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In recent years we have witnessed many papers using Social Network Analysis, relying on methods 

of Graph Theory, in order to explore and evaluate input-output matrices. This has enabled the 

introduction of new tools for the input-output analysis such as measures of centrality of the nodes 

(sectors) of a graph; identification and evaluation of main paths who spread economic impulses 

within the industrial network; cohesion of economic networks, and other measures that help to 

know the characteristics of individual branches, groups of branches, and finally the topology of an 

inter-industrial network as a whole. However, some of these measures face problems of 

information loss due to the use of algorithms from graph theory that usually cannot cope with 

asymmetric information inherent in the inter industry tables, so the analysts tend to filter, 

dichotomize or symmetrize the input-output matrices. 

 

To tackle those limitations, in this article it is shown how to encode the input-output matrices in a 

complex numbers space. Each entry of the data table is recorded as a complex number, i.e. with 

two dimensions; one axis (real) for inputs and the other (imaginary) for outputs. Stated in graph 

theory terms, any node (sector) is linked to the others by two arcs, one for purchases and other for 

sales. 

 

As a next step, the complex numbers matrix is rotated in order to get its conjugate, so it has been 

constructed a Hermitian matrix inserted in a Hilbert Space. This construction lead to a metrizable 

and separable space, so it is homeomorphic to a subspace of the Hilbert Cube. Every Hermitian 

matrix is a normal matrix. The finite-dimensional spectral theorem says that any Hermitian matrix 

can be diagonalized by a unitary matrix, and that the resulting diagonal matrix has only real entries. 

This implies that all eigenvalues of a Hermitian matrix A are real, and that A has n linearly 

independent eigenvectors. Moreover, it is possible to find an orthonormal basis of 
nC consisting 

of n eigenvectors of A. Also, the matrix A can be written as a linear combination of orthogonal 

paired projectors, i.e. spectrally decomposed. The level or intensity of purchases and sales is 

deployed in the spectrum (set of characteristic values) and its associated eigenvectors show 

subgroups of related economic sectors through its commercial ties with the most influential sector 

of each group. This allows interpretation of the system beyond the main eigenpair. In fact, an 

interpretation for the totality of eigenvalues and associated eigenvectors is achieved. An extension 

of the methodology give us a set of clusters for the economy.  

 

This paper is organized in four parts. The first one provides an introduction to the asymmetry issue; 

in a second part the methodology is developed; in the third part we show an application to the 

Mexican economy; the fourth part is devoted to some remarks and final considerations 

 

Keywords: Input-Output Matrix, Hilbert Space, Complex Numbers, Asymmetry, Influential 

Sectors, Bilateral Trade. 
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Introduction. 

 

The approach to the input-output tables (IOT) through graph theory and social networks analysis 

starts with Hubbell (1965) using indicators that were originally developed in the field of sociology 

during the fifties of the last century Bavelas (1948), Harary and Norman (1953). Applications to 

economics of these tools, with relative autonomy, were developed by French researchers since the 

late sixties and until 1990, Ponsard (1969), Lantner (1972), Gazon (1976), Auray, Duru, Mougeot 

(1977). More recently, Spanish researchers driven by Morillas (1983), Garcia Perez (1999), García 

Muñiz (2006), Garcia and Ramos (2003), nearly faded out the borders in the use of social networks 

analysis tools and input output analysis. This has enabled the introduction of new tools for the 

input-output analysis such as measures of centrality of the nodes (sectors) of a graph; identification 

and evaluation of main paths who spread economic impulses within the industrial network; 

cohesion of economic networks, and other measures that help to know the characteristics of 

individual branches, groups of branches, and finally the topology of an inter-industrial network as 

a whole. However, some of these measures face problems of information loss due to the use of 

algorithms from graph theory that usually cannot cope with asymmetric information inherent in 

the inter industry tables, so the analysts tend to filter, dichotomize or symmetrize the input-output 

matrices (often not knowing it!, due to the usage of software “ready to use”). 

Asymmetry is a fact that occurs in many phenomena in social life and nature. It refers to the 

circumstance in which relationships between pairs of objects occur unevenly. One case, evident in 

the economic analysis, is the foreign trade between countries where it is common to find exports 

and imports between countries, in which many of them have a very large trade deficit. There are 

other economic phenomena such as income distribution, size of business, labor absorption 

capacity, and many others that are characterized by great asymmetry. The asymmetry is embedded 

in the information we collect to analyze a particular discipline.  

In the traditional economic input-output analysis, the metric characterization of their tables is not 

analyzed, i.e., it is assumed that they are Euclidean; and there are no questions about the asymmetry 

in the relations described in these tables. However, if Social Networks Analysis and Multivariate 

Statistics are going to be used as tools for studying economic input out tables, as we will see later, 

there is no way but analyze explicitly  the asymmetry of the data Solis and Garcia (2009). 

There are several ways to cope with asymmetric relationships, as will be apparent in the next 

paragraphs, but we decided to encode the input-output matrices in a complex numbers space due 

to the fact that: a) We can treat asymmetry without loss of information derived of pre-processing 

the input-output matrices through its normalization (vertically or horizontally), filtering or 

dichotomization; b) Complex Eigenanalysis will reveal the structural characteristics of the input-

output matrices, allowing us to interpret the whole spectrum (eigenvalues) and associated 

eigenvectors, beyond the practice of many economists that only interpret the leading eigenvalue 

and its associated eigenvector; c) We will contribute to overcome the limitations derived from the 

use of two different models (Leontief and Gosh) for studying allocation and production of goods 

and services within the interindustrial relationships. 
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1.1 A basic framework for studying asymmetric input-output relationships. 

