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For any rectangular supply and use table given, a general problem of input–output analysis is represented 
in the paper as a system of linear equations written in terms of corresponding free variables. This system 
includes regular equations for material and financial balances, a batch of predetermined values for chosen 
exogenous variables and an additional set of linkage equations that provides the exact identifiably for all 
unknown variables.  

The scope of this paper is to study some operational opportunities for constructing a set of identifying 
linear equations in the cases of evaluating the response of the economy to exogenous changes in final 
demand vector and value added vector. To this end, matrix-valued linear production and cost functions of 
product and industry inputs and outputs are involved; besides, the product-mix and market shares contours 
of supply matrix and their analogues for use matrix appear to be operational. 

The paper presents eight different specifications of general input–output problem under various 
conditions for exact identifiability of unknown variables. Two of them form an underlying algebraic 
framework of Leontief demand-driven quantity and relative supply-driven price models, whereas the other 
two provide an algebraic foundation for compiling Ghosh supply-driven price and relative demand-driven 
quantity models. As one more practical result of this study, it is shown that there are 
some "price'n'quantity" doubts about plausibility of underlying background for an industry technology 
assumption and a fixed product sales structure assumption, which are used in the transformation of supply 
and use tables to symmetric input-output tables. 
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1. On a general problem of input–output analysis 

A supply and use table for given time period (e.g., period 0) is generated by a pair of rectangular 

matrices: supply, or production, matrix X0 and use for intermediates, or intermediate 

consumption, matrix Z0 of dimension NM both where N is a number of commodities, or 

products, and M is a number of sectors, or industries, in the economy under consideration. In 

mathematical notation, supply and use table is determined by the vector equation for material 

balance of products’ intermediate and final uses  

000 yeZeX  MM                                                           (1) 

and by the vector equation for financial balance of industries’ intermediate and primary 

(combined into value added) inputs 

000 vZeXe  NN                                                           (2) 



2 
 

where Ne  and Me  are N1 and M1 summation column vectors with unit elements, y0 is a 

column vector of net final demand with dimensions N1, and v0 is a column vector of value 

added with dimensions M1. Here putting a prime after vector’s or matrix’s symbol denotes a 

transpose of this vector or matrix. 

For analytical purposes, one needs to rewrite the system of balance equations (1), (2) in 

terms of free variables. Let MXex  be N-dimensional column vector of product outputs, and 

Xex N  be 1M row vector of industry outputs. Also, let MZez   be N1 column vector of 

product amounts in intermediate consumptions, and Zez N  be M-dimensional row vector of 

industry expenditures for intermediate consumption. The vectors  zzxx ,,,  are sometimes 

called product and industry (column and row) marginal totals for the production matrix X and the 

intermediate consumption matrix Z. Thus, the system of N+M scalar equations (1), (2) can be 

written in free variables as follows: 

yzx   ,          vzx   .                                             (3) 

The aim of constructing similar balance models is to assess an impact of exogenous (absolute 

or relative) changes in final demand (or, generally, in other product variables) and, by certain 

symmetry of balance equations considered, exogenous changes in value added (or, generally, in 

other industry variables) on the economy. Balance models do not usually reflect the true causes 

of  the certain changes in final demand or value added, so a response of the economy to any 

exogenous perturbation is evaluated in the mode of getting answers to questions like “what would 

happen if ...? ”. 

The balance model (3) contains N+M linear equations with 3(N+M) scalar variables. Assume 

that exogenous perturbation is expressed in terms of k exogenous variables. To provide exact (or 

strict) identifiability of the model it is required to incorporate into the model 2(N+M) – k 

auxiliary independent equations as a certain set of linkages between the variables. In particular, 

N+2M independent equations are needed at k = N and 2N+M equations – at k = M. The structure 

of initial supply and use table serves as an informational framework for constructing the auxiliary 

linkage equations. 

