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Abstract

The linearity of wage curves is important to answer questions such as the existence
of re-switching of techniques and reverse capital deepening. Schefold (2011)
attributes more complex forms of the wage curve to non-vanishing subdominant
eigenvalues and even though the existence of those complex curves is accepted in

theory they have not been proven to exist in real economy.

While experimenting with equilibrium computations using randomly generated
matrices, Brody (1997) noticed that the speed of convergence towards equilibrium
increased with matrix size. The relative size of the second eigenvalue with respect to
the first determines the convergence speed, so Brody conjectured that this relative
size tended to fall as a random matrix becomes larger. While this does not appear to
hold for observed direct requirements input-output matrices (Mariolis and
Tsoulfidis, 2012, Table 1, p. 6), Bidard and Schatterman (2001) proved that in a
random matrix with independently and identically distributed entries the speed of
convergence increases with the size of the matrix because the relative size of all
subdominant eigenvalues tends to zero as the matrix size approaches infinity.
Schefold (2011) then showed that zero subdominant eigenvalues imply linear wage-

profit curves for any given numeraire.
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Our concern is with actual input-output tables. We successively aggregate the BEA
US 2002 make and use tables using the NAICS codes, in order to build 176 squared
industry by industry direct requirements tables ranging in size from 403 to 15
industries. This allows us to assess the effects of the size of the matrix on
the distribution of the moduli of eigenvaluesand on their arithmetic and
geometric means. We find that the distribution of the moduli does indeed shift
downward as the size of the matrix increases, so that the average size of the moduli
of subdominant eigenvalues falls by either measure. In this particular year (2002),
as the matrix size increases the arithmetic mean seems to stabilize around 0.05
and the geometric mean around 0.02. This stabilization seems to contradict the
random matrix hypothesis, but its implications are unclear: on the one hand, input-
output matrices are not random; on the other hand, the random matrix hypothesis
only applies in the limit as matrix size approaches infinity. In any case, the fact that
the subdominant moduli do fall to some small level has major implications for the

analysis of relative prices and choice of technique.
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1. Introduction

The Cambridge Capital Controversies widely discussed on the 1960’s addressed a
coherent and logical critique to the neoclassical economic theory. Even though
Sraffa’s 1960 book was well accepted as a consistent and logical theory, the capital
controversy was not a strong enough argument to fulfill the revolution in the
mainstream economic theories. Joan Robinson and Samuelson argued that

reswitching and reverse capital deepening were not necessarily significant in reality.

Since then, the debate has deepened the study of the empirical relevance of those
phenomena (reswitching and reverse capital deepening) as so to give strength to the
critique. A growing body of evidence that wage profit curves were linear and even
individual price curves were linear appeared giving strength to Joan Robinson’s and
Samuelson’s sides. The works of Baldoni (1984), Salvadori and Steedman (1988),
Shaikh (1998) and Shaikh (2012), only to cite a few, make important contributions
to the evidence of the linearity of the wage-profit curve. Schefold was responsible
for a wide range of work on the mathematical field and apparently changed side on
this discussion after getting acquainted with a paper by Brédy on 1997. Schefold
and Hanh (2006) while working with random tables claim that reswitching and
reverse capital deepening happen only very rarely, making them insubstantial

counterexamples to criticize the use of the surrogate production function.

Brody (1997) initiated a series of works on the behavior of eigenvalues on direct
requirements input-output tables and its relation with the number of industries
depicted on those tables. While experimenting with equilibrium computations
using randomly generated matrices, Brédy (1997) noticed that the speed of
convergence towards equilibrium of a system depicted by a matrix increased with
it’s size. Since the relative size of the second eigenvalue with respect to the first
determines the convergence speed, Brédy claims that this relative size tends to fall
as a random matrix becomes larger. This claim got to be know as the Brddy

conjecture and a range of works both testing its validity and following up on its



economic consequences succeeded Brody’s paper. According to Brody, the economic
consequence of his finding was that the larger an economic system, the faster it

would converge to equilibrium?.

Schefold (2013) derived one of the most interesting consequences of Brody’s
conjecture by observing that if all but the dominant eigenvalues would go to zero

with size, then in larger system the wage-profit curve would be linear.

So there are two economic conclusions based on experiments on random tables in
the literature, one regarding convergence of the economic system towards
equilibrium and one regarding linearity of the wage-profit curve which have
important consequences to the capital controversies. Nonetheless, the mathematical
observation on which those two conclusions are based arises from experiments
from random tables and as we intend to show on the present work does not seem to

hold on real tables.