When it is known that data is skewed1, we can perform a decomposition of the matrix into two 

parts, one symmetrical and one asymmetrical: 

Let us define a symmetric matrix as 

 
1

S= (X+X )
2

  

 And a skew-symmetric matrix as 

1
A= (X-X )

2
 , 

Then we have a unique decomposition of X as   

X=S+A,  

Noting that 
n n

ij ij
i=1 j=1

tr(SA)= s a =0   

 So we can derive  
n n n n n n

2 2 2
ij ij ij

i=1 j=1 i=1 j=1 i=1 j=1

X = s + a     

Which could be expressed in terms of the matrix norm as 

 
2 2 2

X = S + A  

The average of  jkX  is equal to the average of  jkS  and the average of  jka  is zero, then it 

follows that 

 jk jk jkVar(x )=Var(s )+Var(a )  . 

There are two approaches to addressing this decomposition. In the first we deal with S and A 

separately, applying a method to measure and analyze the symmetric structure, and other method 

for analyzing the asymmetric structure. In a second approach, we work out with S and A 

simultaneously. In one case it is assumed that there are two parts which reflect different processes 

that can be distinguished by appropriate analysis; on the other hand, one considers the symmetric 

part and skew-symmetric part of the data to be inseparables parts of the same fundamental 

processes. The former approach was initially developed by Gower (1977), the later approach was 

developed by Escoufier and Grorud (1980). These works were seminal and a huge literature 

appeared in the following years. We shall follow the Escoufier-Grorud approach in a wider 

                                                 
1 There are several test on this subject. See Chino N. (2008) 
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framework. For an exhaustive account of those developments see the book by Saito and Yadohisa 

(2005) and the vast survey by Chino (2012). 

Originally, Escoufier and Grorud, introducing Hermitian Matrices, developed their work in order 

to generalize the Principal Components to analyze asymmetric data, however a close technique, 

Multi-Dimensional Scaling (MDS), is more flexible and a best way to expand our view of the 

asymmetry of the relations within an input-output matrix, because MDS requires an explicit 

treatment of the metric properties of the data involved in a particular study (input output analysis 

in our case). Another advantage of approaching the asymmetry via MDS is its close relationship 

with the visualization of Social Networks Analysis. Recently it has been used Multi-Dimensional 

Scaling (MDS) and Graph Layout (GL) techniques to explore matrices on a two-dimensional 

space, Borgatti S et al. (2013). One of the most robust Graph Layout algorithm is due to Kamada 

and Kawai (1989), whose final calculation formula is equivalent to a non-metric multidimensional 

scaling. 

The MDS is formally supported on two fundamental theorems due to Young and Householder 

(1938) for the case of symmetric matrices and Chino and Shiraiwa (1993) for asymmetric matrices. 

In both cases, symmetric and asymmetric (dis)similarities, those theorems provide us with 

necessary and sufficient conditions that must be fulfilled to assert that the coordinates of objects 

in a multidimensional space are real points in the Euclidean space (for symmetric data) or a 

(complex) Hilbert space. The main condition in both cases is that the data matrix must be positive 

semi definite. Although those theorems by themselves do not describe the way of determining the 

number of dimensions of the space in which the data is embedded their authors refer to a solution 

utilizing the famous Singular Value Decomposition, applied by Eckart and Young (1936) for the 

symmetric case, and the use of the generalization by Shmidt-Mirsky for the complex (asymmetric) 

case. It has to be noted that many properties of the singular value decomposition hold for the 

complex spectral decomposition. As we shall see later, the eigenvalues of a Hermitian matrix and 

their multiplicities are unique, and their corresponding eigenvectors to a multiple eigenvalue span 

a unique subspace, and the eigenvectors can be chosen as any orthonormal basis for that subspace.  

1.2 Some notes on Vertical and Horizontal Models. 

In the input-output model the basic identity which equals total demand and total supply is met by 

the addition of records per row (demand) and column (supply). These identities leaded to the 

construction of two models closely related. In specialized literature those models are known as the 

Leontief´s model (LM) and Gosh´s model (GM). The interpretations of the relationship between 

the two models has been the subject of extensive controversy2. Actually those models are two sides 

of the same coin, so modeling simultaneously horizontal identities and vertically ones is achieved 

closing to some extent the model. In this way, there is a link between the variables considered 

exogenous in each of the models. Final demand in the case of LM model and the value added in 

the case of GM model. There are several alternatives to close the models Guerra and Sancho 

(2010), however we shall follow N. Adamou (2007) approach due to the fact that he applies 

extensively a solution based on the Eigensystem of both models, and will be useful to interpret the 

                                                 
2 See, De Mesnard 2009, Dietzenbacher 1989, 1997, Miller 1989, Oosterhaven 1988, 1989, 1996 and many others. 
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Complex Eigensystem that we shall develop in the next section. In this approach, the closure of 

the models is based on the fact that for a given direct requirement and allocation  coefficient 

matrices A (LM) and B (GM) , and gross output x , one may derive the similarity transformations 
-1ˆ ˆA=xBx and 

-1ˆ ˆB=x Ax  . These transformations indicate that the requirement coefficient matrix 

at a given time of an I-O table may be transformed into the allocation coefficient matrix, and they 

change together as interindustrial transactions and gross output change. It must be stressed that 

the eigenvalues, the trace and determinants, for both matrices, are the same. 