In this context, a general problem of input–output analysis is considered as the system of 

linear equations (3) together with a chosen specification of exogenous perturbation and a 

corresponding set of linkages between the variables, which provides the strict identification of all 

unknown variables. Note that the general problem becomes nonlinear if at least one of its 

equations is nonlinear, and it is linear otherwise. 
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2. The specifications of linkages between the variables 

Let us study some operational opportunities for constructing a set of identifying linear equations 

in the cases of evaluating the response of the economy to exogenous changes in the final demand 

vector 0yyy    with dimensions N1 or the value added vector 0vvv    with dimensions 

M1. 

To this end, first, one can introduce a pair of matrix-valued cost functions 

 xAZ ˆ ,                 
1

00




 XeZA N ;                                        (4) 

 AxZ ˆ ,                 0

1

0 ZeXA


  M                                         (5) 

where A  and A  are known NM matrices of relative coefficients, and angled bracketing 

around a vector’s symbol (or putting a “hat” over it) denotes a diagonal matrix, with the vector on 

its main diagonal and zeros elsewhere (see  Miller and Blair, 2009, p. 697). Statements (4) and 

(5) postulate two specifications for linear dependency of intermediate consumption matrix Z 

from industry output vector x  and product output vector x , respectively. 

Secondly, a mirror-image pair of matrix-valued production functions 

 zBX ˆ ,                  
1

00




 ZeXB N ;                                       (6) 

 BzX ˆ ,                  0

1

0 XeZB


  M                                        (7) 

seems to be helpful for our analytical purposes. Here B  and B  are also known NM matrices 

of relative coefficients. Statements (6) and (7) involve two specifications for linear dependency 

of production matrix X from vector of industry expenditures for intermediate consumption z  

and vector of product amounts in intermediate consumption z , respectively. 

Finally, a quite explainable requirement to keep invariable a “vertical” (or a “horizontal”) 

structure of production (or intermediate consumption) matrix in terms of its column (or row) 

marginal totals leads to 

 xCX ˆ ,                 
1

00




 XeXC N ;                                     (8) 

 CxX ˆ ,                 0

1

0 XeXC


  M ;                                   (9) 

 zDZ ˆ ,                 
1

00




 ZeZD N ;                                    (10) 

 DzZ ˆ ,                  0

1

0 ZeZD


  M                                    (11) 

where C ,  C , D  and D  are known NM matrices of relative coefficients, as earlier. These 

“structural” equations closes a full set of linkages between the variables in model (3) under 
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consideration. 

3. Feasible transformations for general problem of input–output analysis 

It is easy to see that the linear equations (4) – (11) cannot be used for further transformations of 

balance model (3) simultaneously. Therefore, it is necessary to define the order, in which they 

may be applied. 

Matrix-valued cost functions (4) and (5) allow to eliminate the intermediate input marginal 

totals z  and z  from balance model (3) in two ways, whereas matrix-valued production 

functions (6) and (7) provide a two-way removal of the output marginal totals x  and x  from 

(3). Hence, we get two models, namely (3), (4) and (3), (5), each of which comprises N+M linear 

equations with 2(N+M) scalar variables vyxx ,,,  , and a pair of models, namely (3), (6) and 

(3), (7), each of which also contains N+M linear equations with 2(N+M) scalar variables 

vyzz ,,,  . 

Further, one can apply  

 equation (8) as   xCx  to delete vector x from models (3), (4) and (3), (5),  

 equation (9) as   xCx  to eliminate x  from the same models,  

 equation (10) as   zDz  for removal of vector z  from models (3), (6) and (3), (7),  

 and, finally, equation (11) as   zDz  for deleting z  from the latter models. 

