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Abstract

The traditional quantity output-driven (Leontief) model is based
on the assumption that outputs are homogeneous. This assumption is
considered fundamental for the model to operate properly.

Although the actual heterogeneity of goods can partially be over-
come by disaggregating input-output tables, such assumption consti-
tutes a limitation of the modelling exercise. Also, in order to comply
to this assumption, secondary production must be reallocated to other
sectors instead of counting such production within the same sector, for
example as a different (heterogeneous) final good. Thus, reallocation
methods have been used to build symmetrical input-output tables
according to the homogeneous goods assumption.

This paper aims to explore whether the homogeneous goods as-
sumption can be dropped and, if so, to explore how would a quantity
output-driven IO model work.

In this paper, the assumptions required by the traditional quantity
output-driven (Leontief) model are reviewed together with the previous
methods to account for secondary production. It is found that some
methods applicable to physical input-output tables are already able
to deal with simultaneously produced heterogeneous final outputs (e.g.
disposals to nature).

In the analytical section of this paper, the usage of the homogeneous
goods assumption is deconstructed. First, by illustrating how to deal
with PIOTs and MIOTs with heterogeneous intermediate production.
Second, by illustrating how to deal with PIOTs and MIOTs with hetero-
geneous final production. Building on the learnings from these sections,
a generalised quantity output-driven model is suggested. It is demon-
strated that the traditional quantity output-driven (Leontief) model
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is a particular case of the generic quantity output-driven developed in
this paper.

The generic quantity output-driven model makes it possible to
build and analyse MIOTs and PIOTs without requiring to reallocate
secondary production to the corresponding sector, i.e. secondary prod-
ucts can be considered within the intersectoral matrix and/or as final
outputs. This enhances the analytical possibilities of IOA and opens
the door to rethink how secondary production should be treated. Fi-
nally, this model is particularly interesting for Industrial Ecology, since
enables researchers to trace the physical activity of the economy as is,
i.e. each sector producing simultaneously different types of disposals to
nature (e.g. emissions).
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1 Introduction
Since the beginning of input-output analysis, the homogeneous goods assump-
tion is considered a fundamental assumption in order to build the quantity
output-driven (Leontief) model (Leontief, 1941; Miller and Blair, 2009; Suh,
2004).

However, being able to use a quantity output-driven model without using
the homogeneous goods assumption would have the analytical advantage to
be able to deal with heterogeneous outputs within the IO model itself, i.e.,
the model could potentially integrate secondary production within the inter-
sectoral matrix and, also, as different final outputs, enhancing the analytical
potential of IOA. Additionally, such model would be able to represent the
production process as is, since secondary production is intrinsic within the
productive structure, both in terms of producing different goods simultane-
ously and of producing several emissions and wastes as by-products (Suh,
2004; Xu and Zhang, 2009; Altimiras-Martin, 2014).

This paper aims to explore whether the homogeneous goods assumption
can be dropped and, if so, to explore how would a quantity output-driven IO
model work.

In the introductory section of this paper, first, the underlying assump-
tions behind the traditional quantity output-driven model are reviewed in
section 1.1. Then, the analytical differences between monetary input-output
tables (MIOTs) and physical input-output tables (PIOTs) are reviewed in
section 1.2 to clarify the concept of secondary production (section 1.2.1), to
review the differences between PIOTs and MIOTs since quantity output-driven
models should be applicable to both types of tables (section 1.2.2), and to
review of the use of IO methods adapted to PIOTs with disposals to nature
since such tables entail heterogeneous final outputs (section 1.2.3). Finally,
the previous methods used to reallocate secondary production in IOA are
reviewed (section 1.3).

In the analytical section of this paper, the usage of the homogeneous goods
assumption is deconstructed. First, by illustrating how to deal with PIOTs and
MIOTs with heterogeneous intermediate production (section 2.1.1). Second,
by illustrating how to deal with PIOTs and MIOTs with heterogeneous final
production (section 2.1.2). Building on the learnings from these sections, a
generalised quantity output-driven model is suggested in section 2.2. Finally,
in section 2.3, it is illustrated how to partially use the homogeneous goods
assumption on the generic model to simplify its operation. In section 2.3.3,
it is shown that the traditional quantity output-driven model is a particular
case of the generic quantity output-driven developed in section 2.2

Finally, the results are discussed in section 3.
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1.1 On the underlying assumptions of the quantity output-
driven (Leontief) model

IOA relies on monetary input-output tables (MIOTs) as accounting frame-
work1. MIOTs capture the monetary flows between sectors, not the price
nor quantity exchanged (the flow equals the quantity times the price). To
emphasise this distinction, monetary flows will have a superscripted f , and
quantity flows will have a superscripted q.

Typically, a MIOT entails the intersectoral flows bought (or sold) between
sectors zfij constituting the intersectoral matrix (Zf), the primary inputs
provided to the economic system2 (vfj ) constituting the value added vector
(vf ′) and final outputs sold to the exogenous final demand3 (f f

i ) constituting
the final demand vector (vf ).

So, each monetary flow has a price (pzij , pvj or pfi) associated to it and the
following relations between monetary and quantity flows can be established:

zfij = pzij · z
q
ij (1)

vfj = pvj · v
q
j (2)

f f
i = pfi · f

q
i (3)

Additionally, the double-entry bookkeeping principle guarantees that
sectoral inputs equal sectoral outputs. Since the flows that enter a sector,
also exit it, the double entry relationship leads to the concept of the total
outputs4 xf

i , as follows

Zf · i + f f =
(
i · Zf + vf ′) ′ = xf (4)

Focussing on the outputs of the economy, equation 4 can be rewritten as:
n∑

j=1

zfij + f f
i = xf

i (5)

or
Zf · i + f f = xf (6)

A MIOT for an n sectors economy is presented in table 1.
1 Hybrid and Physical IOTs can also be used as accounting frameworks. The PIOTs is

reviewed in detail in section 1.2. Hybrid tables and models are not reviewed since they are
a combination of monetary and physical IOTs and models, which are already reviewed.

2 Imports can be accounted as primary inputs or negative final outputs. In this paper,
for simplicity, imports are not considered; only value added is considered as input.

3 Final demand can be decomposed between gross capital formation, household con-
sumption and exports. In this paper, they are represented aggregately for simplicity.

4 Also known as total inputs or sectoral throughput.
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Sector 1 . . . Sector n Final demand Total outputs

Sector 1
Zf ff xf...

Sector n
Value added vf ′

Total inputs xf ′

Table 1: Monetary Input-Output Table with n sectors.

The quantity output-driven model devised by Leontief (1941) relies on
three key assumptions:

1. The homogeneous goods assumption
2. The unitary price assumption
3. The proportionality assumption (also known as linearity or constant

returns to scale assumption).
This paper aims to explore whether these assumptions are indissociable,

i.e. whether we can only use some of these assumptions. And fundamentally,
which assumptions are strictly required to perform Input-Output Analysis.
These questions will be explored in depth in section 2. Below, these three
assumptions are reviewed as they have been traditionally used in IOA.

1.1.1 The homogeneous goods assumption

The homogeneous goods assumption implies that each sector produces a single
type of output, regardless whether intermediate or final. Algebraically, the
flow values from each row (i.e. zij, fi and xi) refer to a single type of good.
This assumption has two key implications:

1. Each good can be identified unequivocally to a specific sector. This
implication is extremely useful analytically because it means that all
values from each row refer to the same product. If this was not the case,
e.g., each value corresponded to a different product, the researcher should
remember which values corresponded to which product, complicating
the analysis of input-output tables.

2. A single price exist for all products produced by each sector.
Thanks to the second implication, all prices from each row are equal.

Algebraically,

pzi1 = . . . = pzin = pfi = pxi
= pi ∀i = [1, n] (7)

Then, using equations 1 and 3, equation 5 representing the relationship
between monetary flows becomes the following equation representing the
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quantity flows
n∑

j=1

pi · zqij + pi · f q
i = pi · xq

i (8)

One is tempted to simplify pi from each side of the equation but this
would not solve the issue that the actual values from the MIOT correspond to
monetary flows and not to the quantity flows, i.e. the quantity values remain
unknown. In other words, the homogeneous goods assumption makes it easier
to identify the correspondence between monetary values and underlying type
of good, but it does not solve the issue that the actual values of the MIOT
are in monetary terms and neither prices nor quantities are known. This issue
is actually solved by using the unitary price assumption.