 Whenever one has a finite dimensional vector space with two bases, there is a unique transition 

matrix translating form one space into the other. The sectoral gross output in its diagonal form is 

such a transition matrix, from value of total of production to the value of total demand. The matrix 

of direct requirement coefficients A is relative to the total value of production (vertical 

proportionality). At the same time, the matrix of direct allocation coefficients B is relative to the 

value of total demand (horizontal proportionality), while the diagonal matrix of gross output x 

provides the transition from total value of production to the total value of demand, and its inverse, 
-1x , transforms in the opposite direction. The Leontief and Gosh inverse matrices, as Adamou 

shows3, may provide the same output multiplier whenever the Leontief inverse is weighted 

appropriately by the distribution of final use and the Ghoshian inverse by the distribution of value 

added. This identical output multiplier may then be decomposed in such a way that indicates either 

the detailed impact of final use or value added. The appropriate output multipliers and their 

decomposition provide the magnitude effect of an eventual disturbance, while the eigenvalues 

indicate the impact's mode and the corresponding eigenvectors furnish the spatial directions of the 

disturbances. 

 It is interesting the interpretation of the full Eigensystem provided by N. Adamou: “In linear 

systems, eigenvalues indicate the limits of their vibrations whenever the system is disturbed by an 

outside force, while eigenvectors denote the directions of such vibrations. Positive eigenvalues 

mark potential expansion, while negative eigenvalues mark potential contraction. Complex 

eigenvalues suggest directional change… The directions of eigenvalues are given by their 

corresponding eigenvectors. All eigenvalues must be taken into account, not only the dominant 

ones.”4  

This approach does have three main features: a) the departure of the traditional estimates of the 

horizontal and vertical models which only display results on a Cartesian plane where there is no 

intrinsic causality in the graphic display but simply an interpretation from the use of two models; 

b) The interpretation of the full Eigensystem; c) A model that simultaneously take relations of  

supply and demand and whose solution allows us to clearly evaluate the functional position of that 

sector have within the economic network as a whole. 

In this paper we face the issue of vertical and horizontal models from the perspective of the 

asymmetric nature of the economics involved in the input output model, and instead of dealing 

                                                 
3 Op cit p. 5 note 16. 
4 Adamou N. unpublished paper: “Determinants and Eigensystems in Similar Input-Output Matrices: ‘Supply’ & 

‘Demand’ Driven I-O Structures of the Irish Economy” pp. 23-24. There is a internet version in www.academia.edu 
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with two models, we merge the dual direction of the interindustrial flow matrix data. To do this, 

we need to combine, into a single number, purchases and sales. This is achieved through a 

representation of the input output matrices into complex numbers. Indeed in each cell of the input-

output model can be encoded the value of the sales and simultaneously the value of the purchases. 

The sales can be the real part of a complex number, and the purchases its imaginary part. A 

complex number is not the simple addition of two numbers but a number with two dimensions. 

We shall perform a Complex Eigenanalysis, interpreting the full set of its results. 

In order to show the whole picture, in the next section we will introduce a self-contained 

introduction to Complex Eigenspectral Analysis.  

 

2. Methodology: Hilbert Spaces, complex Hermitian matrices and spectral analysis of 

adjacent complex Hermitian matrices. 

 

2.1. Notation and basic definitions. 

 

Hilbert Spaces. 
 

Let a and b be two real numbers and i = 1- the imaginary unit. A complex number z can 

be represented in algebraic form (or binomial) as z = a + bi and its exponential form as 

z = a + bi = zei                                                     (1) 

Where a = Re(z) its real part, b = Im(z) its imaginary part, 
22 b  a  z  the module and                 

= 
z

 a 
cosar its argument5. We represent by  the complex numbers field. 

 

 The conjugate of z is the complex number bi - a  z   and for any z, z1 and z2  , it does 

occur that 

                                                         z +  z = 2Re (z)                                                        (2)              

z =  z si y solo si z   (3) 


)  (i

2121
21ezz  zz


                                                   (4) 

 

   z  z = 
2

z                                                                 (5) 

 

2121 z  z   zz                                                           (6) 

  

                                                 

5 In other manuals it is frequent to calculate the argument  of z as
a

b
artg    , as well as to use the polar form of z = 


z .  
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From now on, unless otherwise indicated, all numbers will be complex. Let us consider the 

vector field n,in a way that any of its elements x  represent a column vector whose components  

xij  = 1, 2, ...., n are complex. Matrices will be denoted by upper-case roman letters and their 

elements aij by lower case letters de la. j represents  the j-tuple eigenvalue of a matrix. The 

expression 
t

x  indicates the transposed vector of x  (row vector) and 
*

x  represents the complex 

transposed vector, i.e the conjugate transposed of x . 

