
1 
 

STRUCTURAL DECOMPOSITION AND SHIFT-SHARE ANALYSES: LET THE 
PARALLELS CONVERGE 

Erik Dietzenbacher and Michael L. Lahr 

ABSTRACT. Intuitively, structural decomposition analysis (SDA) demonstrates strong 
similarities to shift-share analysis (SSA). Both examine the effects of industry shifts due to 
growth (or decline) and some sort of difference in industry shares. But SSA works its shares 
across space while SDA works its shares again across industries via technology change 
(fabrication effects). Suffice it to say, SDA and SSA are related, and this chapter will formally 
combine the two disparate strands of literature. In particular, it will show how changes in 
regional growth differentials can be included into a structural decomposition analysis. 
Moreover, the present availability of a large number of input-output table panels appears to 
enable the detection of even more parallels between the two approaches. Between the 
formalization of the SSA-SDA relationship and the available I-O data, a wide range of new, 
policy-relevant empirical applications is possible. The chapter will conclude by suggesting a 
few avenues for future research. 

1. Introduction 

Both structural decomposition analysis (SDA) and shift-share analysis (SSA) have been 

widely applied in multi- and inter-regional input-output (I-O) studies. This paper shows how 

elements from SSA can be integrated in SDA. This adds a novel spatial perspective to 

decomposing the change over time in an endogenous variable into the changes in its 

constituent exogenous factors.   

Rose and Casler (1996) forwarded the idea that the structural decomposition of input-

output (I-O) tables was not unlike shift-share analysis (SSA). (Incidentally, they likened it to 

growth accounting and index number analysis as well.) Intuitively, structural decomposition 

analysis (SDA) demonstrates strong similarities to SSA. Both examine the effects of industry 

shifts due to growth (or decline) and some sort of difference in industry shares. But SSA 

works its shares across space while SDA works its shares again across industries via 

technology change (fabrication effects). Interestingly, using a set of multi-regional I-O tables 

from Spain over six years and without drawing parallels to either SSA or SDA, Oosterhaven 

and Escobedo-Cardeñoso (2011) demonstrated that regional I-O tables can be forecasted fairly 

well. One innovation they applied was lagging the “remainder” from the biproportional 

adjustment technique. This remainder looks remarkably like the “regional component” (also 

termed the “competitive effect”) in SSA. More recently, Arto and Dietzenbacher (2014) 

performed what might be termed a “dynamic” SDA to examine the effect of trade changes on 
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the growth of global CO2 emissions. This harkens parallels to dynamic SSA (Thirlwall, 1967; 

Barf and Prentice, 1988).  

Suffice it to say, SDA and SSA are related and this chapter will formally combine the 

two disparate strands of literature. In particular, it will be shown how changes in regional 

growth differentials can be included into a structural decomposition analysis. Moreover, the 

present availability of a large number of I-O table panels appears to enable the detection of 

even more parallels between the two approaches. Between the formalization of the SSA-SDA 

relationship and the available I-O data, a wide range of new, policy-relevant empirical 

applications is possible. The method proposed in this chapter may be useful for several 

avenues of research. 

2. Background 

The notion of shift-share analysis (SSA) has been around since at least Creamer 

(1943).1 SSA disaggregates regional change by industry (on a particular economic measure, 

generally employment) in order to identify the relative influence of components of that 

change. It is roughly predicated on the concept of regional comparative advantage. 

Consequently it is used to decompose growth into (a) general national trends, (b) nationwide 

industry deviations from that general trend, and (c) some remainder that is identified as the 

“regional component” of the industry’s change. Occasionally, when the region of focus is a 

very small geographic unit, some interim political-geography growth trend differentials—both 

regional and industrial—are also applied. Key points of the continued popularity of the 

approach are its minimal data requirements and technical simplicity. Of course, it helps that 

despite these potential oversimplifications, SSA tends to do a fairly good job in identifying 

the relative importance of factors that influence industrywise change in a region’s economy 

(Nazara and Hewings, 2004). 

As mentioned earlier, Rose and Casler (1996) draw parallels between structural 

decomposition analysis (SDA) of input-output (I-O) tables and SSA. SDA has been used to 

disaggregate economic change, more generally, into its proximate change components. The 

larger count of economic indicators available in I-O tables, as opposed to the SSA convention 

of using just employment or wage data, enables more variation in the analyses. But the lower 

frequency and time delay of I-O table production for a fixed geographic space has made 

available fewer data points of analysis. At its outset, SDA controlled for the three components 

                                                           
1 Certainly Victor Fuchs (1959), Edgar Dunn (1960), Lowell Ashby (1964), and Anthony Thirlwall (1967) were 
major players in the technique’s early development, and the prominence of these authors in the field of regional 
science and planning certainly induced SSA’s popular appeal. 
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of change—activity level and industry mix (as in SSA), plus technology change. But as many 

as 14 different components of change have been analyzed simultaneously using the approach 

(Rose and Chen, 1991). And while regional and multiregional SDAs have been performed, 

both have only used pairs or multiple pairs of regional or multiregional tables to perform the 

analysis.  