1.1.2 The unitary price assumption

The unitary price assumption makes all prices equal one, implying a change
of accounting units and making the monetary flows equal the quantity flows.
Consequently, equations 1, 2, and 3 become

zfij = 1 · zqij (9)

vfj = 1 · vqj (10)

f f
i = 1 · f q

i (11)

This is a counter-intuitive assumption but it allows researchers to consider
the monetary flows as quantity flows. According to Leontief (1986, pp.
22–23)5,

All figures [in the value transactions table]... can also be
interpreted as representing physical quantities of the goods or
services to which they refer. This only requires that the physical
unit in which the entries... are measured be redefined as being
equal to that amount of output of that particular sector that
can be purchased for $1 at [base year] prices... In practice the
structural matrices are usually computed from input-output tables
described in value terms... In any case, the input coefficients [A]
— for analytical purposes... must be interpreted as ratios of two
quantities measured in physical units [emphasis added].

For example, if a each kilo of good A is sold at p = 5[ $
1kg

], and two kilos
were sold, i.e. q = 2[kg], the monetary flow is 5[ $

1kg
] · 2[kg] = 10$. Using the

5 As quoted in Miller and Blair (2009)
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unitary price assumption, only a change of units happens. The same example
becomes: p = 1[ $

1
5
kg
] (note the change in the units), and now the quantity

becomes q = 10[1
5
kg], so the monetary flow remains 10. The quantity value

has changed from two kilos q = 2[kg] to ten fifths of a kilo q = 10[1
5
kg], but

it does not matter since units are a convention, i.e. we can measure the same
quantity in different units. The key consequence is that the monetary flows
can be considered quantity flows without requiring to know the prices nor
the quantities.

1.1.3 The proportionality assumption

The proportionality assumption means that intermediate production is pro-
portional to total production by means of the technical coefficients matrix A.
Although the unitary price assumption has been applied and the monetary
flows can now be considered quantity flows, the same f superscript is main-
tained because the values used are the ones from the actual MIOT, which
correspond to the monetary values. So,

Zf = A ·< xf >⇔ A = Zf ·< xf >
−1 (12)

1.1.4 The quantity output-driven (Leontief) model

Finally, the Leontief model is derived by substituting equation 12 in the
output side of equation 4:

A · xf + f f = xf (13)

Rearranging,
xf = (I−A)−1 · f f (14)

where
L = (I−A)−1 (15)

is known as the Leontief inverse matrix.
Thus, the proportionality assumption is key because it transforms the

output side of equation 4 into a set of n linear equations with n unknowns,
which is solvable.

The other implication of the proportionality assumption is that final
demand is also proportional to total outputs (c.f. equation 14) and, thus, it is
also proportional to intermediate production as well.

The proportionality assumption is also applied to the primary inputs. It is
assumed that primary inputs (i.e. the value added) are required proportionally
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to the total amount of sectoral inputs, i.e. there is an input coefficient (cv)
relating the value added values and total inputs, as follows

cv ′ = v′· < xf >−1 (16)

So, the Leontief model relies on equation 14, which enables researchers to
run the model by providing a new final demand vector. The equation provides
a new total outputs vector, which is used to recalculate the value added vector
(using equation 16) and intermediate production (using equation 13).

Since the Leontief model uses the unitary price assumption, turning
monetary flows into quantity flows, and the proportionality assumption on
the output relationship, the model is traditionally called the quantity output-
driven model.

It is worth noting that the Leontief model works with homogeneous outputs
and heterogeneous inputs. The homogeneous goods assumption implies that
outputs are homogeneous but each row produces a different product, so the
model is able to cope with the relationship between different products.

Another implication of the homogeneous (output) goods assumption is that
the model cannot deal with secondary production. Hence, several methods
have been developed to reallocate secondary production, either before building
the symmetrical MIOT or even to be able to deal with secondary production
within symmetrical MIOT. Such methods are reviewed in section 1.3.

1.2 On MIOTs and PIOTs

Monetary Input-Output Tables (MIOTs) and Physical Input-Output Tables
(PIOTs) have the same accounting relationship (total inputs equal total
outputs) and have a similar structure: they both have primary inputs, inter-
mediate products, and final products. PIOTs do not require prices so it might
be thought that their treatment should be simpler. However, PIOTs have
heterogeneous outputs because sectors produce their products and several dis-
posals to nature (i.e. waste or emissions)6, so the conventional Leontief model
cannot be used in this case (Suh, 2004; Xu and Zhang, 2009; Altimiras-Martin,
2014).

6 In this paper, only PIOTs with disposals to nature, i.e. with heterogeneous final
outputs, are considered. The properties and operation of PIOTs without disposals to
nature are analysed in Weisz and Duchin (2006).
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1.2.1 On secondary production and intrinsic vs. price heterogene-
ity

A key point to clarify is whether all heterogeneous goods can be considered
secondary production, either within a MIOT or a PIOT. To examine this
question, two questions might be posed:

1. Is all secondary production heterogeneous?
Yes, because if it is secondary, it is different from the primary production
and, thus, heterogeneous. It must be noted that several different
products can be produced simultaneously by a sector. And these
products can simultaneously be actual goods, emissions and/or waste.

2. Can all heterogeneous goods be considered secondary production?
Yes, because a sector producing heterogeneous goods means that it
produces a product (which can be considered the primary product) and
other heterogeneous goods, which constitute the secondary production.

Thus, heterogeneous goods and secondary production can be used interchange-
ably, both within the MIOT and PIOT frameworks.

A key difference between PIOTs and MIOTs is that MIOTs have an
extra layer of complexity due to the fact that they are based on monetary
flows rather than physical flows. As seen in section 1.1.1, the unitary price
assumption is required in order to consider the monetary flows in MIOTs as
physical flows. In PIOTs, this assumption is not required.

This leads to a sub-categorisation of heterogeneous goods:
• products can be intrinsically heterogeneous meaning that products are
materially (i.e. physically) different. This can happen in PIOTs (e.g.
a sector produces several types of goods, wastes and emissions) and
MIOTs (e.g. a sector produces several types of goods).
• products can be heterogeneous due to their (different) price despite

being materially equal — i.e. homogeneous from a physical perspective.
For instance, the same fuel (i.e. an homogeneous good) can have different
prices depending to which sector it is sold, so it is heterogeneous. This
type of heterogeneity only applies to MIOTs.

1.2.2 Analytical differences between MIOTs and PIOTs

A PIOT can be intuitively constructed adopting the same structure as a
MIOT by using the principle of mass conservation (“the materials that come
in, go out”) and using physical units instead of monetary ones (hence, the
superscript q for quantity will be used instead of the superscript f used in
the MIOT case, e.g. table 1).

So, PIOTs also have three quadrants: the first one consists of the total
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amount of primary resources required by the economy rq ′, the second quadrant
relates the material exchanges between the sectors of the economy Zq, and
the third represents the final outputs of the system: the final goods for
consumption f q and the corresponding sectoral emissions disposed to nature
wq due to total sectoral production (both intermediate and final).

The disposals to nature can represent different material flows, depending
on the materials traced: e.g. waste, pollution and even non-pollutant emissions.
In any case, PIOTs have at least two different final outputs final goods and
the corresponding disposals to nature, i.e. they produce heterogeneous final
goods. To highlight this difference relative to MIOTs, the total output of an
IOT with heterogeneous final goods is indicated as xq. A PIOT following this
notation is presented in table 2.

In this section it is assumed that the intermediate and final production
of goods within a PIOT are homogeneous and only the disposals to nature
are heterogeneous (compared to the goods produced by each sector). This
assumption will be removed in section 2.3.

Sector 1 . . . Sector n Final demand Waste Total outputs

Sector 1
Zq f q wq xq...

Sector n
Resources rq ′

Total inputs xq ′

Table 2: Structure of an PIOT with two heterogeneous final outputs (final
goods f and emissions w). All components are in physical units.

1.2.3 Treatment of disposals to nature in PIOTs using output-
driven models

The fact that this table contains two heterogeneous final outputs posed a
great challenge to be able to calculate the primary resources and disposals to
nature due to a given final demand (even if intermediate and final goods are
assumed homogeneous).