Let us define the outer product of two vectors x  e y  n as follows: 

   

yxyxyx

yxyxyx

yxyxyx

    y  x

nn2n1n

n22212

n12111

*




























                                (7) 

And also the inner product of two vectors x  e y  n as a bilinear6 form in that vector 

space, such as: 

 

(8) 

 

From now on, the vector module xn that we notate as x  is defined as: 





n

1  i

2

ix    xx    x                                                     (9) 

With the inner product of two vectors and the norm of a vector defined in that way, we can 

say that the vector space n is a complete Hilbert Space7. 

 

Besides, x , y , z n  fulfill the following properties:   

   0  xx    And 0  xx    iff  x  = 0                                 (10)   

 xy  yx                                                              (11) 

0  y0  0x                                                           (12) 

               It is true that yx   yx   

                                                 
6 Given a vectorial space X, it is said that a function f defined in X is linear if for any couple of vectors u, v of X 

and for any scalar pair ,    it is true that f(u + v) = f(u)+f(v); and it is said that f is a bilinear function or 

linear-conjugated if it happens that f(αu+βv) = αf(u) + βf(v)    

 
7 Es It is complete because the Condition of Cauchy is verified that says that all succession of Cauchy of vectors 

 2 nx , x ,,     , x ,.........1
 is convergent.  





n

1 k 

kk

*

y x    y x   yx
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                                          And also that yx   yx                                           (13) 

zy  zx   zyx                                                  (14) 

 

 On the other hand, the following three identities are verified in this Hilbert Space: 

 Cauchy-Schwarz Inequality: 

       x , y n and holds y . x   yx                                (15) 

       The equality is true when   y   with    x    

 

 Triangle Inequality: 

 x , y n happens that y  x    y  x                                (16) 

With equality when   y   with    x     

 

 Bessel’s Inequality: 

For any vector x   and any set of an orthonormal8 sequence { n21 x .......,  ,x  ,x }, it is 

true that  

2
2n

1 k 

k  x    e  x 


                                                    (17) 

 

 Parseval’s Identity: 

For any vector x   and any complete9 orthonormal vector basis { n21 e .......,  ,e  ,e },  it 

is true that  

2
2n

1 k 

k  x    e  x 


                                                    (18) 

 This is really the Pythagorean Theorem for inner product spaces. 

 

Hermite Matrices. 

 

                                                 

8 Two vectors x  and y  are orthogonal if happens that 0  yx   and often is written as yx  . A group of vectors 

is said that it is orthogonal when the vectors are orthogonal two at two.  If it also happens that all the vectors of the 

group are unitary, i.e. , x = 1, then, it is said that the set is orthonormal. This condition can also be expressed as 












    y x  si   0 

 y x  si    1 
  

ij
  yx . 

9 An   orthonormal family of vectors {x1, x2, ......., xn}  of  H  is  complete if happens that n = dimH. In this case, it is 

a base called orthonormal. 
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In a Hilbert Space , any continuous linear mapping T:  ----->  is an operator10. In 

particular,  is the identity operator, 0 the zero operator,  the scaling operator. It can be shown 

that for any operador T, there is one and only one continuous linear mapping T*:   ----->  such 

that for every pair of elements x, y , it is true that yTx  yTx * . This new operator T* is 

named adjoint operator of T. When T * = T we say that this is a Hermite operator (or Hermitian). 

Under these conditions, a square matrix of complex numbers H is said to be a Hermitian matrix, if 

verifies that: 

H* = H                                                      (19) 

A Hermitian Matrix is equal to its conjugate11transpose. In this case, the diagonal elements 

must be real numbers and jiij h  h   i, j. By its very definition, we can say that every Hermitian 

matrix is normal since H*H = HH*. 

  

  A square matrix with complex entries, i.e. An, is said to be skew-

Hermitian or antihermitian if its conjugate transpose is equal to its negative. That is, the 

matrix A is skew-Hermitian if it satisfies the relation 

A* = -A.                                                                          (20) 

 Any matrix M can be decomposed as follows: 

   **         MM
2

1
MM

2

1
M                                        (21) 

Where the first term is a hermitian matrix and the second antihermitian. 

 

 For any vector space X and any operator defined in X, we say that a complex number  is 

an eigenvalue, an eigenvalue or a characteristic value of T if there exists a nonzero vector xX 

such that: 

Tx = x                                                               (22) 

 The vector x is called eigenvector, or characteristic vector of T associated to the 

eigenvalue . The set V = {vX / Tx = x} is a vector sub-space called eigenspace for the 

eigenvalue  whose dimension is the multiplicity of . The set of distinct eigenvalues, denoted by 

(A), is called spectrum of A and can be proved that X is the orthonormal sum of the eigenspaces 

V. 

 In the particular case of a Hermitian matrix H, being a normal matrix always can be 

transformed to a diagonal matrix, i.e., it is similar to a diagonal matrix D ( a unary matrix X such 

as X*HX = D). That is, for a normal matrix the eigenvalues associated to distinct eigenvalues 

constitute an orthogonal system.    

 

 

2.2. Properties and interpretation of the values and eigenvectors of a Hermitian matrix.        

 

 Let us recapitulate some features of Hermitian matrices that will be useful in this paper: 

 

 All their eigenvalues are real numbers. 