The present paper discusses the validity of the mathematical arguments on which

Brody and Schefold bases their findings.

Even though it is quite accepted that this is right for a certain type of non-negative
random matrices, this does not appear to hold for observed input-output matrices
(Mariolis and Tsoulfidis 2012). Bidard and Schatterman (2001) proved that in a
random matrix with independently and identically distributed entries the speed of
convergence increases with the size of the matrix because the relative size of all
subdominant eigenvalues tends to zero as the matrix size approaches infinity.
Schefold (2011) also departs from a work with random tables to show that zero
subdominant eigenvalues imply linear wage curves. Ochoa (1984), Bienenfeld
(1988) and Shaikh (1998, 2012) find empirical evidence of the linearity of this
curve. Nonetheless the reason of this linearity does not necessarily is the one argued

by Schefold (2011).

To draw a conclusion between Brédy’s findings and real economies, one have to ask

the question of how liable is the assumption that real input-output tables are

1 Brody is preoccupied with the equilibrium in Leontief and Neumann’s systems.



random. Experiments from Mariolis and Tsoufildis (2010, 2012) with real input-
output tables goes against Brody’s findings leaving us with the question of what is
the structure inside real input-output tables that bring about these different results.
This paper generates 176 different aggregations for the US 2002 input output table
to compute a series of eigenvalues and fill out the curve of subdominant
eigenvalues. Previous empirical works on the subject (Mariolis and Tsoufildis (2010,
2012)) consists on only a few observations per year and per country. The
methodology here developed for filling the series between matrix sizes is a
contribution that allows us to make a series of tests to try to find out what are the
relationship between the size, distribution of coefficients and eigenvalues on real

tables.

The next section intends to analyze Br6dy conjecture and compare it to real tables.
The third section displays the empirical results on the US 2002 tables regarding the
distribution of eigenvalues according to the size of tables. Finally, concluding
remarks are presented. Furthermore methodological aspects of this work can be

found on the appendix.

2. On Brédy’s Conjecture

Brody (1997) is preoccupied with the speed of convergence to equilibrium of the
economic system. This speed would be given by the relative second eigenvalue of

the direct requirements A table.

A decomposition of v in a basis made of the eigenvectors of A shows that the speed
of convergence depends on the ratio of the first two eigenvalues in terms of
maximum modulus. According to Brody’s (1997) experiments with random
matrices, this ratio tends statistically to zero when the size of the matrix tends to
infinity. The consequence of this is that the speed of convergence of the sequence

{v} increases with the size of the matrix.



Let Anxn be the direct requirements table of an economy with N sectors. Any vector v

in R? can be written as a linear combination of the eigenvectors of table Anxn?.
V=a.X; +azx, + -+ apx, (1.1)

Where x; is the ith eigenvector of the A table. There is a particular v* with all a

coefficients in (1.1) equal to one.
vi=x1+x, + -+ xy (1.2)
For v* and A we have the following property:

A" = AT'x; + A x, + -+ AT, (1.3)

Where m is the number of iterations and 4; is the ith eigenvalue of the A table. The
Perron-Frobenius 3 theorem presented in Frobenius (1912) asserts that a
irreducible non-negative matrix have one dominant eigenvalue A, with multiplicity

one. All other eigenvalues A satisfy |1| < A,.

Since 4; > A; Vi # 1, the iterations make AT'x; be dominant over A7'x, + --- + A7'x,,,

ATt e+ Ay,

o change this — 0. The speed of this convergence depends on the
1 1 m-—-oo

number of iterations necessary for all A]* to fade away. The second eigenvalue is by
definition the higher one within those and consequently the one that takes longer to

fade away, therefore the speed of convergence depends on the subdominant relative

eigenvalue A2 / A

Brody goes on to show that there is a certain random way of defining A for which

A : o . .
2//—1 goes to zero when the size of the matrix increases in a series of random
1

2 Anx, is a non-negative full rank table since the non-basic sectors have been excluded and
sectors with same technologies have been aggregated. In our further empirical work the
430 sectors in the US 2002 table are reduced to 403 (details on the aggregation can be
found on the appendix).