In summary, while SSA and SDA have similar roots, it is clear that, as yet, no SDA 

analysis has examined how a regional economy differs from its nation parent over time, which 

is the point of SSA. The purpose of the present paper is to lay out an SDA approach for 

performing such an analysis.  

Of course, this then begs the question of why it might be desirable to perform SSA in 

an SDA context. SSA reveals how well a region’s industries are performing relative to the 

nation, or other economy that contains the salient region, along a dimension of change. Thus, 

the focal quantities of SSA are the “regional components,” which show the distance of actual 

regional performance from expectations. The expected values are derived by assuming 

regional industries grow at the national average rates. In this vein, the actual and relative 

distances from expectations for industries can help reveal a region’s competitive strengths and 

weaknesses relative to national performance. This feature can be important in developing 

strategic regional development initiatives. As presently formulated, SDA does not offer this 

sort of result. 

While the above explains why SSA-type findings are of value, it does not explain why 

performing them in an SDA context could be worthwhile. As mentioned earlier, input-output 

accounts, upon which SDA is formulated, offer a myriad of different economic indicators. 

Sophisticated sets of indicators have generally been applied in a much more limited fashion 

within SSA. Nonetheless, theoretical underpinnings of SSA, as articulated by Casler (1989), 

have been extended by Graham and Spence (1998) to unfold employment-based SSA’s 

“regional component” further into partials related to input-price- and technology-related 

trends by using regression analysis to develop a productivity-growth decomposition within 

SSA. But their approach requires a panel of regional data on wage rates and output as well as 

employment, albeit a shallow one. And most countries do not release such panels of data by 

region. Meanwhile, an SDA equivalent would demand similar data for any region that is 

analyzed, but for only two points in time. Moreover, only data for the focal region and the 

nation of the analysis are needed. That is, given that I-O tables pre-exist, the data needs of 

SDA-based SSA should be far less demanding than that of the standard, regression-based 

SSA with equivalent complexity insofar as the array of applied indicators is concerned. Recall 
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that, along with its intuitive implications, SSA’s low data requirements have been key to its 

popularity. It would seem that SDA could minimize data requirements in certain shift-share 

settings and yet enable sophistication in the approach’s theoretical underpinnings. 

Yet another feature of SDA over conventional SSA is that it is able to measure the 

contribution of indirect (spillover and feedback) effects across regions. This is not to say that 

such effects are immeasurable by SSA. Indeed, Nazara and Hewings (2004) account for three 

components of change rather than the conventional two: the first is the usual national average 

growth component, and the second accounts for national sectoral growth differentials, and the 

third accounts for differential between the national sectoral growth and the weighted average 

sectoral growth rate for neighboring regions. Some spatial statistical approaches also have 

been applied to examine interregional spillover effects of shift-share components (Le Gallo 

and Kamarianakis, 2011; Li and Haynes, 2011).  

A limitation of conventional shift–share that parallels the interregional aspect 

mentioned above is its omission of intersectoral relationships. Using an approach parallel to 

that of Nazara and Hewings (2004), Romanjo and Màrquez (2008) and Màrquez, Romanjo, 

and Hewings (2009) have suggested an extension that account for such interindustry shift-

share contributions to change. That is, they define and use as the interindustry structure 

component for a particular referent industry the difference between the weighted-average 

growth rate of all other industries within the referent region and the weighted-average national 

growth rate of those same industries.  

But like most extensions of SSA, the data demands for each additional component can 

be quite challenging to meet. Moreover as more variables are added, more degrees of freedom 

are consumed by the analysis, which in turn require more data observations (years and 

regions). This is not so much the case on SDA. 