Below, the superscript q is removed for simplicity since PIOTs do not
contain monetary flows.

This is because the output accounting relationship now includes an het-
erogeneous final output — disposal to nature w —, so equation 6 should be
rewritten as

x = Z · i + f + w (17)
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The technical coefficients matrix must be redefined accordingly as

A = Z · x̂−1 (18)

which, inserted in equation 17, leads to

x = (I−A)−1 · (f + w) (19)

This last equation poses a great issue: how to calculate total outputs when
only f is known? (one knows the initial pair f and w but not the emissions
associated with any other final demand; that is why Hubacek and Giljum
(2003) and Giljum and Hubacek (2004) were forced to estimate the emissions
exogenously). In short, the issue with these early methods is that they treat
emissions as exogenous while they are endogenous, since they are generated
according to the total amount of intermediate and final goods produced —
i.e., emissions are the by-products of production so they can be considered
secondary production.

Suh (2004) suggested three methods to operate a PIOT, of which only the
second one gathered correct results (Altimiras-Martin, 2014). Suh’s method
consists on a change of units of the PIOT that subtracts the disposals to
nature from the final outputs. This change of units turns the PIOT with
heterogeneous final outputs (f and w) into a PIOT with a single output (f)
and a negative primary input (w). Thanks to this transformation, the original
PIOT with heterogeneous final outputs becomes a PIOT with homogeneous
final outputs and the Leontief could be applied as usual. So, this transforma-
tion enables researchers to apply the traditional Leontief model to a table
where the model could not be initially applied.

However, from a modelling perspective, Suh’s method is a workaround
that could be avoided by applying the proportionality assumption correctly;
Xu and Zhang (2009) were the first ones to do that, i.e. to consider disposals
to nature proportional to the total outputs. This idea makes sense both
from the productive perspective and from the theoretical IOA perspective.
From a productive perspective, a sector uses a certain amount of primary
resource (and intermediate goods) to produce goods. However, the material
that are not included in the goods are disposed to nature. If goods are
produced proportionally to the resources consumed, so must be the disposals
to nature (i.e. emissions and wastes). From a theoretical perspective, the
proportionality assumption is not well applied in equation 19 because w
should also be proportional to x.

As suggested in Xu and Zhang (2009), w can be related to x as follows:

w = E · x (20)
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In other words, the emissions are related to the sectoral throughput and,
thus, they are endogenously determined since w is a function of x, solving
the analytical issue mentioned above.

E can be found by diagonalising both sides of the equation

E = ŵ · x̂−1 (21)

The assumption that intermediate production is proportional to total
outputs is maintained. However, since total output units include emissions,
the technical coefficients matrix is

A = Z · x̂−1 (22)

By combining equations 20 and 22 into 17, Xu and Zhang derive a new
Leontief inverse matrix which includes the emissions or, in other words,
endogenises the emission generation in the production structure:

x = A · x + f + E · x (23)
x = (I−A− E)−1 · f (24)
x = L · f (25)

where
L = (I−A− E)−1 (26)

Xu and Zhang were therefore able to relate the final production f to
x by means of a modified Leontief inverse L by applying rigorously the
proportionality assumption.

In fact, the proportionality assumption can be extended to any amount
of disposals to nature, i.e. for any number of heterogeneous final outputs.
According to Altimiras-Martin (2014), for the case of a PIOTs with m het-
erogeneous final products, final demand f is chosen to drive the model and
the other m− 1 disposals to nature — the different emissions of the PIOT
represented as wk with k = [1, ...,m− 1] — are considered proportional to
total outputs and endogenised in the production structure.

Since in table 3 there are m heterogeneous final outputs, equation 23 is
modified to accommodate the m− 1 emissions (one of the final heterogeneous
final outputs has to drive the model, hence the m− 1) :

x = Z · i + f + w1 + w2 + . . .+ wm−1 (27)

The technical coefficients matrix is calculated as in the single emission
case (using equation 22). The proportionality assumption is applied to all
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Sector 1 . . . Sector n Final outputs Total outputs

Sector 1
Z f w1 . . . wm−1 x...

Sector n
Resources r′

Total inputs x′

Table 3: Structure of a PIOT with m heterogeneous final outputs.

heterogeneous final outputs except to the one driving the model (f in this
case), so equation 20 is generalised to

wk = Ek · x for k = 1, ...,m− 1 (28)

Using equation 28 in equation 27:

x = A · x + f + E1 · x + E2 · x + . . .+ Em−1 · x (29)
x = (I−A− E1 − E2 − . . .− Em−1)

−1 · f = L · f (30)

The Leontief inverse resembles the one in equation 26 but now includes
m− 1 heterogeneous final outputs (emissions in this particular case):

L = (I−A− E1 − E2 − . . .− Em−1)
−1 (31)

The main difference between the methods developed by Suh (2004) and Xu
and Zhang (2009) is that Suh’s relies on a change of unit altering the structure
of the PIOT from a heterogeneous outputs one to a homogeneous final outputs
PIOT while Xu and Zhang’s relies on applying the proportionality assumption
to the disposals to nature. So, while Suh’s method relies on the traditional
Leontief model, Xu and Zhang’s constitutes is in fact a new IO model able to
deal with heterogeneous final outputs (Altimiras-Martin, 2014).

The consequence of these methodological differences is that both methods
reveal different structures (i.e. different technical coefficients and Leontief
inverse matrices), gathering different results when performing structural anal-
yses such as backward and forward linkage analysis. The PIOT transformed
by the second method in Suh (2004) reveals the structure of the economy as
if no emissions were produced, so only the model developed by Xu and Zhang
(2009) should be used if the complete physical structure of the economy (i.e.
tracing goods and emissions) is to be analysed (Altimiras-Martin, 2014).

So, the model developed by Xu and Zhang (2009) and extended in
Altimiras-Martin (2014) demonstrates that it is possible to operate IOTs with
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heterogeneous final outputs, at least in the case where the flows represent
quantities. The next questions are whether it is possible to apply this model
to MIOTs (i.e. with IOTs with monetary flows) and whether it makes sense
analytically. The answers to these are sought in section 2.

It is important to note that Xu and Zhang (2009) and Altimiras-Martin
(2014) implicitly assumed that intermediate production is homogeneous and
it is homogeneous to one of the final outputs (the final demand f in the
case above). In section 2, it will also be explored whether this assumption is
mandatory to use IO models or whether it is possible to use IO models with
heterogeneous intermediate production.

1.3 Methods to account for secondary goods production

The methods aiming to reallocate secondary production so as to build MIOTs
that comply to the homogeneous goods assumption are reviewed in sec-
tion 1.3.1. Then, the only method reallocating secondary production within
the intersectoral matrix is reviewed in section 1.3.2.

1.3.1 Methods in SUTs

Since the homogeneous goods assumption has been considered as fundamental
in order to use the traditional quantity output-driven (Leontief) model,
most methods have focussed to reallocate secondary production so as to
build symmetrical monetary input-output tables that have sectors producing
outputs as homogeneous as possible.

Initially, secondary products (and the inputs required for their production)
were reallocated to the sector producing such goods as a primary output by
constructing a reallocation table, which was added to the transaction matrix,
inducing double counting (Miller and Blair, 2009).

The development of the commodity-by-industry framework, also known
as the Supply and Use Tables (SUT) framework, made it possible to reallo-
cate secondary production more efficiently. Despite this more sophisticated
framework, reallocating secondary production is still challenging. Production
processes are varied and secondary production is sometimes induced due for
different reasons. In some cases, secondary production is intrinsic to the
production process: e.g., a company might produce two different types of fuels
simultaneously because its primary input can only be decomposed in this two
types of fuel, at a given proportion. In other cases, secondary production is
not tight to the inputs used by the sector. This two cases require different
treatment within the SUT framework, the former through a commodity-based
technology model and the latter an industry-based technology model (Miller
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and Blair, 2009, chap. 5). But the economic system entails both at the same
time, so mixed models can also be used.

At least seven models to integrate the information from the Supply and
Use Tables and build symmetrical MIOTs exist (Jansen and Raa, 1990). Each
of these methods have its particularities (Raa et al., 1984; Jansen and Raa,
1990; Raa and Rueda-Cantuche, 2003), so different statistical offices have
adopted different methods.