3 There are two versions of the Frobenius theorem; one presented in Froebenius (1908) and
the other in Froebenius (1912), the first one refers to positive matrices. Brédy(1996) refers
to this version, but since real economy A tables have coefficients that are equal to zero the
version for non-negative tables is more adequate. The conclusion regarding the existence of
one dominant eigenvalue that is associated with the only positive real eigenvector is valid in
both versions. More on Frobenius theorem see Hawks(2013- chapter 17).



matrices, defined as having all its elements independent and uniformly distributed

between (0,1). The expected value of each ajj, E(ajj)=1/2.

The observed value of those statistics can be inferred from real tables. Departing
from the 2002 US use and make tables, made available by the Bureau of Economic
Analysis (BEA), we construct 176 direct requirements industry-by-industry A

tables*. Those 176 tables are the database for the empirical work here presented.

For the following comparison with statistics from real tables, let us use the
normalization of the random A tables presented in Bialas & Gurgul (1998) is used.,
where A*= (2/n)A, then Brédy’s random matrices expected value (E), standard
deviation (SD) and coefficient of variation (CV) as a function of the number of

sectors in the table would be respectively:

E(a;;) = n (1.4)
SD(ay;) = 1/n\/§ (1.5)
cv(a;) = E(aij)/su(a;j) =3 (1.6)

for eachi,j=1,...n.

The statistics for the 2002 US A tables are derived as following:

E(ay) =Xy 30 U/ (1.7)
ij — E(aij
SD (aij) = Xj=12i=1 (a ! (a ]))/nz (1.8)
_ E(ay)
Cv(aij) - ! /SD(aij) (19)

4 Details on the construction method and on the aggregation correspondence can be found
on the methodological Appendix. Further details such as the description of industries in
each aggregation can be made available via e-mail.



The mean, standard deviation and coefficient of variation of Brdédy’s random
matrices represented by equations 1.4 to 1.6 are plotted together with the values
calculated from the US 2002 A tables. Figure 1 and 2 represent respectively the

mean and standard deviations on A table’s coefficients by size.

Figure 1
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Standard deviations are higher on real tables than Brody expected while the means
are smaller. Also the increasing distance between those two curves shows that the

coefficient of variation is increasing on size, as shown in figure 2 bellow.

Figure 2
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These figures seem to show that Brédy’s hypothesis of uniform distributions of the
coefficients was not precise in describing how coefficients are distributed on real
tables. There is no intent here to attack the possibility of constructing random
matrices neither on the results that Brody infers on analyzing them. Nonetheless,
the possibility of applying Brédy’s findings on random matrices to real Input-Output
data lacks empirical support. The problem with Brédy’s hypothesis seems to be with
the uniform assumption and with the assumption that the distribution of the

coefficients does not change with size.

Molnar and Simonovits (1998) expand this result for stochastic matrices to prove
that the convergence is also faster for larger matrices. Nonetheless it is still not quite
clear if the randomness that is being imposed on those matrices is leaving aside
some important feature of real input-output tables. Given the results until now

found from real tables this appears to be the case.

Gurgul and Wéjtowicz (2015) argue in this direction, that Brédy’s results apply to
random matrices but that it doesn’t bring light into the discussion about real tables.
According to them, the speed of convergence of the same system should be invariant
to size. So they argue that Brody’s conjecture do not hold in terms of real economy if

the ratio of eigenvalues is a function of the number of industries.

In this sense the economic meaning of Brédy’s finding is more tangible in Schefold’s
work, where he discusses what happens to eigenvalues when size increases and
what are the consequences of this increase regarding technical choices and linearity

of profit wage curve.

Gurgul and Woéjtowicz (2015) experiment with random matrices derived from a qui-

squared distribution and find a different result than the one that emerges from the

distribution used by Broédy. This proves that the ratio%depends on the way
1

randomness is defined and on the kind of distribution restriction that is imposed on
the tables. Also they show that if the flow is the same, i.e., if we are to disaggregate a

table of a unique economy fixing the total output, it follows that for a random i.i.d.,

the ratio AZ/Al grows because it will be positively dependent on the size.



This yields to the fact that even though Brédy’s conjecture is quite interesting
mathematically, one should first look at real tables and see what kind of structure
they have in terms of distributions before running experiments. Brédy brought light
to the fact that looking at eigenvalues on I-O tables might be interesting in
understanding the economy, but the structure should come from real data and not

from a decision on how randomness can be imposed in this data.