In summary then, in this paper we undertake a sort of technical reconnaissance into the 

potential of SDA for performing SSA. SDA can simultaneously account for interregional and 

interindustry effects while also accounting for nationwide and industrywide trends. In the 

original vein of SSA, SDA also has the potential to provide solid insight using few data 

points. But SDA has not examined regional trends in light of national trends in the manner 

that SSA does. We hope we sufficiently demonstrate how such an approach might be 

formulated. We conclude by pointing out the myriad types of analyses that might follow 

based on the SDA-based SSA that we formulate.  
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3. The input-output framework 

SDA works on I-O accounts. So let us start with an interregional I-O table. For our 

purposes, we use the accounts shown in Table 1, which are for a country with three regions 

(R, S, and T).2  

Table 1. A Interregional Input-Output Table 

 Intermediate deliveries Final demands Total 

 R S T R S T Exp  

R 𝐙𝐙𝑅𝑅𝑅𝑅 𝐙𝐙𝑅𝑅𝑅𝑅 𝐙𝐙𝑅𝑅𝑅𝑅 𝐟𝐟𝑅𝑅𝑅𝑅 𝐟𝐟𝑅𝑅𝑅𝑅 𝐟𝐟𝑅𝑅𝑅𝑅 𝐞𝐞𝑅𝑅 𝐱𝐱𝑅𝑅 

S 𝐙𝐙𝑆𝑆𝑆𝑆 𝐙𝐙𝑆𝑆𝑆𝑆 𝐙𝐙𝑆𝑆𝑆𝑆 𝐟𝐟𝑆𝑆𝑆𝑆 𝐟𝐟𝑆𝑆𝑆𝑆 𝐟𝐟𝑆𝑆𝑆𝑆 𝐞𝐞𝑆𝑆 𝐱𝐱𝑆𝑆 

T 𝐙𝐙𝑇𝑇𝑇𝑇 𝐙𝐙𝑇𝑇𝑇𝑇 𝐙𝐙𝑇𝑇𝑇𝑇 𝐟𝐟𝑇𝑇𝑇𝑇 𝐟𝐟𝑇𝑇𝑇𝑇 𝐟𝐟𝑇𝑇𝑇𝑇 𝐞𝐞𝑇𝑇 𝐱𝐱𝑇𝑇 

VA (𝐯𝐯𝑅𝑅)′ (𝐯𝐯𝑆𝑆)′ (𝐯𝐯𝑇𝑇)′      

Imp (𝐦𝐦𝑅𝑅)′ (𝐦𝐦𝑆𝑆)′ (𝐦𝐦𝑇𝑇)′      

Total (𝐱𝐱𝑅𝑅)′ (𝐱𝐱𝑆𝑆)′ (𝐱𝐱𝑇𝑇)′      

Labor (𝐜𝐜𝑅𝑅)′ (𝐜𝐜𝑆𝑆)′ (𝐜𝐜𝑇𝑇)′      

 

Here, 𝐙𝐙𝑅𝑅𝑅𝑅 is an 𝑛𝑛 × 𝑛𝑛 matrix and its element 𝑧𝑧𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅 gives the intermediate deliveries from 

industry i in region R to industry j in region S; 𝐟𝐟𝑅𝑅𝑅𝑅 is an n-element (column) vector with 

typical element 𝑓𝑓𝑖𝑖𝑅𝑅𝑅𝑅 indicating the final demand (including household consumption, private 

investments, and government expenditures) by region S for the produce of industry i in region 

R; 𝐞𝐞𝑅𝑅 is is an n-element (column) vector with typical element 𝑒𝑒𝑖𝑖𝑅𝑅 indicating the exports by 

industry i in region R; 𝐱𝐱𝑅𝑅 is an n-element (column) vector with typical element 𝑥𝑥𝑖𝑖𝑅𝑅 indicating 

the output of (or total amount of production by) industry i in region R; (𝐯𝐯𝑅𝑅)′ is an n-element 

(row) vector with typical element 𝑣𝑣𝑗𝑗𝑅𝑅 indicating the value added generated in industry j in 

region R; and (𝐦𝐦𝑅𝑅)′ is an n-element (row) vector with typical element 𝑚𝑚𝑗𝑗
𝑅𝑅 indicating the 

imports of industry j in region R. In addition, information from satellite accounts is often 

available. For example, the use of labor (say in hours worked). In that case, (𝐜𝐜𝑅𝑅)′ is an n-

element (row) vector with typical element 𝑐𝑐𝑗𝑗𝑅𝑅 indicating the use of labor in industry j in region 

R.   