                                                 
10 Ver S. K. Berberian (1970, pp. 129-130).  

11 This condition is equivalent to Hyx  yHx    x, y.  

http://en.wikipedia.org/wiki/Square_matrix
http://en.wikipedia.org/wiki/Complex_number
http://en.wikipedia.org/wiki/Conjugate_transpose
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On one hand, it is true that xxxxxHx        and in the other hand,

xxxxHxx      , then    which means that R. 

Then we can order the absolute value of the eigenvalues 

1= maxk > 2> .......... > n= mink k 

 All their eigenvalues are simple due to the fact that H does have maximum12rank and 

it is diagonalizable. Therefore, the dimension of each subspace is 1, which means that 

for each eigenvalue there is just an eigenvector. 

 

 We can choose an orthonormal basis, with eigenvectors associated to different 

eigenvalues: 

   kllk xx                                              (23) 

This result is also valid in the case of arbitrary rotations: 

 e   e  ee  ee klkllklkk φi(φφi(φiφiφ-iφiφ

kl

)

lk

)

lklk xxxxxx 
     (24) 

 The spectral decomposition theorem holds that:  





n

1 k 

kH P  k                                                       (25) 

 Where 



















n1n1n

n111

xxxx

xxxx







  Pk   are orthogonal projectors such as I
n

1k




kP ,  

*

kk P  P   and that k

2

k P  P  . 

 

 Chino asserts on this decomposition the following: “The spectral decomposition of a 

Hermitian Matrix (or more generally, normal matrix) is nothing but a special case of the Fourier 

expansion. Moreover, each eigenvalue appearing in the expansion is considered as coordinate in 

an inner product space (or pre-Hilbert Space) spanned by the Hermitian matrix…”13. In our 

context, the eigenvectors elements are ordered, according to their importance, for each member 

of a sub-group. In addition, each member has, for each sector of the eigenspace in the spectral 

representation, a different importance. This ratio depends on the relationship with the respective 

anchor of the subgroup. 

 

 The square sum of the eigenvalues is the data variance. 

As it happens that14      



n

1k

2

k

2
H     , then if we add up to an index m  n and 

divide it by the sum of all
2

k , the result will show us the variance included by the first 

m sub-spaces. 

 

                                                 
12 Meyer, C. D. (2000, p. 548). 
13 Chino N (1998, note 7) 
14 Hoser, B. (2004, p. 45) or Chino (1998, p. 58) 
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For a complex Hermitian matrix whose trace is zero, some eigenvalues have to be 

negative as H = UDU-1, then 
 


n

1k

n

1k

kkk 0h)H(tr            . 

 A graph with star's form has two characteristic same values in magnitude, but 

opposed sign15: 

(B) = {+1, -2}                                           (26) 

With 1 = 2. 

 

 Within the social network analysis Seary and Richards (2000, section F), Chino 

(1998) and Barnett and Rice (1985) provide some suggestions on the interpretation of 

negative eigenvalues. 

 A star-shaped graph has two eigenvectors with equal magnitudes but opposite 

direction. Also can be seen as eigenvectors belonging to two equal eigenvalues in 

absolute magnitude but differ by    in their phase. 

 Automatic determination of clusters, Hoser and Schroder (2007). The eigenvectors 

matrix associated with positive characteristic values of the Hermitian matrix may 

generate, by the inner product operation, a matrix of n x n size, whose diagonal 

elements give us the norm of each row of it. In addition, the minimum distance between 

two vertices, can be seen as the maximum of the real part of the inner product between 

the two; thus, the maximum of the real part of the elements of the columns identify part 

of a cluster (when a vertex not belong to any cluster, the maximum corresponds to the 

main diagonal of the matrix). 

 

2.3. Construction of an adjacent complex Hermitian matrix.  
 

 From now on we will consider a valued and directed graph G= {N, E} where N is the set 

of vertices members and E the set of connections, links or relationships between different 

members. The relationship of each node are excludes himself. 

 

 We followed16 the construction of an adjacent matrix H, associated to this graph, in two 

steps: 

 

1. For each vertex we consider the number of links m that start from k and also the number 

of p connections leading to that node k. A complex square matrix A defined by adjacency  

is then constructed: 

akl = m + ip 

 

So, it is assured that lkkl a i  a  . 

 

2. To get the Hermitian matrix H, we rotate A multiplying, each one of its members, by 4


i-

e    

i.e.: 

                                                 
15 Ver Meyer, C. D. (2000, p. 555) 
16 Hoser, B. and Geyer-Schutz, A. (2005) 
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4




i-

Ae  H  

 Demonstration/ 

 Let  i

kl re  a , then
 -i

kllk ire    a i  a . 

 akk = 0 non reflexivity 

 Let )  i(iii

klkl re  ere  ea  h , then 

       
)

)








  2
i(

i(2
i

ii-i

lklk re  ree  eire  ea  h     

 As it is Hermitian lkkl h   h  , so 

)
)




  2
i(-

i( re  re  

Or,    


   - 
2

-     

And we conclude that  
4

-  


   

 

3. Under this similarity transformation, Meyer (2000, p. 256) shows that the independent 

features of the communication model are maintained, i.e., there is no loss of information.  