3. Empirical results on Eigenvalues and distributions

The empirical contributions of this work are of two orders. Firstly we want to
address Brédy’s conjecture regarding the ratio /12/ ), across tables and discuss the

economic meaning of this conjecture while looking at real tables. Secondly we will
address the empirical evidence on distribution of eigenvalues within one table and

the limiting shape that this distribution approach with size.

Only a few empirical works look at the values of '12//11 ratio. Mariolis and Tsoufildis

(2010) present results for Japan over the years for tables at size 21 and 100
industries. On the first two years analyzed (1980 and 1985) the value of the ratio is
smaller on the 100 industries table, while for all the other years (1990, 1995, 2000
and 2005) the ratio increases when one moves from 21 industries to 100 industries.
Mariolis and Tsoufildis (2012) addresses Brédy’s conjecture by looking at the 1997
and 2002 US tables. The results found by them are presented on table one bellow.
According to them, “although Ay, for all aggregations are near each other (...), pj,
increases with the size of the matrices casting doubt on Brédy’s conjecture”

(Mariolis and Tsoulfildis 2012, pg. 6). - explain their notation
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Table 1 The moduli of the second and third eigenvalues, and the average mean of the

moduli of the non-dominant eigenvalues

1997 2002

n 12 129 | 488 15 133 | 426
A 1097 | 096 | 1.06 | 0.92 | 0.92 | 0.92
Py, 1025 0.68 | 083 | 036 | 0.58 | 0.80

P 10251056 | 051 025 | 058 |0.56
AM | 0.08 1 0.08 005 0.08 | 0.08 |0.05

Source: Mariolis and Tsoulfildis (2012) - Table 1.

Our own results regarding /12/ A ratio is presented on figure 3 bellow. This results

shows how the ratio behaves with the increase on the number of industries present

on the A table.

Figure 3
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The graph above shows that Brody’s conjecture, even though consistent with
random tables, does not hold for the US economy in 2002. Brédy’s failure to design
randomness allowing for a raise in the coefficient of variation of the coefficients

present in the tables seems to be on the heart of the different result. When Brédy
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tries to explain why the random tables constructed by him would have a falling

/12//1 ratio he recurs to an approximation of this ratio as a function of the expected
1

values of coefficients and standard deviation. In his own words:

“Thus, the relation of the two largest eigenvalues will be close to (and may be
perhaps slightly overestimated by) Sigma nl/2 Mu=Sigma/(Mu n'/2) (...). This tends

towards zero as n increases.”

In our own notation, Brédy argues that:

I sp(ajj)Va _ sp(aj;) 1

Az nE(a;j) N E(afj)\/ﬁ N CV(a’{j)\/ﬁ

(2.1)

As shown on equation 1.6 and figures 1 and 2, the ratio between the standard
deviation and the expected value, and consequently the coefficient of variation, of

the a;; in Brddy are constant. Substituting 1.6 into the equation above it is easy to

see why the ratio is falling on his approximation.
. 1
lll’nn_)00 \/T_n =0

One can argue that the fall of this ratio in Brédy is imposed by the way he defines
the distribution of coefficients on his random tables. Equation (2.1) does not
represent a good approximation of the ratio in the real table since the distribution is

changing with size. It is consequently hard to make a direct causal relation between
the coefficient of variation and /12//1 value depicted on figures 2 and 3. Even though
1

it is easy to see that Brdody conjecture can not be confirmed on those tables, the
reason behind the increasing /12//11 ratio still needs a more profound study.

Schefold’s work follow a different direction and discusses the theoretical
implications of all subdominant eigenvalues going to zero with increase in size.
Nonetheless, Schefold keeps on the track of Brody in the sense of experimenting
with random tables. He proposes extensions to Brédy’s conjecture given that it

holds. Again, the question we address to his work is if those conclusions also apply

to real tables.

12



Schefold argues that if all eigenvalues go to zero but the first then the wage profit
curve is linear. More precisely, he uses Brdody’s experiments and his own with

random matrices to argue that z — 0, where z = 1, + 1; + --- + 1,,. He goes on to
n—->oo

show that if this sum is zero, then the wage-profit curve is linear.

The theoretical implication of this goes back to Samuelson (1962) surrogate
production function and the capital controversy that followed to criticize the
possibility of adopting the curve. If the envelope curve of techniques is a convex
curve, than it is possible to define a production function y=f(k). Nonetheless, this
convexity of the envelope depends on the linearity of the wage —profit curve. “If and
only if the individual wage curves are linear (...) the paradoxes of capital theory will

then be absent” (Schefold (2009)).