 Following the recent discussion on global value chains and trade in value added (or 

trade in emissions), one of the questions at the regional level would be: “Who works (or 

                                                           
2 There is of course, no reason this could not be four or even more regions. But three regions typically takes any 
analysis beyond a trivial case. 
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emits) for whom?” (Serrano and Dietzenbacher, 2010; Koopman, Wang and Wei, 2014). That 

is, how much labor is (directly and indirectly) necessary in region R for the final demand 

bundle of region T? Using an interregional I-O model, the answer would be given by the 

element 𝜋𝜋𝑅𝑅𝑅𝑅 of the 3×3 matrix 𝚷𝚷, which is defined as 

 

 𝚷𝚷 = �
𝜋𝜋𝑅𝑅𝑅𝑅 𝜋𝜋𝑅𝑅𝑅𝑅 𝜋𝜋𝑅𝑅𝑅𝑅
𝜋𝜋𝑆𝑆𝑆𝑆 𝜋𝜋𝑆𝑆𝑆𝑆 𝜋𝜋𝑆𝑆𝑆𝑆
𝜋𝜋𝑇𝑇𝑇𝑇 𝜋𝜋𝑇𝑇𝑇𝑇 𝜋𝜋𝑇𝑇𝑇𝑇

� = 𝐇𝐇𝐇𝐇 = �
(𝐡𝐡𝑅𝑅𝑅𝑅)′ (𝐡𝐡𝑅𝑅𝑅𝑅)′ (𝐡𝐡𝑅𝑅𝑅𝑅)′
(𝐡𝐡𝑆𝑆𝑆𝑆)′ (𝐡𝐡𝑆𝑆𝑆𝑆)′ (𝐡𝐡𝑆𝑆𝑆𝑆)′
(𝐡𝐡𝑇𝑇𝑇𝑇)′ (𝐡𝐡𝑇𝑇𝑇𝑇)′ (𝐡𝐡𝑇𝑇𝑇𝑇)′

� �
𝐟𝐟𝑅𝑅𝑅𝑅 𝐟𝐟𝑅𝑅𝑅𝑅 𝐟𝐟𝑅𝑅𝑅𝑅
𝐟𝐟𝑆𝑆𝑆𝑆 𝐟𝐟𝑆𝑆𝑆𝑆 𝐟𝐟𝑆𝑆𝑆𝑆
𝐟𝐟𝑇𝑇𝑇𝑇 𝐟𝐟𝑇𝑇𝑇𝑇 𝐟𝐟𝑇𝑇𝑇𝑇

� (1) 

 

Note that 𝐇𝐇 is a 3× 3𝑛𝑛 matrix with labor multipliers and 𝐅𝐅 is a 3𝑛𝑛 × 3 matrix with regional 

final demands. The elements of the matrix 𝐇𝐇 are obtained as follows 

 

 𝐇𝐇 = �
(𝐝𝐝𝑅𝑅)′ 0 0

0 (𝐝𝐝𝑆𝑆)′ 0
0 0 (𝐝𝐝𝑇𝑇)′

� �
𝐋𝐋𝑅𝑅𝑅𝑅 𝐋𝐋𝑅𝑅𝑅𝑅 𝐋𝐋𝑅𝑅𝑅𝑅
𝐋𝐋𝑆𝑆𝑆𝑆 𝐋𝐋𝑆𝑆𝑆𝑆 𝐋𝐋𝑆𝑆𝑆𝑆
𝐋𝐋𝑇𝑇𝑇𝑇 𝐋𝐋𝑇𝑇𝑇𝑇 𝐋𝐋𝑇𝑇𝑇𝑇

�     (2) 

 

The vector (𝐝𝐝𝑅𝑅)′ contains the direct labor input coefficients and is defined as (𝐝𝐝𝑅𝑅)′ =

(𝐜𝐜𝑅𝑅)′(𝐱𝐱�𝑅𝑅)−1 or 𝑑𝑑𝑗𝑗𝑅𝑅 = 𝑐𝑐𝑗𝑗𝑅𝑅/𝑥𝑥𝑗𝑗𝑅𝑅. The second matrix on the right-hand side of (2) gives the 

partitioned Leontief inverse, i.e. 𝐋𝐋 = (𝐈𝐈 − 𝐀𝐀)−1. 𝐀𝐀 is the 3𝑛𝑛 × 3𝑛𝑛 matrix with input 

coefficients which in partitioned form is given by 

 

 𝐀𝐀 = �
𝐀𝐀𝑅𝑅𝑅𝑅 𝐀𝐀𝑅𝑅𝑅𝑅 𝐀𝐀𝑅𝑅𝑅𝑅
𝐀𝐀𝑆𝑆𝑆𝑆 𝐀𝐀𝑆𝑆𝑆𝑆 𝐀𝐀𝑆𝑆𝑆𝑆
𝐀𝐀𝑇𝑇𝑇𝑇 𝐀𝐀𝑇𝑇𝑇𝑇 𝐀𝐀𝑇𝑇𝑇𝑇

� 

 

where the input coefficients are defined as 𝐀𝐀𝑅𝑅𝑅𝑅 = 𝐙𝐙𝑅𝑅𝑅𝑅(𝐱𝐱�𝑆𝑆)−1 or 𝑎𝑎𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅 = 𝑧𝑧𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅/𝑥𝑥𝑗𝑗𝑆𝑆. 