 

This H construction is related to Chino´s construction17 of HC by
C

2
H  = H

2
, with H  

representing the complex conjugated matrix of HH      

Depending on the number of relationships between different vertices, the following table 

shows how would look the elements of this new matrix H, once rotation has been performed: 

 

Relationships akl = m + ip hkl = mr + ipr 

No self- reference 

k  l   >   l  k 

k  l   <   l  k 

k  l   =   l  k 

akk = 0 

m > p 

m < p 

m = p 

hkk = 0 

pr < 0 

pr > 0 

pr = 0, mr > 0 

 

  

It is, after this rotation, the diagonal elements of H remain 0. If we consider two vertices k and l 

and if it happens that there is more flow from k to l, this element klh  has a negative imaginary part. 

In the opposite case, the considered element klh  has a positive imaginary part. When both flows 

are equal, the klh  element is a positive real number. 

 

We should note that in this new standard matrix H is invariant under rotation. The absolute value, 

which is what actually measures the amount of flow exchanged does not change. 

 

Due to the rotational invariance of a system full orthonormal eigenvectors, we can improve the 

visibility of specific components of an eigenvector, applying a rotation to make real these 

                                                 
17 Hoser, B. (2005, p. 274). 
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components. For example, the Mathematica program automatically rotates the eigenvector for this 

component with the largest absolute value becoming real and positive. In this work, this element 

will be considered as the anchor or support, i.e., the most influential member of a subgroup. 

 

3. An application to the Mexican economy. 

In this study the Input Output Matrix of the Mexican economy employed is for the year 2012. This 

matrix was published by Mexico's National Institute of Statistics and Geography. The main results 

are shown for the total transactions matrix, although their spectra and phases are compared with 

domestic transactions matrix. 

The matrix considered 259 sectors, so its entire presentation is difficult; however, as will be seen 

below, the first 25 characteristic values recorded over 98 percent of the total variation in the data, 

so most of the tables and graphs shown considering between 25 and 30 sectors only. 

3.1 Solution method: SVD and Eigensystem procedures. 

As already pointed out, the solutions for a obtaining a solution to the MDS problem was developed 

for both, metric and Hilbert spaces, employing a Singular Value Decomposition; let us quote to 

Chino and Shiraiwa: “HCM (Hermitian Canonical Form, parenthesis added by me) can have some 

metric properties such as a finite-dimentional complex Hilbert space structure under a general 

condition…; however, in a practical situation, these matrices may be fallible and not necessarily 

be measured at the ratio level. Furthermore, we can neither observe nor estimate the special 

distances in a Hilbert space… in marked contrast to the distance in classical MDS. In such a case 

we must estimate them from the data. If the proximity judgments are measured at the ratio level, 

there are no missing observations, and the matrix H is positive semi-definite, we can use HCM as 

one such method. For in such a case HCM is also solved by a singular value decomposition and 

thus has a least squares (LS) property according to the Schmidt-Mirsky theorem, which is a 

generalization of the famous Eckart-Young theorem. Otherwise, we must estimate them using 

some scaling procedure.” 18 

In our case, the conditions in order to apply a SVD are met, so we had not the necessity of a scaling 

procedure; we applied  a conventional routine of the Mathematica package (version 10.01) and 

obtained the SVD, which shows the full set of eigenvalues and eigenvectors we were looking for; 

however the eigenvalues were all real and positive, due to the fact that the nonzero singular values 

of  a matrix A (real or Hermitian) are the positive square roots of the nonzero eigenvalues19 of 
*A A  (and *AA ). Alternatively, we adopted the Eigensystem routine of the package and preserved 

the signs of the eigenvalues (whose sum is equal to zero, as already showed). Our interest 

preserving the eigenvalues signs is to assess the presence of a star shapes structures, and the 

extension of the eigenvectors phases. 

3.1 Data encoding and the empirical Hermitian Matrix 

                                                 
18 See….Chino Shirawa op. cit page 46. 
19 See Meyer, op. cit. pag 555 
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The first step in this analysis consists on presenting the matrix of inter-industry flows, coded in 

complex numbers. For each vertex we consider the links m that start from k and also the number 

of p connections leading to that node k. The complex square adjacent matrix A, derived from the 

original two way data is constructed as akl = m + ip, where m is the real part of a complex number 

and ip its imaginary part. In this way, it is assured that kj lka =ia .a  .To get the Hermitian matrix H, 

we rotate A multiplying, each one of its members by 
π-i
4e . We show a sample of a small matrices 

(5 by 5) taken from original data. It must be remembered that the relationship considered is not 

reflexive, i.e.  
ii

a =0  : 

 

TABLE 1 ORIGINAL DATA 

 Sector 1 Sector 2 Sector 3 Sector 4 Sector 5 
Sector 1 0 0.032 0.33 0.004 0 
Sector 2 0.003 0 2.928 0.01 0.002 
Sector 3 0.066 6.134 0 0.184 0.044 
Sector 4 0.02 747.598 49.51 0 9.013 
Sector 5 2652.88 2287.28 0.064 84.266 0 