As a result, we obtain eight following different specifications of general input–output 

analysis problem: 

[(3), (4), (8)]                    yxAxC   ,           vAexx 
 N ;                           (12) 

[(3), (4), (9)]                     yxCAx   ,           vAeCxCx 
 N ;                 (13) 

[(3), (5), (8)]       yxCeAxC   M ,           vACxx   ;                             (14) 

[(3), (5), (9)]                 yxeAx   M ,            vAxCx   ;                             (15) 

[(3), (6), (10)]                  yzDzB   ,            vzBez   N ;                            (16) 

[(3), (6), (11)]                   yzzDB 
 ,            vDzBeDz   N ;                  (17) 

[(3), (7), (10)]    yzDzDeB   M ,           vzBDz   ;                              (18) 

[(3), (7), (11)]                yzzeB   M ,            vDzBz   .                              (19) 

Note that each model specifications consist of N+M linear equations with different numbers of 
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unknown scalar variables, namely N+2M or 2N+M. 

If the number of unknown variables in a certain model equals N+2M, supplementing an 

exogenous condition  vv  provides a just identifying closure of this model. However, if the 

values N and M coincide, alternative exogenous choice of condition  yy  appears to be also 

feasible. All possible cases for models (12) – (19) are represented in Table 1. 

Table 1. The various specifications of input–output analysis problem with exogenous variables 

Model 
Model 
code 

Matrices 
fixed 

Vector 
variables 

Number of 
variables 

Exogenous 
variable 

Alternative exogenous 
variable at N = M 

(12) CA  
 CA ,  vyx ,, N+2M  vv   yy  

(13) CA   CA ,  vyx ,,  2N+M  yy   vv  

(14) CA  
 CA ,  vyx ,, N+2M  vv   yy  

(15) CA   CA ,  vyx ,,  2N+M  yy   vv  

(16) DB  
 DB ,  vyz ,, N+2M  vv   yy  

(17) DB   DB ,  vyz ,,  2N+M  yy   vv  

(18) DB  
 DB ,  vyz ,, N+2M  vv   yy  

(19) DB   DB ,  vyz ,,  2N+M  yy   vv  

Thus, in terms of exogenous final demand and value added, each input–output model (12) – 

(19) has two solutions – a regular one and a supplementary one with an alternative exogenous 

vector at N = M.  

4. Regular solutions for the specifications of input–output analysis problem 

It is not so difficult to show that any regular solution for models (12) – (19) can be written in a 

following common form: 

XX qXpX ˆˆ 0 ,              ZZ qZpZ ˆˆ 0                                           (20) 

where ZX pp ,  are the computable vectors with dimensions N1, and ZX qq ,  are the computable 

vectors with dimensions M1. It seems to be a unique way to interpret this result, namely p’s and 

q’s should be considered as the relative price indices and the relative volume (quantity) indices 

respectively. 

All regular solutions for models (12) – (19) in terms of the column vectors from (20) are 

grouped in Table 2 with notation for relative coefficients of final demand and value added as 

follows: 
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
  yyy

1
0ˆy ,      

  yeXx

1

0 My ,      
  yeZz

1

0 My ; 


  vvv

1
0ˆv ,      

  vXex

1

0Nv ,      
  vZez

1

0Nv . 

Table 2. Regular solutions for the specifications of input–output analysis problem 

Model 
Model 
code 

Formulae for vectors XX qp ,  Formulae for vectors ZZ qp ,  Exogenous 
variable 

(12) CA  
NepX  ,     vXq v  NepZ  ,    XZ qq   

 vv  

(13) CA    
  xX CAEp y1

N ,  MeqX   NEpZ  ,    XZ pCq 
   yy  

(14) CA  
NepX  ,    


 xX CAEq v1

M XZ qCp  ,    MeqZ    vv  

(15) CA  
 yXp y ,    MeqX   

XZ pp  ,    MeqZ    yy  

(16) DB  
NepX  ,     vXq v  NepZ  ,    XZ qq    vv  

(17) DB  NepX  ,   ZX pDq 
     

  zZ EDBp y1
N ,  MeqZ    yy  

(18) DB  
ZX qDp  ,    MeqX   NepZ  ,    

  zZ EDBq v1
M  vv  

(19) DB   yXp y ,    MeqX   XZ pp  ,    MeqZ    yy  

Note that NN Ee ˆ  and MM Ee ˆ  are the identity matrices of order N and M respectively. It is 