1.3.2 Methods in SIOTs

Stone (1961) developed a method to deal with secondary production within the
intersectoral matrix, as presented in Nakamura and Kondo (2009, sec. 3.2.2).
It is argued that the identity matrix within the traditional Leontief inverse
matrix (recall equation 15) represents the production of the sector itself. Since
it is an identity matrix, each sector only produces a single output.

However, Stone (1961) suggested that the identity matrix could be substi-
tuted by a matrix indicating the secondary production of each sector (the
value outside the diagonal would indicate secondary production).

Nakamura and Kondo (2009, sec. 3.2.2) show how to use this approach
within the Leontief model. By using this method, “an increase in the final
demand for the primary product of a sector with a by-product would increase
the supply of the by-product, and would reduce its supply from the sector that
produces it as the primary product” (Nakamura and Kondo, 2009, pp. 92). So,
this method sets a precedent in dropping the homogeneous goods assumption.

Note that this method deals with secondary production within the inter-
sectoral matrix, but cannot account for secondary production sold as final
outputs.

2 Towards a generalised output-driven model
without homogeneous goods assumption

2.1 Deconstructing the homogeneous goods assumption

The homogeneous goods assumption regarding intermediate production and
final production will be challenged in sections 2.1.1 and 2.1.2, respectively. In
both cases, PIOTs will be examined first since they are less complex because
their flows are quantities and, then, the homogeneous goods assumption will
be reviewed in MIOTs.
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2.1.1 Dealing with heterogeneous intermediate goods

In PIOTs Let’s assume a PIOT without disposals to nature. All flows are
in physical units, and it represents an economy extracting primary resources
r, exchanging goods Z and providing final goods for its consumers f , where
sectoral total inputs equal total outputs x. This PIOTs is presented in table 4.

Sector 1 . . . Sector n Final demand Total outputs

Sector 1
Z f x...

Sector n
Primary resources r′

Total inputs x′

Table 4: Physical Input-Output Table with n sectors and one final output.

The output accounting relationship would be the same as in equation 6,
except for the type of flows, which are already in physical units:

Z · i + f = x (32)

This relationship is maintained even if the intermediate products are
heterogeneous. In physical terms, the sum of its physical units (e.g. kilograms)
holds despite the product heterogeneity. Also, the mass balance principle
holds (since matter cannot disappear), so total inputs equals total outputs.

Under this circumstances, which assumptions are required to be able to
build an IO model for this particular PIOT?

Let’s assume the homogeneous goods assumption is not used, i.e. interme-
diate products are heterogeneous and the final good produced is also different
from intermediate production. To emphasise this difference, the intersectoral
matrix will be noted Zhet.

Note that, since flows are already in quantities, the unitary price assump-
tion is not required.

Finally, the proportionality assumption is required to establish a rela-
tionship between the intermediate flows and final demand. In this case, this
assumption requires the same as in the traditional Leontief model: to create
a technical coefficients matrix Ahet, as follows:

Zhet = Ahet ·< x >⇔ A = Zhet ·< x >−1 (33)

As in the traditional Leontief model, the quantity IO model for hetero-
geneous intermediate goods is built by inserting equation 33 in 32 to find
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the traditional Leontief inverse matrix, as in the traditional Leontief model,
except that here the homogeneous goods assumption is not used. Thus,

x = (I−Ahet) · f (34)

where
Lhet = (I−Ahet)−1 (35)

would be the equivalent to the Leontief inverse matrix.
What is the analytical meaning of this model? This model is operated as a

traditional Leontief (quantity, output-driven) model, with the only difference
that each value of the IOT represents the quantity of a different product.
This difference affects the interpretations of the Leontief inverse matrix Lhet

only.
In particular, the technical coefficient matrix can be understood as the

direct requirements to produce each final good (this would be equivalent to
multiply the technical coefficients matrix by a unitary vector representing the
production of a particular final good). Thus, each column of the technical
coefficients matrix represents the direct requirements of the sector in order to
produce its final good. Since the homogeneous good assumption only affects
sectoral outputs, the technical coefficients matrix represents the heterogeneous
inputs required by each sector in order to produce its outputs, both in the
traditional Leontief model and in this case, where heterogeneous intermediate
outputs are considered.

The case of the Leontief inverse matrix is slightly different. The Leontief
matrix is also known as the total requirements matrix, i.e. it reveals the
total amount of outputs required economy-wide to produce each final output.
Therefore, each column of the Leontief matrix represents the total production
of each sector in order to produce the final good of that column sector.
When the homogeneous good assumption is used, the Leontief inverse matrix
provides the information on the total amount of goods produced and since only
one good is produced by each sector, it is known how much of this product is
produced. However, if the homogeneous good assumption is not used, the
Leontief inverse matrix still provides the information on the total amount
of goods produced but since each sector produces several heterogeneous
intermediate outputs, the composition of the total requirements is unknown,
i.e. it is unknown how much of each intermediate good is required in total.
However, this is not a limiting issue since the model can be used to recalculate
the flows associated to any given final demand and find the unknown mix
composition. It only affects the interpretation of the production multipliers
as an aggregate because the cannot be associated to a single intermediate
product.

These differences are illustrated in the following numerical example.
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Numerical example Let’s imagine an economy with two sectors, the
agricultural and a manufacturing sector. The agricultural sector sells almond
oil to the manufacturing sector and apples to final consumers and keeps
part of the almonds and apples for itself, to have seeds for next year. The
manufacturing sector sells shovels to the agricultural sector, tables to final
consumers, and screwdrivers to itself (to be able to assemble the shovels and
tables). These flows are presented in table 5 in kilogram units.

In this economy, the sectors are as interdependent as in a normal economy,
e.g. the manufacturing sector relies on the agricultural sector to provide oil
to grease and produce its tools and, similarly, the agricultural sector relies on
the manufacturing to provide the tools to dig the earth.

Agric. Manuf. Final demand Total outputs

Agriculture 5 8 20 33
Manufacturing 3 6 25 34
Resources 25 20
Total inputs 33 34

Table 5: Two sector PIOT with heterogeneous intermediate goods and a
single final output. All values in physical units: kilograms.

Using equation 33 and 35, Ahet = ( 0.152 0.235
0.091 0.175 ) and Lhet = ( 1.216 0.347

0.134 1.253 ).
Regarding the interpretation of Ahet, the direct requirements to produce

one unit (kilo) of apples (the agricultural final output) are 0.152 kilos of
seeds and 0.091 kilos of shovels, which makes sense both analytically and the
description of the economy functioning.

Regarding the interpretation of Lhet, the total (direct and indirect) re-
quirements to produce one unit (kilo) of apples are 1.216 kilos of products
from the agricultural sector and 0.134 kilos from the manufacturing sector.

The composition of the total requirements is partially known because of
the direct requirements. In other words, from the 1.216 kilos produced by
the agricultural sector in order to produce 1 kilo of apples, 1 kilo correspond
to the apples and 0.152 correspond to the seeds; the composition of the
remaining 0.064 kilos is an unknown mix between almond oil and seeds (the
two intermediate goods produced by the agricultural sector). Similarly, from
the 0.134 kilos required from the manufacturing sector, 0.091 correspond to
the shovels directly required, but the remaining 0.043 is an unknown mix
between shovels and screwdrivers (the two intermediate goods produced by
the manufacturing sector).

A new state corresponding to a new given final demand can be calculated
following the same operational steps as in the traditional Leontief model. The
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new state can also be interpreted as a differential state, since the proportion-
ality assumption is used. The state of table 5 corresponding to a new final
demand f = ( 1

0 ) is presented in table 6.

Agric. Manuf. Final demand Total outputs

Agriculture 0.184 0.033 1 1.216
Manufacturing 0.111 0.024 0 0.134
Resources 0.921 0.079
Total inputs 1.216 0.134

Table 6: Primary resources, intermediate and total production required to
produce one agricultural final unit in the economy represented in table 5. All
values in physical units: kilograms.

Following the discussion about the interpretation of Lhet, it is important to
note that the limitation on knowing the exact mix of intermediate production
can be removed by calculating the new state of the PIOT.