Source: INEGI Matriz Insumo Producto 2102 

TABLE 2 COMPLEX NUMBERS MATRIX 

0 0.032+0.003i 0.33+0.066i 0.004+0.002i 0.+2652.88i 
0.003+0.032i 0 2.928+6.134i 0.01+747.598i 0.002+2287.28i 
0.066+0.33i 6.134+2.928i 0 0.184+49.51i 0.044+0.064i 
0.02+0.004i 747.598+0.01i 49.51+0.184i 0 9.013+84.266i 
2652.88+0i 2287.28+0.002i 0.064+0.044i 84.266+9.103i 0 

  

TABLE 3 HERMITIAN MATRIX 

0 0.0247-0.02050i 0.2800-0.1866i 0.0169+0.0113i 1875.87+1875.87i 
0.0247+0.02050i 0 6.4078+2.2669i 528.639+528.625i 1617.35+1617.35i 
0.2800+0.1866i 6.4078-2.2669i 0 35.139+34.8787i 0.0763+0.0141i 
0.0169-0.0113i 528.639-528.625i 35.139-34.8787i 0 65.9582+53.2119i 

1875.87-1875.87i 1617.35-1617.35i 0.0763-0.0141i 65.9582-53.2119i 0 

3.2 Spectrum.  

First, consider the spectrum generated by the eigenvalues of the Hermitian matrix. Ordering its 

eigenvalues high to low and drawing the spectrum in Figure No. 1 we can see that the data show 

a certain symmetry. A better display shown in Figure No. 2, which is obtained by arranging 

eigenvalues, ordered by absolute value and keeping their original sign, where we can see the 

symmetry of the spectrum. In this figure, pairs of eigenvalues  have similar magnitude and opposite 

sign. This indicates that the network tends a star shape with multiple centers. The most important 

are those that explain the greater variation in the data, as discussed below. 

To the extent that transactions between nodes in the periphery of a star-shaped graph form are 

perturbed, the symmetry of its eigenvalues is lost. Yet, it is possible to identify whether the 
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structure tends to form a star, as higher eigenvalues of the Hermitian matrix would be relatively 

close and they will have opposite signs and absolute magnitudes; the eigenvectors of these leading 

roots would have the same characteristics, that is, the major components in both vectors would 

occupy the same position and their phases would be zero. The distribution of these eigenvector 

components would show significantly higher anchors than that all other components in absolute 

value. In our case, the presence of several stars shows us that some few key sectors dominate the 

entire economy. When there are key sectors in the network, you can properly speak of a hierarchy, 

i.e., a tree whose structure, when considered from the viewpoint of a graph, is analogous to the 

geometry of the flakes of snow. 

Figure 1        Figure 2 

      

 

Observing the eigenvalues spectrum, we can assess the variance of the Eigensystem. In Figure 3 

the cumulative variation of the spectrum is shown, where we can see that the first 25 eigenvalues 

explain more than 98 % of the total variance of the system. This result shows that the Mexican 

economy is highly concentrated in certain branches, which will be identified through the 

eigenvectors obtained from the Hermitian matrix. 
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Figure 3. Accumulated Variance 

 

  3.3 Eigenvectors. 

The components of the eigenvectors are presented in absolute numbers, together with its arguments 

(phases) that have been rotated so that its largest absolute value (anchor) has a zero-phase 

component and the other phases are related to that anchor. This allows easy identification of the 

presence of components of the vectors having the same anchor, on the one hand, and the pattern 

of directions of flows of purchases and sales, on the other. 

In the following 5 eigenvectors can be seen between 25 and 32 of its components, ordered from 

largest to smallest components. As shown in tables 4, 5 and 6, the highest values of the 

characteristic vectors have zero phase. In the first case, the anchor correspond to the branch of 

“Production of Petroleum and coal”, which is the leading sector of the whole economy, followed 

by a hierarchy of the 31 main sectors of the Mexican economy. As can be seen from this tables, 

the first ranked members of subspaces 1 and 2 are the suggesting centers of star-like patterns. The 

distribution in the first subspace is a little bit more uniform distribution than the second. This 

implies a better connected flow pattern in the first sub space. The rapid decrease of figures in the 

second eigenvector distribution on the other hand, indicates a strong star-like pattern (around the 

Petroleum and coke production), giving a more specialized set of sectors. The distribution of the 

phase in the two subspaces is given in Figures 4 and 5, as can be seen those is such that the first 

phase only varies between 
1

4
  and

1

4
 , while the second between   and  . This confirm 

that the flows between sectors in the first vector is better balanced than those in the second.  
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Table 4. Leading Eigenvectors 
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A representation in a complex plane, given in figure 6, for the main sectors linked to the extraction 

of petroleum and coke, allow us to visualize the proximity among clients and suppliers of this 

prominent sector of the Mexican economy. In this drawing we just include a few names of the 

representative sectors. In this case we employed directly the second complex eigenvector, 

including both its real and imaginary parts. The complex plane is a geometric representation of 

the complex numbers established by the real axis and the orthogonal imaginary axis. It can be 

thought of as a modified Cartesian plane, with the real part of a complex number represented by a 

displacement along the x-axis, and the imaginary part by a displacement along the y-axis. In this 

representation the oil and gas production is the closest sector to the extraction of petroleum, 

followed by transport sectors and the production of electricity, which coincide with the information 

provided in table 4. 