interesting to see the regular solutions for models 
CA  (12) and 

DB  (16) pairwise coincided 

as well as the regular solutions for models CA  (15) and DB  (19). Besides, only one 

vector from each pair XX qp ,  does not equal Ne  or Me . In the same way there is a unique vector 

in each pair ZZ qp ,  that is distinct from Ne  or Me . 

5. Supplementary solutions for the specifications of input–output analysis problem 

In order to distinguish matrix notation in the regular case and in the case of N = M = K we will 

use the same matrix symbols with underscore in latter case. Any supplementary solution for 

models (12) – (19) with the alternative exogenous vectors can be also representing as 

XX qXpX ˆˆ 0 ,              ZZ qZpZ ˆˆ 0                                           (21) 

where ZX pp ,  and ZX qq ,  are the column vectors with dimensions K1. As earlier, all p’s and 

q’s are interpreted as the relative price indices and the relative volume (quantity) indices 

respectively. 

Supplementary solutions for models (12) – (19) in terms of the column vectors from (21) are 

gathered in Table 3. 
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Table 3. Supplementary solutions for the specifications of input–output analysis problem 

Model 
Model 
code 

Formulae for vectors XX qp ,  Formulae for vectors ZZ qp ,  Exogenous 
variable 

(12) CA  
KepX  ,      

 yZXqX
1

00  KepZ  ,    XZ qq   
 yy  

(13) CA    ZX qCp 1
 ,    KeqX   KepZ  ,     vZq v   vv  

(14) CA  
KepX  ,    ZX pCq 1

   yZp y ,    KeqZ    yy  

(15) CA    
 vZXpX

1
00 ,    KeqX   XZ pp  ,    KeqZ   

 vv  

(16)  DB  
KepX  ,      

 yZXqX
1

00  KepZ  ,    XZ qq    yy  

(17)  DB  KepX  ,     vXq v        XZ qDp 1
 ,    KeqZ    vv  

(18)  DB   yXp y ,    KeqX   
KepZ  ,    XZ pDq 1

   yy  

(19) DB    
 vZXpX

1
00 ,    KeqX   XZ pp  ,    KeqZ    vv  

Again, the supplementary solutions for models CA  (12) and DB  (16) pairwise coincide 

as well as the supplementary solutions for models CA  (15) and DB  (19). Besides, there is 

only one vector in each pair XX qp ,  that is distinct from Ke . In the same way, a unique vector 

from each pair ZZ qp ,  does not equal Ke . 

6. On the plausibility of regular and supplementary solutions obtained 

An observing of the analytical results in Table 2 and 3 allows to recognize four different 

situations as follows: 

0ˆ XpX X ,                    0ˆ ZpZ Z ;                                          (22) 

0ˆ XpX X ,                    ZqZZ ˆ0 ;                                          (23) 

XqXX ˆ0 ,                    0ˆ ZpZ Z ;                                          (24) 

XqXX ˆ0 ,                    ZqZZ ˆ0 .                                          (25) 

Situation (22) describes an impact of exogenous changes in final demand or value added on 

the economy in terms of price changing exclusively, whereas situation (25) characterizes this one 

in terms of volume changing only. Mixed situations (23) and (24) combine price and volume 

changes and in the presence of the detected linkages between vectors XX qp ,  and ZZ qp ,  (see 

models CA , 
CA , DB , 

DB  in Table 2 and models CA , CA ,  DB ,  DB  in 

Table 3) seem to be implausible artefacts that are out of economic sense. By this reason the 

models (13), (14), (17), (18) are not examined further, and the corresponding rows in Table 2 and 
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3 are darkened. 