For example, Lhet shows that 1.216 kilos are to be produced by the
agricultural sector in order to produce 1 kilo of apples. Thank to Ahet, it was
known that at least 0.152 kilos of seeds were required but it was unknown
which mix of the remaining 0.064 was required (1.216-1-0.152). In table 6, it
can be seen that this remainder is composed by 0.032 kilos (0.184-0.152) of
seeds and 0.032 of almond oil.

In MIOTs In this section, it is sought to build a quantity output-driven
model for a MIOT considering heterogeneous intermediate production.

The structure of the MIOT is the same as in table 1 and the relationship
between monetary and quantity flows is also the same as in equations 1–3.
Using these relationships in equation 5, the generic relationship between
output quantities is:

n∑
j=1

pzij · z
q
ij + pfi · f

q
i = xf

i (36)

In equation 36, total outputs need to remain as monetary flows since total
outputs are composed of heterogeneous goods with different prices but this
does not affect the development of the model.

Note that since the homogeneous goods assumption is avoided, there is
no price homogeneity as in the traditional Leontief model (recall equations 7
and 8).
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The key question is whether the unitary price assumption requires the
homogeneous goods assumption to be applied previously. Recalling from
section 1.1 that the unitary price assumption only implies a unit change in
the quantity flow, the answer is no and the unitary price assumption can
be applied on heterogeneous goods. It only means that each intermediate
(and final) good will be measured in its own quantity units, so equations 9–11
are still valid. So, by using the unitary price assumption on heterogeneous
intermediate goods, the MIOT monetary flows can be considered as quantity
flows.

Finally, the proportionality assumption can be applied as in the traditional
Leontief model, i.e. assuming intermediate production proportional to total
outputs by means of the technical coefficients matrix and using it to derive
the Leontief inverse matrix, as in equations 12 and 14. The key difference
is that each intermediate (and final) value corresponds to a different type of
output.

The implications for the interpretation of the technical coefficients matrix
A and the Leontief inverse matrix L are the same as for the previous case,
i.e. for a PIOT with heterogeneous intermediate goods.

The interpretation of A is the same as in the case of homogeneous goods
since A reveals the input requirements of each sector, which are heterogeneous
even when applying the homogeneous goods assumption.

The interpretation of L has the same caveat as in the PIOT case. L reveals
the total (i.e. direct and indirect) requirements of the economic system to
produce its final outputs. In particular, each of its columns can be interpreted
as the total production (intermediate and final) generated by each sector in
order to produce a unit of the column sector’s final good. Since intermediate
products are heterogeneous, it cannot be unknown which products are exactly
produced by examining L alone. However, as seen in the previous numerical
example, this is easily overcome by recalculating the IOT for the new final
demand. Then, it can be ascertained what is the exact composition of the
total outputs.

To illustrate how to use and interpret the quantity output-driven model
for heterogeneous intermediate outputs, a numerical example is provided
below.

Numerical example The numerical example is based on a two sector
economy producing the same products as in the previous example. The MIOT
is represented in table 7.

The equations driving the model are the same as in the traditional Leontief
model and the model for PIOTs with heterogeneous intermediate goods (as
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Agric. Manuf. Final demand Total outputs

Agriculture 5 8 20 33
Manufacturing 3 6 25 34
Resources 25 20
Total inputs 33 34

Table 7: Two sector MIOT with heterogeneous intermediate goods and a
single final output. All values in monetary units ($).

seen in the previous section). Thus, the technical coefficient and Leontief
matrices are the same as for table 5: A = ( 0.152 0.235

0.091 0.175 ) and L = ( 1.216 0.347
0.134 1.253 ).

The interpretation of A is the same as in the PIOT with heterogeneous
intermediate goods but with the difference that quantity units are now $. So,
to produce 1 $ of apples, 0.152 $ of seeds and 0.091 $ of shovels are required.

Again, the interpretation of L is the same as in the PIOT with heteroge-
neous intermediate goods but with the difference that quantity units are now
$. So, to produce 1 $ of apples, the agricultural sector produces 1.216 $ of
intermediate and final goods and the manufacturing sector produces 0.134 $ of
intermediate goods. The exact composition of the total outputs is unknown
by looking at L but can be found by calculating the primary and intermediate
flows corresponding the production of 1 $ of apples. This calculation would
lead to the same results presented in table 6 since the equations to run the
model for a MIOT with heterogeneous intermediate goods are the same than
the equation to run the model for a PIOT with heterogeneous intermediate
goods from the previous section.

Conclusion In this section, it was assumed that intermediate production
was heterogeneous and, thus, the homogeneous goods assumption was not
used. Considering heterogeneous intermediate goods also implies that they
are heterogeneous from the the final output (except in the case where the
final output is homogeneous to one of the intermediate goods). However,
no simultaneous heterogeneous final outputs were considered and, thus, the
PIOT had no disposals to nature (simultaneous heterogeneous final outputs
will considered in the next section).

It has been shown that the homogeneous goods assumption can be avoided
in the MIOT and PIOT case. Thus, the proportionality assumption is the only
assumption required to build a IO model and the unitary price assumption is
only required for MIOTs.

PIOTs and MIOT with heterogeneous intermediate production use the
same equations as the quantity output-driven (Leontief) model. However, the
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Leontief inverse matrix does not provide as much info as in the homogeneous
goods case since it does not indicate the exact composition of the total sectoral
production. This caveat can be overcome by calculating the intermediate
flows associated to the new final demand (as illustrated in the numerical
examples).

Thus, from an analytical perspective, the homogeneous goods assumption
is not mandatory for intermediate production. However, it simplifies the
analysis of MIOTs and PIOTs because it implies a one-to-one correspondence
between sectors and goods produced. When IOTs with heterogeneous interme-
diate production are used, the researcher must remember which product each
value refers to, which complicates the analysis and can lead to confusions.

On the other hand, being able to remove the homogeneous goods assump-
tion might open the door to new applications and accounting of secondary
production, since the models for heterogeneous intermediate production can
model the production of different goods simultaneously within symmetrical
MIOTs and PIOTs.

2.1.2 Dealing with heterogeneous final goods

The concept of heterogeneous final outputs refers to the idea that several
heterogeneous final outputs coexist, not to the fact that a single final output is
heterogeneous compared to the intermediate production. The latter situation
corresponds to the case of heterogeneous intermediate goods since different
intermediate products also differ from the final product (as seen in the two
examples of the previous section).

In the following sections, the idea of heterogeneous final outputs is explored
first within the PIOT framework and then within a MIOT. In both cases,
it is assumed that intermediate production is homogeneous to simplify the
analysis.

In PIOTs A PIOT with homogeneous intermediate products and hetero-
geneous final products has several final outputs by definition. If a simple
case where only two final outputs are considered, for example, the final goods
produced by each sector and the emissions generated simultaneously, the
PIOT has the same structure as the case examined in section 1.2.3. Thus, the
model for such type of tables was first developed by Xu and Zhang (2009).

In Xu and Zhang (2009), the PIOT is treated as a MIOT in physical
units with the added disposals to nature (i.e. emission and wastes released
to nature). This implicitly implies that each sector generates intermediate
and final homogeneous goods except for the disposals to nature, since the
homogeneous goods assumption is implied when applying IO models to
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MIOTs. The homogeneous intermediate goods assumption makes it easier to
understand this model since it is clear that the disposals to nature are the
only heterogeneous flow which impedes applying the conventional Leontief
model to the PIOT.

Recalling section 1.2.3, a PIOT with homogeneous intermediate goods
and heterogeneous final outputs (with one of the final outputs homogeneous
to intermediate goods) was presented in table 2 and the analytical difficulty
posed by equation 19 was solved in equation 20 by applying rigorously the
proportionality assumption to the heterogeneous final outputs (i.e. to the
disposals to nature).

This model was further extended in Altimiras-Martin (2014) for the case
of m simultaneous heterogeneous final outputs. A PIOT with such structure
was presented in table 3. The equations constituting the IO model able to
deal with m heterogeneous final outputs were presented in the same section
(equations 27 to 31).

So, dealing with heterogeneous final outputs within PIOTs requires a
different formulation from the traditional Leontief model, whereby the het-
erogeneous final outputs are endogenised within the Leontief inverse matrix.