 Note that the jth element of the vector (𝐡𝐡𝑅𝑅𝑅𝑅)′, i.e. ℎ𝑗𝑗𝑅𝑅𝑅𝑅, gives the total amount of labor 

used in region R that is necessary for one dollar of final demand for product j from region S. 

The scalar (𝐡𝐡𝑅𝑅𝑅𝑅)′𝐟𝐟𝑆𝑆𝑆𝑆 then gives the total amount of labor used in region R that is embodied in 

the final demand of region T for products from region S. The element 𝜋𝜋𝑅𝑅𝑅𝑅 = (𝐡𝐡𝑅𝑅𝑅𝑅)′𝐟𝐟𝑅𝑅𝑅𝑅 +

(𝐡𝐡𝑅𝑅𝑅𝑅)′𝐟𝐟𝑆𝑆𝑆𝑆 + (𝐡𝐡𝑅𝑅𝑅𝑅)′𝐟𝐟𝑇𝑇𝑇𝑇 then gives the total amount of labor used in region R that is necessary 

for all final demands by region T.  

Observe that our calculations take indirect linkages and interregional feedback effects 

into account, as far as they are national. For example, final demands in T require inputs from 

S that require inputs from R. Indirectly, final demands in T require production and therefore 
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labor use in R. What is not included in our analysis are feedback effects that run through 

foreign countries. Exactly the same example can be used with region S replaced by a foreign 

country. 

4. Adding shift-share elements 

The next step is to introduce shift-share elements into the equation (1). To this end 

write the first 𝑛𝑛 rows of the 3𝑛𝑛 × 𝑛𝑛 matrix 𝐅𝐅 as follows. 

 

 [𝐟𝐟𝑅𝑅𝑅𝑅 𝐟𝐟𝑅𝑅𝑅𝑅 𝐟𝐟𝑅𝑅𝑅𝑅]  = {𝐓𝐓𝑅𝑅 ⊗ 𝚺𝚺⊗ 𝐒𝐒}𝐑𝐑𝑓𝑓𝑁𝑁𝑁𝑁𝑁𝑁 =     

 (3) 

{[𝐭𝐭𝑅𝑅𝑅𝑅 𝐭𝐭𝑅𝑅𝑅𝑅 𝐭𝐭𝑅𝑅𝑅𝑅] ⊗ [𝛔𝛔𝑅𝑅 𝛔𝛔𝑆𝑆 𝛔𝛔𝑇𝑇] ⊗ [𝐬𝐬𝑁𝑁𝑁𝑁𝑁𝑁 𝐬𝐬𝑁𝑁𝑁𝑁𝑁𝑁 𝐬𝐬𝑁𝑁𝑁𝑁𝑁𝑁]} �
𝑟𝑟𝑅𝑅 0 0
0 𝑟𝑟𝑆𝑆 0
0 0 𝑟𝑟𝑇𝑇

� 𝑓𝑓𝑁𝑁𝑁𝑁𝑁𝑁 

Going through the equation from right to left, the scalar 𝑓𝑓𝑁𝑁𝑁𝑁𝑁𝑁 indicates the total amount of 

national final demand. That is, 𝑓𝑓𝑁𝑁𝑁𝑁𝑁𝑁 = ∑ ∑ ∑ 𝑓𝑓𝑖𝑖
𝐼𝐼𝐼𝐼𝑛𝑛

𝑖𝑖=1𝐽𝐽=𝑅𝑅,𝑆𝑆,𝑇𝑇𝐼𝐼=𝑅𝑅,𝑆𝑆,𝑇𝑇 , the sum of all elements in 

the matrix 𝐅𝐅. The diagonal elements of the 3 × 3 matrix 𝐑𝐑 give the share of the regional total 

final demand in the national final demand. For example, 𝑟𝑟𝑅𝑅 = ∑ ∑ 𝑓𝑓𝑖𝑖𝐼𝐼𝐼𝐼𝑛𝑛
𝑖𝑖=1𝐼𝐼=𝑅𝑅,𝑆𝑆,𝑇𝑇 /𝑓𝑓𝑁𝑁𝑁𝑁𝑁𝑁 and 

observe that 𝑟𝑟𝑅𝑅 + 𝑟𝑟𝑆𝑆 + 𝑟𝑟𝑇𝑇 = 1. The 𝑛𝑛 × 3 matrix 𝐒𝐒 consists of three times the vector 𝐬𝐬𝑁𝑁𝑁𝑁𝑁𝑁 

with the national final demand mix. Note that the final demand mix does not distinguish 

between the region of origin, it matters for example what households consume of 

(domestically produced) good i, not where the consumer goods come from. That is, 𝑠𝑠𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁 =

∑ ∑ 𝑓𝑓𝑖𝑖
𝐼𝐼𝐼𝐼

𝐽𝐽=𝑅𝑅,𝑆𝑆,𝑇𝑇𝐼𝐼=𝑅𝑅,𝑆𝑆,𝑇𝑇 /𝑓𝑓𝑁𝑁𝑁𝑁𝑁𝑁 and note that the shares add to one (i.e. ∑ 𝑠𝑠𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑛𝑛
𝑖𝑖=1 = 1).  

The regional final demand shares (for example for region R) are obtained as 

∑ 𝑓𝑓𝑖𝑖𝐼𝐼𝐼𝐼𝐼𝐼=𝑅𝑅,𝑆𝑆,𝑇𝑇 /∑ ∑ 𝑓𝑓𝑖𝑖𝐼𝐼𝐼𝐼𝑛𝑛
𝑖𝑖=1𝐼𝐼=𝑅𝑅,𝑆𝑆,𝑇𝑇 . The discrepancies between the regional and the national 

shares of final demands are given by the elements of the 𝑛𝑛 × 3 matrix 𝚺𝚺. That is, 𝜎𝜎𝑖𝑖𝑅𝑅 =

∑ 𝑓𝑓𝑖𝑖𝐼𝐼𝐼𝐼𝐼𝐼=𝑅𝑅,𝑆𝑆,𝑇𝑇 /(𝑠𝑠𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁 ∑ ∑ 𝑓𝑓𝑖𝑖𝐼𝐼𝐼𝐼𝑛𝑛
𝑖𝑖=1𝐼𝐼=𝑅𝑅,𝑆𝑆,𝑇𝑇 ). The operator ⊗ stands for the Hadamard product of 

elementwise multiplication. The element in row i and column R of the matrix 𝚺𝚺⊗ 𝐒𝐒 thus 

equals 𝜎𝜎𝑖𝑖𝑅𝑅𝑠𝑠𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁 = ∑ 𝑓𝑓𝑖𝑖𝐼𝐼𝐼𝐼𝐼𝐼=𝑅𝑅,𝑆𝑆,𝑇𝑇 /∑ ∑ 𝑓𝑓𝑖𝑖𝐼𝐼𝐼𝐼𝑛𝑛
𝑖𝑖=1𝐼𝐼=𝑅𝑅,𝑆𝑆,𝑇𝑇 , the share of good i in the total final 

demands of region R. Finally, the elements of the 𝑛𝑛 × 3 matrix 𝐓𝐓𝑅𝑅 give the trade coefficients, 

indicating the share of a region’s final demand for product i that originates from region R. For 

example, the ith element of the n-element vector 𝐭𝐭𝑅𝑅𝑅𝑅 yields 𝑡𝑡𝑖𝑖𝑅𝑅𝑅𝑅 = 𝑓𝑓𝑖𝑖𝑅𝑅𝑅𝑅/∑ 𝑓𝑓𝑖𝑖𝐼𝐼𝐼𝐼𝐼𝐼=𝑅𝑅,𝑆𝑆,𝑇𝑇 . 

The expression for the full 3𝑛𝑛 × 𝑛𝑛 matrix 𝐅𝐅 then becomes 
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 𝐅𝐅 = �
𝐟𝐟𝑅𝑅𝑅𝑅 𝐟𝐟𝑅𝑅𝑅𝑅 𝐟𝐟𝑅𝑅𝑅𝑅
𝐟𝐟𝑆𝑆𝑆𝑆 𝐟𝐟𝑆𝑆𝑆𝑆 𝐟𝐟𝑆𝑆𝑆𝑆
𝐟𝐟𝑇𝑇𝑇𝑇 𝐟𝐟𝑇𝑇𝑇𝑇 𝐟𝐟𝑇𝑇𝑇𝑇