Figure 4
Distribution of Ranked Modulii of Eigenvalues by
Aggregation Level
0.5 —US200210 Tables (15,17,30, 63,120,161, 342 and 403
order)

Abscissa is set to N|sub-
intervals over the range
0,1, where N =15, 17, 30,
63,120, 161, 342 and 403
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Schefold argues in terms of the shape of curves of eigenvalues. He says that the
bigger the table, the closer to an exponential distribution the eigenvalues curve

would be.
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Even though the economic meaning of the distribution to which those tables
approach is not clear, there seem to be a limiting shape. All curves seem to be
stacking to the 403 industries one and already the 342 industries curve is quite
similar to the 403 industries curve. Even though almost all eigenvalues fall in size

noticeably, there are still a few of them besides the first that are of substantial size.

Figure 5

Arithmetic Means of Moduli of Subdominant Eigenvalues of A tables per size
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The geometric and arithmetic averages depicted on figure 5 and 6 respectively add
evidence to the hypothesis that the subdominant eigenvalues cease to fall after a
certain number of industries. Together with figures 4 and 7, these averages
reinforce the idea of a few eigenvalues becoming larger with size while most of them

become very small but not zero.

Figure 7 shows how the eigenvalues at each size (30 sectors, 161 sectors and 403
sectors) distribute themselves in the unit circle. The Y-axis represents the imaginary
parts while the X-axis represents the real part. The symmetric distribution along the
X-axis is due to the fact that the complex eigenvalues are always given in pairs
where the imaginary parts cancel each other. But it is easy to see that there is no
symmetry along the vertical axis. The first eigenvalue seems like an attractor for at
least a few of the subdominants one with size and the sum of subdominant

eigenvalue don’t appear to be approaching zero with size as Schefold defends.

In effect, this sum is increasing with size, since the average is almost constant.

Az +).3 +-- '+l403

Ay + A3 + -+ Ay93~14,40 and ~30 for the As03x403 table.

A1
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The hypothesis that this sum approaches zero is an important aspect of the
argument of linearity of the wage-profit curve within Schefold. Our findings actually
give strength to the theory proposed by Sraffa (1960) that these curves have more
complex forms. If the wage-profit curve is not linear, it is impossible to represent

production as a function of capital labor ratio. What Sraffa (1960) showed us is that
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a fall in the price of one factor does not necessarily mean that reducing the relative
use of this factor to the other will make the cost of production fall because this also
depends on the technique applied in the production of capital goods relative to the

consumption goods>®.

4. Conclusions

It seems that starting from mathematical properties from random tables to imply
properties and then try to find economical meanings to these properties have been
misleading the discussion of what we can infer about an economy by studying
eigenvalues on input-output tables since Brédy’s work on 1997. We decided to take
the opposite road and look at eigenvalues at real tables to see if there seem to be

any mathematical properties that arise from the data.
It was possible to see that the US 2002 tables contradicts Brody’s conjecture and for
those tables the ratio AZ/ Alincreases with size. Furthermore, the values observed on

real tables show that the average value of subdominant eigenvalues does not go to
zero and they stop falling after a certain increase of the table, also contradicting
Schefold’s conjecture that the profit-wage curve would be linear for big input-output
tables. As he showed, non-vanishing subdominant eigenvalues are responsible for
more complex wage-profit curves as predicted theoretically by Sraffa (1962). Our
findings do not back up Schefold’s explanation for the empirical support of wage-
profit linearity found in the works of Ochoa (1984), Bienenfeld (1988) and Shaikh
(1998, 2012).

This leaves us with the question of what do these mathematical properties of real
input output tables show in terms of economic theory. One of the conclusions we
can draw from the tables here presented is that the more disaggregated we look into
the industries in the US 2002 economy, the more unalike the columns of the A table
are, which indicates that the techniques are more heterogeneous the more specific

the industries we are looking at.

5 Serrano(2005)
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The economic intuition behind this would be that once we are looking to the
production of commodities very closely, differentiating as much as we can one
industry from another, the more different would be the kind and proportions of
inputs used in its production. This is a quite easy idea to accept, at least far more
logical than supporting that one can produce bread and iron using exactly the same

inputs.

17
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6. Methodological Appendix
The correspondence of aggregated sectors

This appendix aims to describe the steps that where followed to construct the 176 A
tables in different sizes. The whole description of the industries in each table can be

requested through e-mail to Luiza Nassif Pires to pirel110@newschool.edu.