This difference alters the interpretation of the new Leontief inverse matrix
(equation 31). Each column of the new Leontief inverse represents the total
(intermediate and final) production generated by each sector to produce a unit
of the final output driving the model produced corresponding to the column’s
sector. So, it now includes all final heterogeneous final output produced,
even if they are disposals to nature. The interpretation of the technical
coefficients matrix remains the same: each column represents the (direct)
intermediate requirements to produce a unit of the final output driving the
model produced corresponding to the column’s sector. Thus, the m− 1 flows
of the heterogeneous final outputs do not affect the interpretation of the
technical coefficient matrix.

Numerical example Table 8 represents a three sector PIOT with six
heterogeneous final outputs: final goods f , two waste types and three emission
types: solid waste w1, waste for incineration w2, emissions to air w3, emissions
to water w4, and emissions to soil w5

Next, the amount of each type of emission generated to produce one
unit of final goods by the services sector is calculated. First, the technical
coefficients matrix is calculated using equation 22: A =

(
0.176 0.082 0.127
0.076 0.366 0.314
0.038 0.013 0.042

)
Using equation 28, the heterogeneous final output coefficient matrices for

each emission are:
E1 =

(
0.115 0 0
0 0.100 0
0 0 0.191

)
, E2 =

(
0.063 0 0
0 0.019 0
0 0 0.042

)
, E3 =

(
0.057 0 0
0 0.080 0
0 0 0.064

)
, E4 =
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Agri. Man. Ser. f w1 w2 w3 w4 w5 x

Agriculture 153 190 30 20 100 55 50 125 147 870
Manufacturing 66 845 74 658 230 45 185 145 62 2310
Services 33 29 10 67 45 10 15 25 2 236
Resources r′ 618 1246 122
Total inputs x′ 870 2310 236

Table 8: PIOT with six heterogeneous final outputs (in million tons): final
goods, two waste types and three emission types: solid waste w1, waste for
incineration w2, emissions to air w3, emissions to water w4, and emissions to
soil w5.(

0.144 0 0
0 0.063 0
0 0 0.106

)
and E5 =

(
0.169 0 0
0 0.027 0
0 0 0.008

)
.

Using equation 31, L = (I−A−E1−E2−E3−E4−E5)
−1 =

(
4.124 1.039 1.555
1.190 3.256 2.145
0.314 0.147 1.987

)
.

So, the total throughput of each sector of the economy x for the services
sector to produce one unit of final goods is

x =

4.124 1.039 1.555
1.190 3.256 2.145
0.314 0.147 1.987

 ·
0
0
1

 =

1.55
2.14
1.99


Finally, using equation 28, the corresponding emissions are: w1 =

(
0.18
0.21
0.38

)
,

w2 =
(

0.10
0.04
0.08

)
, w3 =

(
0.09
0.17
0.13

)
, w4 =

(
0.22
0.13
0.21

)
and w5 =

(
0.26
0.06
0.02

)
. For each unit of

final goods produced by the services sector, the agricultural sector produces
0.18 units of solid waste (w1), 0.10 units of incineration waste (w2), 0.09
units of air emissions (w3), 0.22 units of water emissions (w4) and 0.26 units
of soil emissions (w5), and so on for the emissions of the manufacturing and
services sectors.

It is interesting to note that the Leontief inverse matrix L has some
values well above 1 in the diagonal. This is due to the production of the
heterogeneous final outputs. For example, the agricultural sector produces
only 20 million tons of final goods while it generates a total of 477 million
tons of disposals to nature. In other words, the excess of 1 is not only due
to the direct and indirect intermediate production to produce the final good
but also to the amount of heterogeneous final outputs (emissions in this case)
generated simultaneously with the final good.

In MIOTs While models for PIOTs with heterogeneous final outputs had
been previously developed (as seen in the previous section), this is not the
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case for MIOTs.
This section aims to build a IO model applicable to a MIOT with m

heterogeneous final outputs. Such MIOT would entail an added value vector
as primary input (v′), an intersectoral matrix (Z′) and m heterogeneous
final outputs, i.e. m final demand vectors f1 to fm. The total output (and
inputs) are represented by an underlined x to highlight the difference from
the conventional IOT structure (i.e. with a single final output). A MIOT
with this structure is presented in table 9.

Sector 1 . . . Sector n Final outputs Total outputs

Sector 1
Z f1 . . . fm x...

Sector n
Added value v′

Total inputs x′

Table 9: Structure of a MIOT with m heterogeneous final outputs.

The output accounting relationship corresponding to table 9 is

Z · i + f1 + . . .+ fm = x (37)

Since heterogeneous final outputs are considered, the homogeneous goods
assumption cannot be applied as done in the traditional Leontief model.
However, for simplicity, it is assumed that intermediate production is homo-
geneous.

The issue is then: can the unitary price assumption be applied for het-
erogeneous goods? The answer, as in the heterogeneous intermediate goods
MIOT case (c.f. section 2.1.1), is yes. The fact that goods are heterogeneous
is irrelevant in the sense that the unit of each flow can be independently
redefined and unitary prices can be considered for all monetary flows.

The difference with the previous notation is that the price equations for
the final goods need to accommodate for the m heterogeneous vectors. So,
equation 3 becomes:

f f
ik = pfik · f

q
ik for i = [1, n] and k = [1,m] (38)

which becomes, when applying the unitary prices assumption,

f f
ik = 1 · f q

ik for i = [1, n] and k = [1,m] (39)

Then, the proportionality assumption must be applied to build the IO
model. However, it must be decided beforehand which of the heterogeneous
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final outputs should drive the model. In the previous case of a PIOT with
disposals to nature, the “intuitive” driver was the final output corresponding
to the final good production because the researcher wants to know what are
the emissions associated to a given final production. However, this distinction
is analytically irrelevant because all heterogeneous final outputs are linearly
related to total production (Altimiras-Martin, 2014).

Here, final output f1 is chosen as the final output driving the model for
notational convenience. So, f2 to fm will need to be made proportional to
total outputs by creating m− 1 heterogeneous output coefficient matrices Φk,
as follows

fk = Φk · x for k = 2, ...,m (40)

To calculate the heterogeneous output coefficient matrices Φk, each side
of equation 40 is diagonalised and post-multiplied by x−1, resulting in

Φk = f̂k · x̂−1 for k = 2, ...,m (41)

The proportionality assumption affects the intersectoral matrix in the
usual manner and the technical coefficients matrix is defined as:

A = Z · x̂−1 (42)

Then, using equations 40 and 42 in 37,

x = A · x + f1 + Φ2 · x + . . .+ Φm · x (43)

Rearranging,

x = (I−A−Φ2 − . . .−Φm)
−1 · f1 (44)

x = L · f1 (45)

where
L = (I−A−Φ2 − . . .−Φm)

−1 (46)

So, equation 44 constitutes the IO model for heterogeneous final output
applicable to MIOTs.

The interpretation of A is equivalent to the previous cases since the
heterogeneous final outputs do not affect its definition.

Each column of L is usually interpreted as representing the total production
(intermediate and final) of each sector in order to produce the final good
produced by that column’s sector. However, in the current case, the definition
must be refined to accommodate to the different heterogeneous final outputs.
In particular, the new Leontief inverse matrix represents the total production
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(intermediate and final) of each sector in order to produce the final good
produced by that column’s sector that is actually driving the model.

MIOTs with heterogeneous final outputs pose a new challenge because,
depending on which final demand is chosen to drive the model, a different
Leontief inverse matrix will be found, inducing different results when per-
forming a structural analysis such as backward linkage analysis. The paradox
of having a single MIOT with several production structures (m different
structure to be precise in the current case) makes sense precisely because each
final output is different (heterogeneous) and requires a different production
structure to be produced.

Numerical example A numerical example of a MIOT with three sec-
tors (agriculture, manufacturing and services) producing homogeneous in-
termediate goods. Intermediate production is as follows: the agriculture
produces soy-beans, which are sold to the agriculture (as seeds for next crop),
to the manufacturing (to produce oil to lubricate its machines) and to the
services sector (to be sold in restaurants); The manufacturing sector sells
tables to the three sectors to help in the productive process; and the service
sector sells soy porridge to the agricultural, manufacturing and services sectors.
The table has six heterogeneous products: agriculture produces apples (f1)
and tomatoes (f2), the manufacturing produces screwdrivers (f3) and chairs
(f4) and the services sector produces sweets (f5) and soy milkshake (f6). The
MIOT corresponding to this economy is presented in table 10.