 

Figure 4 First Phase

 

Figure 5 Second Phase 

 

  

http://en.wikipedia.org/wiki/Complex_numbers
http://en.wikipedia.org/wiki/Cartesian_plane
http://en.wikipedia.org/wiki/Real_part
http://en.wikipedia.org/wiki/Imaginary_part
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Figure 6. Layout of second leading Eigenvector on a Complex Plane 

 
 

 

 

 

 

 

The third and fourth subspaces, shown in table 5, revolve around the activities of the manufactures 

of parts for motor vehicles. Analysis of the subspaces generated in the rotation of the Hermitian 

matrix is analogous to that performed for the first two subspaces, namely, that the third subspace 

shows a better articulation than the fourth subspace; however, the correction of the latter, reveals 

a more accurate linkage to their suppliers and clients. When inspecting phases, shown in Figures 

7 and 8, a wide but smooth variation is observed in the fourth phase. 
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Table 5. Third and Fourth Eigenvectors 

 

Figure 7 Third Phase 
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Figure 8 Fourth Phase 

 

The sub-spaces fifth and sixth, show the associated sectors with the sector Wholesale Grocery and 

Food, whose core activity is strongly linked with the industrial foods and agricultural production. 

It also are related to construction, transport facilities and employment services. In this case we just 

report in the table 6,the sixth eigenvector, showing its 25 most prominent activities bonded with 

this trading sector; we also display its associated graph in Figure 9. It is interesting that the 

production of automobiles and trucks have a higher ranking in the real part of the eigenvector, but 

its phase shows its place at a considerable distance, so this activity is important indirectly.  

Table 6. Sixth Eigenvector: Wholesale of Groceries and Food 
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Figure 9.  Sixth Complex Eigenvector: Wholesale of Groceries and Food 

 

 

3.4 Anchors and Clusters 

Anchors 

A complex Hermitian matrix can be represented, due to its complete orthonormal eigenvector 

system, in a spectral (Fourier) representation in which each eigenvector form a subgroup that can 

be viewed as independent with respect to the economic behavior of the other relevant members of 

each subgroup. The eigenvector components are interpreted as an economic ordering induced by 

technological and market behavior of each subgroup member. In addition, each member has for 

each subgroup structure/eigenvector in the spectral representation, a different order rank. This 

ordering status depends on his relation to the respective anchor of the subgroup. In other words, 

each sector appear, in our case, 259 times (one for each eigenvector) but in different position. 
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In our application to the Mexican economy, we obtained two sets of 259 anchors, i.e.  for 

domestic and total transactions (including imports). Their contrast reveals the impact of foreign 

transactions in the entire economy. A full analysis of these estimations is out of the scope of this 

paper, and their inclusion in Table 7, below, is for demonstration purposes only. 

Table 7. Anchors for Domestic and Total Interindustrial Mexican Tables 

 

The anchors obtained for the matrix of domestic transactions are more traditional activities such 

as mining, agriculture, production of foods, production of breads, cookies and tortillas, drinks and 

some products of light manufactures as the plastic products, and works related with the industry 

of the construction. In the case of the matrix of total transactions it stands out immediately the 

production of parts for automobiles, manufactures electronic components, residential construction, 

and production of resins, synthetic fibers and chemical products, that is to say, a more modern 

industry associated to the global chains of value. 

Clusters. 

As already pointed out, the eigenvectors matrix associated with positive characteristic values of 

the Hermitian matrix may be used to generate a set of a clusters, with the additional advantage of 

being automatically estimated20. It is based on the same Eigensystem of the adjacent Hermitian 

complex we have been working with. The number of relevant clusters is determined automatically. 

Nodes are assigned to clusters using the inner product matrix nxnS calculated 

from a matrix nxlR  of the l eigenvectors as column vectors which correspond to the 

positive eigenvalues of H. It can be shown that assigning the vertices of the network to clusters 

such that a node i belongs to cluster Cl if i,Cl j i,jRe(S )=max Re(S )  a good partitioning can be found. 

Applying this methodology, we obtained three main of clusters leaded by: a) oil and gas 

production; b) manufactures of parts for motor vehicles, and c) wholesale of groceries and food. 

                                                 
20 See Hoser and Schroder op. cit pp 439-444. Methodology extended by Solis V and Garcia-P op. cit 2009 
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These clusters can be split up in finer partitions. In our work, we found up to 12 clusters which 

incorporate different technological and market structural bonds.  

The extensive treatment of this clustering procedure also escapes to the purposes of this article; 

but the outline provided give you the fundamental principles of the clusters estimation for matrices 

of input output, matrices of bilateral trade, matrices of national and social accounting, and related 

tables. 

 

4. Final Remarks 

 

The method presented in this paper has proven, empirically, to be a robust approach to economic 

analysis. The application of its tools to the Mexican economy are consistent and corroborate the 

knowledge we have about this country, and also provided us with new insights. During the seven 

years since we produce the first paper with this methodology (Solis Garcia, 2009), we have 

explored literally dozens of input output tables, bilateral trade tables and social accounting 

matrices, confirming the soundness of this approach. 

From an analytical point of view, the methodology is presented with all the theoretical study 

elements that enable new applications and extensions of the tools for input-output analysis. The 

methods developed in this paper can be extended to introduce perturbations within technologies 

and market structures, association with multiple matrices, and a tighter link to graph and 

multivariable analysis. 
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