.00 72.00 -20.00 98.00 140.00 148.92  -9.54 73.42 -13.80 98.84 148.92 148.92

Av  30.00 258.00 10.00 322.00 620.00  Xv 27.68 268.02 9.14 331.44 636.28  

v  27.68 268.02 9.14 331.44  636.28 v 27.68 268.02 9.14 331.44  636.28

Table 3a. HOM and ANG results for updating of data set from Table 3 

HOM X     Xu  u  ANG X     Xu  u  
 18.55 32.30 -10.21 33.87 74.50 74.50  18.56 32.31 -10.26 33.89 74.50 74.50 

 19.27 159.99 39.34 194.26 412.86 412.86  19.30 159.91 39.47 194.18 412.86 412.86

 -10.13 75.73 -19.99 103.31 148.92 148.92  -10.18 75.80 -20.07 103.37 148.92 148.92

Xv  27.68 268.02 9.14 331.44 636.28  Xv 27.68 268.02 9.14 331.44 636.28  

v  27.68 268.02 9.14 331.44  636.28 v 27.68 268.02 9.14 331.44  636.28

An advantage of HOM and ANG methods in this case seems to be overwhelming. Indeed, 

the received estimates of homothetic and angular measures are  

RASδ = 0.1453,          HOMδ = 0.0438,          ANGδ = 0.0438,           RASHOM δδ = 30.14%; 

RAS
qe = 9.1437,          HOM

qe = 2.5102,         ANG
qe = 2.5081,           RASANG

qeqe  = 27.43%. 

Thus, one can conclude that HOM and ANG methods are especially effective under the 

complicated circumstances because of its immanent flexibility. In practice the proposed GLS-

based methods allow to generate much more compact distributions of the multiplicative model’s 

factors in comparison with RAS method. 
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