Agri. Man. Ser. f1 f2 f3 f4 f5 f6 x

Agriculture 153 190 30 220 277 0 0 0 0 870
Manufacturing 66 845 74 0 0 658 667 0 0 2310
Services 33 29 10 0 0 0 0 67 97 236
Added Value v′ 618 1246 122
Total inputs x′ 870 2310 236

Table 10: MIOT with six heterogeneous final outputs (in $): apples (f1),
tomatoes (f2), screwdrivers (f3), chairs (f4), sweets (f5) and soy milkshake
(f6).

Below, the heterogeneous goods produced while producing one unit of
apples (f1) is calculated.

First, the technical coefficients matrix is calculated using equation 42:
A =

(
0.176 0.082 0.127
0.076 0.366 0.314
0.038 0.013 0.042

)
Using equation 41, the heterogeneous final output coefficient matrices are:
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Φ2 =
(

0.318 0 0
0 0 0
0 0 0

)
, Φ3 =

(
0 0 0
0 0.285 0
0 0 0

)
, Φ4 =

(
0 0 0
0 0.289 0
0 0 0

)
, Φ5 =

(
0 0 0
0 0 0
0 0 0.284

)
and

Φ6 =
(

0 0 0
0 0 0
0 0 0.411

)
.

Using equation 46, L = (I − A − Φ2 − Φ3 − Φ4 − Φ5 − Φ6)
−1 =(

3.955 7.656 11.051
10.500 42.247 55.505
1.073 3.124 8.054

)
.

So, the total output of each sector of the economy x for the agricultural
sector to produce one unit of apples is

x =

 3.955 7.656 11.051
10.500 42.247 55.505
1.073 3.124 8.054

 ·
1
0
0

 =

 3.955
10.500
1.073


Finally, using equation 40, the heterogeneous final outputs produced at

the same time than one unit of apples are: f2 =
(

1.259
0
0

)
, f3 =

(
0

2.991
0

)
,

f4 =
(

0
3.032
0

)
, f5 =

(
0
0

0.305

)
and f6 =

(
0
0

0.441

)
. For each unit of apples produced

by the agricultural sector, the economy also produces 1.259 units of tomatoes
(f2), 2.991 units of screwdrivers (f3), 3.032 units of chairs (f4), 0.305 units of
sweets (f5) and 0.441 units of soy milkshake (f6).

It is key to note that the same results could not be reproduced using
the traditional quantity output-driven model, not only because it cannot
be applied to a MIOT with heterogeneous final outputs but also because
it implies that only one final output coefficient exists, i.e. all final outputs
are produced with the same structure and at the same rate. Precisely, the
model adapted to MIOTs with heterogeneous final outputs makes it possible
to calculate the production of several final outputs with their own production
structure.

Conclusion In this section, it has been shown that the treatment of hetero-
geneous final goods do require a new formulation of the quantity output-driven
model, both in the case of PIOTs and MIOTs, by endogenising the produc-
tion of heterogeneous final outputs within the Leontief inverse matrix (see
equations 31 and 46, respectively).

The equations constituting the model for MIOTs with heterogeneous final
outputs are equivalent to the ones constituting the model for a PIOT with
heterogeneous final outputs despite the MIOT requiring an extra assumption:
the unitary price assumption.

The interpretation of A and L are also equivalent in both cases. The
interpretation of A is in fact equivalent to the interpretation of as in the
traditional Leontief model but the interpretation of L needs to accommodate
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for the inclusion of the heterogeneous final outputs within the Leontief inverse
matrix.

In the MIOT and PIOT cases, the model for heterogeneous final outputs
makes sense intuitively and analytically, opening the door for new analysis
within industrial ecology (e.g. tracing the generation of several emissions) and
economics (e.g. tracing secondary production as final outputs).

2.2 A generalised quantity output-driven model (with
heterogeneous intermediate production and hetero-
geneous final outputs)

Section 2.1.1 analysed whether it was possible to build a model with het-
erogeneous intermediate products, first for a PIOT and then for a MIOT.
Then, section 2.1.2 analysed whether it was possible to build a model with
heterogeneous final products, first for a PIOT and then for a MIOT. The
analyses were made separately in case one option was not possible. Since both
options are possible, this section aims to combine both approaches to suggest
a generalised framework underlying the quantity output-driven model. In
other words, it is sought to formulate a generic quantity output-driven model
with minimal assumption requirements using the learnings from sections 2.1.1
and 2.1.2.

In particular, the idea is to build a quantity output-driven model without
knowing whether the underlying accounting framework is a PIOT or a MIOT
that can deal with the production of heterogeneous intermediate and final
outputs (i.e. the most general case when not using the homogeneous goods
assumption).

To start with, a generic n sector IOT with n heterogeneous intermediate
outputs and m heterogeneous final outputs is presented in table 11. The units
of the table can indistinctly be monetary or physical.

Sector 1 . . . Sector n Final outputs Total outputs

Sector 1
Zhet f1 . . . fm x...

Sector n
Primary inputs p′

Total inputs x′

Table 11: n sector IOT with n heterogeneous intermediate outputs and m
heterogeneous final outputs (either in monetary or physical units).
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The IOT table can represent either monetary units (turning it into a
MIOT) or physical units (turning it into a PIOT). In any case, it is assumed
that it has been built either using the double-entry bookkeeping principle
(the underlying accounting principle of MIOTs) or the mass balance principle
(the underlying accounting principle of PIOTs). Thus, in both cases, total
outputs equal total inputs.

Also, in both cases, the output accounting relationship corresponding to
table 11 is:

x = Zhet · i + f1 + . . .+ fm (47)

By definition, table 11 entails heterogeneous final outputs; however, the
homogeneous goods assumption could still be applied to the intermediate
production. It is not applied to keep the model as general as possible.

Before applying the proportionality assumption, the attentive reader would
like to know whether the table is a MIOT or a PIOT in order to examine
whether it is required and possible to apply the unitary prices assumption.
However, the previous learning from sections 2.1.1 and 2.1.2 indicates that
the unitary price assumption is applicable to the case of heterogeneous
intermediate and final goods and it is a “transparent” assumption. In other
words, it is implicitly (and automatically) applied when considering monetary
flows as quantity flows without requiring any modification from the flow values
or IOT structure7. Thus, the output accounting relationship (equation 47)
is maintained regardless whether the IOT under examination is a PIOT or
a MIOT and the unitary price assumption does not need to be explicitly
applied.

Before applying the proportionality assumption, it must be decided which
final output will drive the model. In theory, the researcher can select any of
the heterogeneous final outputs since all final outputs will be proportional
to total outputs when applying the proportionality assumption. Here, final
good f1 is selected to simplify the notation.

Finally, the proportionality assumption is applied to transform the set of
n equations with n2 + n ·m unknowns (corresponding to intermediate and
final production unknowns) into a solvable set of n (linear) equations with n
unknowns.

To do that, three steps are required.
First, the heterogeneous intermediate production is considered propor-

tional to the total outputs, leading to the definition of the technical coefficients
7 The only difference is that the values of a PIOT will reflect the actual quantity of the

flow while the values of a MIOT imply a different quantity produced of that particular
product, as explained in section 1.1.2.
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matrix A:
Zhet = Ahet · x̂⇔ Ahet = Zhet · x̂−1 (48)

This shrinks the unknowns from intersectoral flows from n2 to n unknowns
from the x vector.

Second, the heterogeneous final outputs are also considered proportional to
total outputs, shrinking the unknowns from final output flows from n · (m− 1)
to n unknowns from the x vector.

To do that, the m− 1 are linearly related to the total outputs by means
of m− 1 heterogeneous output coefficient matrices Φk, as follows

fk = Φk · x for k = 2, ...,m (49)

To calculate the heterogeneous output coefficient matrices Φk, each side
of equation 49 is diagonalised and post-multiplied by x−1, resulting in

Φk = f̂k · x̂−1 for k = 2, ...,m (50)

Then, using equations 49 and 48 in 47,

x = Ahet · x + f1 + Φ2 · x + . . .+ Φm · x (51)

Rearranging,

x = (I−Ahet −Φ2 − . . .−Φm)
−1 · f1 (52)

where
Lgeneric = (I−Ahet −Φ2 − . . .−Φm)

−1 (53)

Third, the primary inputs are also linearly related to total outputs (i.e.
total inputs) by means of input coefficients (cp) defined as

cp′ = p′ · x̂−1 (54)

So, equation 58 constitutes a quantity output-driven model tracing het-
erogeneous intermediate and final outputs without requiring to know whether
the underlying flows are in quantity or monetary units. This equation can
be used to drive the model into a new state induced by a new final demand
f∗1 , and then equations 48, 54 and 49 can be used to calculate, respectively,
the intermediate, primary input and heterogeneous final output flows corre-
sponding to f∗1 . The issue of whether such model is practical is left for the
discussion section 3.