�  = ��
𝐓𝐓𝑅𝑅
𝐓𝐓𝑆𝑆
𝐓𝐓𝑇𝑇
� ⊗ �

𝚺𝚺
𝚺𝚺
𝚺𝚺
�⊗ �

𝐒𝐒
𝐒𝐒
𝐒𝐒
��𝐑𝐑𝑓𝑓𝑁𝑁𝑁𝑁𝑁𝑁 = {𝐓𝐓⊗ 𝚺𝚺�⊗ 𝐒𝐒�}𝐑𝐑𝑓𝑓𝑁𝑁𝑁𝑁𝑁𝑁 (4) 

A similar distinction can be made for the 3× 3𝑛𝑛 matrix 𝐇𝐇 with labor multipliers. That is, 

 𝐇𝐇 = �
(𝐡𝐡𝑅𝑅𝑅𝑅)′ (𝐡𝐡𝑅𝑅𝑅𝑅)′ (𝐡𝐡𝑅𝑅𝑅𝑅)′
(𝐡𝐡𝑆𝑆𝑆𝑆)′ (𝐡𝐡𝑆𝑆𝑆𝑆)′ (𝐡𝐡𝑆𝑆𝑆𝑆)′
(𝐡𝐡𝑇𝑇𝑇𝑇)′ (𝐡𝐡𝑇𝑇𝑇𝑇)′ (𝐡𝐡𝑇𝑇𝑇𝑇)′

� = 

 �
(𝛄𝛄𝑅𝑅𝑅𝑅)′ (𝛄𝛄𝑅𝑅𝑅𝑅)′ (𝛄𝛄𝑅𝑅𝑅𝑅)′
(𝛄𝛄𝑆𝑆𝑆𝑆)′ (𝛄𝛄𝑆𝑆𝑆𝑆)′ (𝛄𝛄𝑆𝑆𝑆𝑆)′
(𝛄𝛄𝑇𝑇𝑇𝑇)′ (𝛄𝛄𝑇𝑇𝑇𝑇)′ (𝛄𝛄𝑇𝑇𝑇𝑇)′

� ⊗ �
(𝐡𝐡𝑁𝑁𝑁𝑁𝑁𝑁,𝑅𝑅)′ (𝐡𝐡𝑁𝑁𝑁𝑁𝑁𝑁,𝑆𝑆)′ (𝐡𝐡𝑁𝑁𝑁𝑁𝑁𝑁,𝑇𝑇)′
(𝐡𝐡𝑁𝑁𝑁𝑁𝑁𝑁,𝑅𝑅)′ (𝐡𝐡𝑁𝑁𝑁𝑁𝑁𝑁,𝑆𝑆)′ (𝐡𝐡𝑁𝑁𝑁𝑁𝑁𝑁,𝑇𝑇)′
(𝐡𝐡𝑁𝑁𝑁𝑁𝑁𝑁,𝑅𝑅)′ (𝐡𝐡𝑁𝑁𝑁𝑁𝑁𝑁,𝑆𝑆)′ (𝐡𝐡𝑁𝑁𝑁𝑁𝑁𝑁,𝑇𝑇)′

� = 𝚪𝚪⊗𝐇𝐇𝑁𝑁𝑁𝑁𝑁𝑁 (5) 

The elements of the matrix 𝐇𝐇𝑁𝑁𝑁𝑁𝑁𝑁 give the national labor multipliers. For example, ℎ𝑗𝑗
𝑁𝑁𝑁𝑁𝑁𝑁,𝑆𝑆 

gives the total amount of labor that is used nationally for the final demand of one dollar of 

good j produced by region S. This amount equals the sum of the labor use in each region, i.e. 

ℎ𝑗𝑗
𝑁𝑁𝑁𝑁𝑁𝑁,𝑆𝑆 = ∑ ℎ𝑗𝑗𝐼𝐼𝐼𝐼𝐼𝐼=𝑅𝑅,𝑆𝑆,𝑇𝑇 . The elements of the matrix 𝚪𝚪 then give the shares of the national labor 

use that take place in each of the regions. That is, 𝛾𝛾𝑗𝑗𝑅𝑅𝑅𝑅 = ℎ𝑗𝑗𝑅𝑅𝑅𝑅/ℎ𝑗𝑗
𝑁𝑁𝑁𝑁𝑁𝑁,𝑆𝑆 and note that the shares 

add to one (∑ 𝛾𝛾𝑗𝑗
𝐼𝐼𝐼𝐼

𝐼𝐼=𝑅𝑅,𝑆𝑆,𝑇𝑇 = 1, for 𝐽𝐽 = 𝑅𝑅, 𝑆𝑆,𝑇𝑇 and 𝑗𝑗 = 1, … ,𝑛𝑛). 