We depart from the detailed level US 2002 make and use tables available at
http://www.bea.gov/industry/io_benchmark.htm#2002data.

We then treat those make and use tables to exclude non-basic sectors and aggregate
linearly dependent sectors together. After this treatment of the 430 industries table
we have a 403 industries by 430 commodities make and use table. These 2 tables

are the ones that are aggregated iteratively.

The next step was to construct a rule to aggregate those tables. We have a
description for how to go from the 403 industries level to seven other basic levels of
classification compatible with the North American Industry Classification

System (NAICS). Those basic levels are: 15, 17, 30, 63, 120, 161 and 342.

To go from the 403 industries to the 342 industries, we add industries in the make
and use table respecting the NAICS nomination in each. Every time each few
industries are put together, we calculate a new A table from the make and use. After
going through the whole table we are left with the 342 industries table. We then
depart from the 342 industries table to aggregate again iteratively constructing A
table at each step until we end up with the 161 industries table. And so on until the

15 industries tables are constructed.

The 15, 63, 120, 342 and 403 industries tables were constructed respecting the
NAICS codes in which the tables are available at BEA. The benchmark tables are
available every 5 years (1997, 2002 and 2007 being the most recent ones) and they

are available at the following levels:

Aggregations from benchmark tables:
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15 industries- sector level

133 industries - summary level - became 120

430 industries - detailed level - became 403

The annual tables are made available in different levels than the benchmark tables.
Aggregations from annual tables:

15 industries - sector level

69 industries - summary level - became 63

388 industries - detailed level - became 342

The 161 industries tables were constructed respecting the nomination used by the

Bureau of Labor Statistics on the following file:
http://www.bls.gov/emp/classifications-crosswalks/sect300.xls
170 industries became 161 in this case.

The 30 industries level consists in the 2 digits NAICS industries and the a few 3
digits NAICS - the 32 and 33 industries are open in 3 digits.

The 17 industries level consists on the BEA sector level with manufacturing open in

3 sectors: 1. food and leather, 2.wood, paper and 3.petroleum and metals

Construction of A tables

The A tables are built from the make and the use table

Input output tables are constructed from the use and the make tables. The use table
displays the use of each commodity and elements of value added, in the row, by each
industry and components of final demand, in the column, as represented in figure 1.

The direct requirements table is built from the intermediary consumption table:

Xmun = [xi.j]
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Where n is the number of commodities, m is the number of industries and each X j
represents the commodity j used by industry i in their total production and the
industry's output vector Y; (in gray on figure 1). The X table is normalized by the

total output to produce a direct requirements table industry by commodities, B

table, B, ,, = [bi,j], where each element [bi,j] = % is the value of commodity j that

14

is used in the production of one monetary unit of industry i.

Figure 8
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The data presented on the use table is always displayed in terms of commodities
used by industries. To transform the B table into a symmetric industry by industry
one, it is necessary to adopt one of the following assumptions, Industry Technology
Assumption (ITA) or Commodity Technology Assumption (CTA). According to the
ITA, each industry has the same production function for all the commodities it
produces. This means that all monetary unities produced by a given industry is
assumed to be homogenous in terms of the inputs that constitutes it. According to
the CTA, each commodity has a unique production function that is independent of

which industry produces it. In this case, each commodity has a unique input
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structure no matter the industry producing it. As is more usually assumed, in this

paper the Industry Technology assumption is adopted®.

To build the symmetric direct requirements table industry by industry, the make
table industry by commodity is used to produce the market share table, D, ,, =
[d]-,i] that express the share of each industry j in the production of commodity i,
where d;; is the production of commodity i by industry j divided by the total output
of the commodity. By pre-multiplying the direct requirements table B industry by
commodities by the market share table D, we get the A table, direct requirements

industry by industry.

Anxn = anmXBan = [ai,j]'

Where each q; ; is the share of the product of industry i that is used as input in the

production of one dollar of output of industry j.