It must be noted that thanks to the proportionality assumption, the model
can also be understood either in absolute terms, where the new state associated
to a new final demand is considered the actual new state of the system, and
relative (or differential) terms, where where the new state associated to a new
final demand is considered the variation compared to the initial state.
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2.3 Constraining the generic model with the homoge-
neous goods assumption

The generic model for heterogeneous intermediate and final products can
be partially or totally constrained by the homogeneous goods assumption,
leading to simplifications of the model.

2.3.1 Model with homogeneous intermediate production and het-
erogeneous final outputs

Applying the homogeneous goods assumption to intermediate production
does not change the formulation of the model because, even if the rows of
Zhet are considered homogeneous, the output accounting relationship remains
the same as in equation 47. So, the corresponding Leontief inverse matrix
Lhet final follows the same formulation as in equation 59. The only difference
is that there is a one-to-one correspondence between sectors and intermediate
products, both in the cases where the IOT is a PIOT and a MIOT.

In fact, it can even be assumed that one of the heterogeneous final outputs
is homogeneous to the intermediate production. This approach was the one
implicitly used in Xu and Zhang (2009) and Altimiras-Martin (2014) to
analyse a PIOT.

2.3.2 Model with heterogeneous intermediate production and ho-
mogeneous final outputs

If the heterogeneous final outputs of the generalised model are constrained by
the homogeneous goods assumption, the heterogeneous final outputs can be
aggregated as a single final demand and the resulting table can be analysed
with the traditional quantity output-driven (Leontief) model. So,

fagg =
m∑
k=1

fk (55)

and equation 47 becomes

x = Zhet · i + fagg (56)

Assuming the unitary price assumption if required (in the case that the IOT
is a MIOT) and applying the proportionality assumption, the intermediate
production is related to total outputs as in equation 48.

Substituting equation 48 in 56:

x = Ahet · x + fagg (57)
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Rearranging,
x = (I−Ahet)−1 · fagg (58)

where
Lhet interm = (I−Ahet)−1 (59)

2.3.3 Model with homogeneous intermediate production and fi-
nal outputs (traditional quantity output-driven (Leontief)
model)

Finally, the generic model is constrained by assuming that intermediate and
final production are homogeneous using the homogeneous goods assumption
as in the traditional Leontief model.

So, Zhet becomes Z and the heterogeneous final goods can be aggregated
as in equation 55. Thus, the generic equation 47 becomes

x = Z · i + fagg (60)

which is the output accounting relationship from which the Leontief model
is built by applying the unitary price assumption and the proportionality
assumption (as seen in section 1.1).

However, equation 60 was derived from the generic model, which can be
applied to a IOT in monetary or physical units. So, this relationship can
in fact be applied to a PIOT or a MIOT indistinctly. Using it on a MIOT
implies the use of the unitary price assumption, but this assumption is not
required when applied to a PIOT.

3 Conclusion and discussion
The homogeneous goods assumption implies a one-to-one correspondence
between sectors and the goods produced within the considered system (Miller
and Blair, 2009), creating an extremely practical analytical framework. How-
ever, this comes at the expense of having to re-allocate secondary production
using different methods when building the symmetrical monetary input-output
table (MIOT) (Miller and Blair, 2009)and making it difficult to deal with
the actual production structure where different by-products, emissions and
wastes are generated by the very same production process.

In this paper, it is demonstrated that the homogeneous good assumption,
usually thought to be a fundamental assumption to build a quantity output-
driven IO model (Miller and Blair, 2009; Suh, 2004), is in fact dispensable.
Waiving this assumption makes it possible to consider symmetrical MIOTs
and PIOTs with heterogeneous intermediate and final goods, expanding the
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analytical possibilities of IOA. Waiving the homogeneous goods assumption
opens the door to devise new analyses, applications and accounting meth-
ods to build symmetrical IOTs, either by tracing secondary production as
intermediate and/or final production.

The traditional assumptions used in the quantity output-driven model
(Leontief, 1941) were first examined in section 1.1. Then, in section 1.2.3, it
was shown that models to deal with heterogeneous final outputs within the
PIOT framework had already been devised (Xu and Zhang, 2009; Altimiras-
Martin, 2014) (although, traditionally, secondary production is reallocated
using the Supply and Use Tables (c.f. section 1.3)).

In section 2.1.1, it is demonstrated that IO quantity output-driven models
can cope with heterogeneous intermediate production when applied PIOTs
and MIOTs, and, in section 2.1.2, it is demonstrated that IO quantity output-
driven models can cope with heterogeneous final production when applied
PIOTs and MIOTs.

Using the learnings from these two sections, a generalised quantity output-
driven model is suggested in section 2.2. It is shown that such model only
requires the proportionality assumption in order to be built. It is also shown
that the unitary price assumption is only required in the case that flows are
in monetary units, and this assumption is in fact “transparently” applied, i.e.
it does not require a reformulation of the generic model. It is the first time a
generic quantity output-driven model able to deal with secondary production,
both as intermediate and final production, is suggested.

The generic model is then constrained by applying the homogeneous
goods assumption on intermediate production (section 2.3.1), final production
(section 2.3.2) and intermediate and final production (section 2.3.3). It is
found that, in the last case, it leads to the equivalent formulation of the
traditional quantity output-driven model.

The formulation of a generic quantity output-driven model has key impli-
cations for how secondary production is treated. As seen in section 1.3, most
reallocation methods use the Supply and Use Tables framework to build sym-
metrical MIOTs with sectors that are as homogeneous as possible. By waiving
the homogeneous goods assumption, it is possible to rethink how symmetrical
MIOTs are built and analysed because the quantity output-driven model can
now accommodate for secondary production either within the intersectoral
matrix and/or as final outputs. Regarding the study of the physical structure
of the economy (e.g. within the Industrial Ecology field), the application of
a generic model is straight forward, since goods production is indissociable
from the generation of a multitude of by-products and disposals to nature.

The generic form of the model as devised in section 2.2 might be impractical
for economic analysis or deemed too complex as analytical tool since each
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value corresponds to a different type of good. On the other hand, the generic
model opens the possibility to analyse secondary production in a different
manner than previously allowed and, if deemed too complex, it can be
partially constrained with the homogeneous goods assumption, either to work
with homogeneous intermediate products (as illustrated in section 2.3.1) or
homogeneous final outputs (as illustrate in section 2.3.2).

A limitation of the generic model is that it implies a commodity-based
technology. In other words, when the production of a given heterogeneous
final output increases (e.g., the final output driving the model), the production
of all heterogeneous final outputs also increases. For example, imagine the
furniture industry produces several heterogeneous final outputs (chairs, tables,
closets,...). If using the generic model, the system will be driven by only one
of the heterogeneous final outputs (e.g. amount of chairs produced), but the
model will consider systematically the production of the other final outputs
in the same proportion they have been built throughout the accounting year.
This is not necessarily a caveat since it reflects the current structure of the
economic system, i.e. some final outputs are required in certain proportions.
So, the advantage of the generic model can also be considered a disadvantage,
since it is not possible to analyse the economic activity induced by a single
final output when directly related to other heterogeneous final outputs.

It is key to note that this disadvantage does not exist when the IOT
represents exclusively processes whose technology is commodity-based, e.g.
the generation of by-products and disposals to nature.

To sum up, despite the limitation described above, the generic quantity
output-driven model developed in this paper (section 2.2) constitutes a
new quantity output-driven IO model whereby secondary production as
intermediate and/or final production can be explicitly analysed in PIOTs
and MIOTs, enhancing the analytical potential of IOA and providing a new
framework to construct symmetrical PIOTs and MIOTs entailing secondary
production.
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