It is interesting to note here that models CA  and CA  generate an instrumental 

framework for an industry technology assumption and a fixed product sales structure assumption, 

which are widely used in the transformation of supply and use tables to symmetric input-output 

tables (see Eurostat, 2008). 

7. The Leontief and Ghosh quantity and price models 

It is easy to see that regular solutions for models (12), (15), (16), (19) are trivial, but their 

corresponding supplementary solutions are quite not. 

Model CA  (12) is well-known as a Leontief demand-driven model. It serves to assess an 

impact of exogenous (absolute or relative) changes in final demand on the economy at fixed 

prices. Indeed, the main model’s statements are qXX ˆ0  and qZZ ˆ0  where 

      xK y11

0
11

00






  ACyeXACyZXq .                 (26) 

Model CA  (15) is known as a Ghosh supply-driven model. It helps to evaluate an impact 

of exogenous (absolute or relative) changes in value added on the economy at fixed production 

scales. The main model’s statements are 0ˆ XpX   and 0ˆ ZpZ   where 

      xK v11

0
11

00






  ACveXACvZXp .                 (27) 

In a symmetric input-output table, X0 is a diagonal matrix and therefore  

KK eXXeXX 0000  .                                               (28) 

Using (26) and then (28), we obtain famous Leontief formula  

       








  yAEyXeZXyZXeXeXqeXxx 111

000
1

0000ˆ KKKKK , 

and from (27) with (28) we find its Ghosh supply-driven analogue 

       








  vAEveXZXvZXeXeXpeXxx 111

000
1

0000ˆ KKKKK . 

Putting (28) into (27) gives well-known formula 

        xKKKK v11

0
11

00
1

00









  AEvXeAEvZXevZXp  

for Leontief price model (see  Miller and Blair, 2009, p. 44). Thus, in the case of a symmetric 

input-output table Ghosh supply-driven model coincides with Leontief price model (see  

Dietzenbacher, 1997). It can be shown by analogy that Leontief demand-driven model serves as 

Ghosh quantity model. Indeed, putting (28) into (26) gives 

        xKKKK y11

0
11

00
1

00









  AEyeXAEyZeXyZXq . 
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It is appropriate mention here that all formulae obtained above demonstrate a remarkable set 

of duality properties. 

8. Concluding remarks 

As noted earlier, both regular and supplementary solutions for models (12) and (16) pairwise 

coincide as well as respective solutions for models (15) and (19). Thus, models CA ,  DB  

and CA , DB  seem to be pairwise equivalent from a computing viewpoint. 

Recall that Leontief model (12) is based on the matrix-valued cost function (4) and the 

product (“vertical”) structure of output matrix (8), whereas a framework of Ghosh model (15) 

envelops the matrix-valued cost functions in another form (5) and the industry (“horizontal”) 

structure of production matrix (9). Matrices A  and A  are known in special literature as 

technical coefficients matrix and allocation coefficients matrix (see  Miller and Blair, 2009) 

respectively. 

In turn, model (16) is provided by the matrix-valued production function (6) and the product 

(“vertical”) structure of intermediate consumption matrix (10), whereas model (19) is based on 

the matrix-valued production functions in another form (7) and the industry (“horizontal”) 

structure of intermediate consumption matrix (11). Hence, the elements of matrices B  and B  

are “quasi-reciprocal” with respect to technical coefficients matrix A  and allocation coefficients 

matrix A  respectively. 

Nevertheless, practical applying the models CA  and  DB  as well as CA  and DB  

leads to identical results (see Table 2 and 3). This means that certain choice of the coefficients 

matrix forms does not have an influence on results of modelling. Here one can really solve a 

dilemma of taking “vertical” or “horizontal” structure for constructing a dependency between the 

production matrix X and the intermediate consumption matrix Z resembling (4) – (7). Thus, 

technical and allocation coefficients should be regarded as helpful ways of economic 

interpretation rather than as operational tools for calculation. 
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