The sum of the coefficients in one column expresses the ratio of inputs in the total

output of the given industry. If we assume that every industry has a strictly positive

value added, then )}, a;j < 1. Furthermore, it is possible to see that this sum

express how each monetary unit of output of each industry is shared between
VA;

inputs and value added, therefore, 1 — 7", a; ; = -
J

How to disaggregate to create a consistent series of random matrices- a

critique of Brédy’s method

6 More details on this matter can be found in
https://bea.gov/papers/pdf/alttechassump.pdf, according to which one of the
advantages of assuming ITA is the fact that it only produces non-negative symmetric
coefficients table, unlike CTA that can produce negative coefficients. CTA can only be
used in squared tables where the number of industries is equal to the number

of commoditties n = m, while for rectangular use tables n # m, only ITA can be
used.
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This appendix try to shed some light on the consequences of how the aggregation or
disaggregation of tables can influence their structure as so to understand why the
random hypothesis present in Brody might not be accurate when working with real

tables.

To go from a small table to a big table by disaggregating it, it would be necessary to

do it so by adding columns on the B table and adding rows on the D table.

Regarding the B table, if we disaggregate one column into two by dividing each
value by 2 (which is basically the rule that Brédy applies) with size all the
divergences will fade out. If on the other hand we fix the total flow of the table, i.e.,
define that the new bigger table still represented the same economy with the same

total output, then the rule to disaggregate would be different.

Brody supposes that the distribution of the coefficients is the same for each size. He
is not allowing for a change in the distribution of coefficients when tables become
bigger. Nonetheless, in real I-O tables the size and the distribution of its coefficients
are related. Also, he supposes that values are distributed uniformly around the
mean value (1/2) and that there are no coefficients that are zero. Nonetheless, in

real tables the zeros play an important role.

Figure 9
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On figure 8 it is possible to see that the number of zeros on the A table increases. In
figure 9, it is clarified that this rise in zeros on the A table are due to increases in
zeros at the B table rather then the D table. A thought experiment of how adding
zeros to the B table influences the distribution of values within the coefficients can
bring some light to why it is possible to argue that the increasing proportion of
zeros in the A table has the effect of increasing the disparities between columns.

This is consistent with the idea of subdominant eigenvalues not going to zero since.

On real input-output tables, while splitting two columns and distributing the values
on the original one within two new columns everytime a zero is added in one of the

new columns, the other sticks with a higher value then the original.

This goes in the same line of argument as Gurgul and Wéjtowicz (2015) about the
fact that when disaggregating columns from the same economy for the same year,
the flow is fixed and the only way of making this division increasing the uniformity
of values would be by allowing the total value of production represented by the

table to change.

To disaggregate the A table we need to disaggregate the use and the make table. The
make table will be used to build the market share table (D) and the use to build the
direct coefficients industries by commodities table (B). D*B=A. We can say that the
D table preserves its structure with size and is quite uniform and the B table is the
one that is responsible for making it divergent. It would be quite nice to try to test

eigenvalues on those tables but unfortunately they are not square matrices.

Take one column v on a Buxm table. Let's split v in two to create a new table that will
have (n+1)x(m) cells). Let's say that the original D table have 20% of zeros and that
the v column have the same proportion of zeros. Let's also follow the rule that was
observed on figure 9 and say that the new table (n+1)x(n+1) have a higher
percentage of zeros. Let's also say that the value of production of the sector V will be

split in two equally.
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Figure 10
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First step: when disaggregating v into v; and v, besides replicating on the 2 new

columns the original zeros, a few zeros will have to be placed in both new columns.

Second step: The proportions need to be preserved; this means that if we want to
split the values equally between both vectors, we need to replicate the original
values (and not divide it by 2 as Brody does- those values will be divided by two

with the adding of new rows on the D table, but column-wise it is not so).

Third step: In the correspondent row of vz, where a new zero was placed in v'1, the
new value will have to be the double of the first since the new quotient of the new

columns are half the value of the original column.

We set up a simple example.

Vv Vi1 V2
0.08 0.00 0.15
0.00 0.00 0.00
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0.05 0.05 0.05

0.00 0.00 0.00
0.07 0.07 0.07
0.05 0.10 0.00
0.06 0.06 0.06
0.05 0.05 0.05
0.00 0.00 0.00
0.05 0.05 0.05
0.05 0.05 0.05

By this simple example it is easy to see why the rise in zeros are making the new and
bigger table less "uniform". Of course if we are also adding a row the values will be
divided by 2 or zeros added will mean just replicating the value since the sum needs
to be preserved in the whole table. But the disaggregation by column is a factor of
rising inequality and according to figure 10 is the one also responsible for the rise in
the number of zeros. This is in accordance with both the coefficient of variation and

the rise in the subdominant relative eigenvalue seen on figures 2 and 3.
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