Combining Equations (1), (4), and (5), yields 

  𝚷𝚷 = [𝚪𝚪⊗𝐇𝐇𝑁𝑁𝑁𝑁𝑁𝑁][𝐓𝐓⊗ 𝚺𝚺�⊗ 𝐒𝐒�]𝐑𝐑𝑓𝑓𝑁𝑁𝑁𝑁𝑁𝑁      (6) 

5. The structural decomposition 

Structural decomposition analysis splits the growth in some variable (here, the matrix 

𝚷𝚷) into the contributions of the growth in its components (here, the matrix 𝚪𝚪 is one of these 

components). That is, one decomposes ∆𝚷𝚷 = 𝚷𝚷1 − 𝚷𝚷0, the change in 𝚷𝚷 between two points in 

time, indicated by 0 and 1. One possible decomposition is 

 ∆𝚷𝚷 = 𝚷𝚷1 − 𝚷𝚷0 

 = [𝚪𝚪1 ⊗ 𝐇𝐇1
𝑁𝑁𝑁𝑁𝑁𝑁][𝐓𝐓1 ⊗ 𝚺𝚺�1 ⊗ 𝐒𝐒�1]𝐑𝐑1𝑓𝑓1𝑁𝑁𝑁𝑁𝑁𝑁 − [𝚪𝚪0 ⊗ 𝐇𝐇0

𝑁𝑁𝑁𝑁𝑁𝑁][𝐓𝐓0 ⊗ 𝚺𝚺�0 ⊗ 𝐒𝐒�0]𝐑𝐑0𝑓𝑓0𝑁𝑁𝑁𝑁𝑁𝑁 

 = [𝚪𝚪1 ⊗ 𝐇𝐇1
𝑁𝑁𝑁𝑁𝑁𝑁][𝐓𝐓1 ⊗ 𝚺𝚺�1 ⊗ 𝐒𝐒�1]𝐑𝐑1𝑓𝑓1𝑁𝑁𝑁𝑁𝑁𝑁 − [𝚪𝚪0 ⊗ 𝐇𝐇1

𝑁𝑁𝑁𝑁𝑁𝑁][𝐓𝐓1 ⊗ 𝚺𝚺�1 ⊗ 𝐒𝐒�1]𝐑𝐑1𝑓𝑓1𝑁𝑁𝑁𝑁𝑁𝑁 

 +[𝚪𝚪0 ⊗𝐇𝐇1
𝑁𝑁𝑁𝑁𝑁𝑁][𝐓𝐓1 ⊗ 𝚺𝚺�1 ⊗ 𝐒𝐒�1]𝐑𝐑1𝑓𝑓1𝑁𝑁𝑁𝑁𝑁𝑁 − [𝚪𝚪0 ⊗𝐇𝐇0

𝑁𝑁𝑁𝑁𝑁𝑁][𝐓𝐓1 ⊗ 𝚺𝚺�1 ⊗ 𝐒𝐒�1]𝐑𝐑1𝑓𝑓1𝑁𝑁𝑁𝑁𝑁𝑁 

 +[𝚪𝚪0 ⊗𝐇𝐇0
𝑁𝑁𝑁𝑁𝑁𝑁][𝐓𝐓1 ⊗ 𝚺𝚺�1 ⊗ 𝐒𝐒�1]𝐑𝐑1𝑓𝑓1𝑁𝑁𝑁𝑁𝑁𝑁 − [𝚪𝚪0 ⊗𝐇𝐇0

𝑁𝑁𝑁𝑁𝑁𝑁][𝐓𝐓0 ⊗ 𝚺𝚺�1 ⊗ 𝐒𝐒�1]𝐑𝐑1𝑓𝑓1𝑁𝑁𝑁𝑁𝑁𝑁 

 +[𝚪𝚪0 ⊗𝐇𝐇0
𝑁𝑁𝑁𝑁𝑁𝑁][𝐓𝐓0 ⊗ 𝚺𝚺�1 ⊗ 𝐒𝐒�1]𝐑𝐑1𝑓𝑓1𝑁𝑁𝑁𝑁𝑁𝑁 − [𝚪𝚪0 ⊗ 𝐇𝐇0

𝑁𝑁𝑁𝑁𝑁𝑁][𝐓𝐓0 ⊗ 𝚺𝚺�0 ⊗ 𝐒𝐒�1]𝐑𝐑1𝑓𝑓1𝑁𝑁𝑁𝑁𝑁𝑁 

 +[𝚪𝚪0 ⊗𝐇𝐇0
𝑁𝑁𝑁𝑁𝑁𝑁][𝐓𝐓0 ⊗ 𝚺𝚺�0 ⊗ 𝐒𝐒�1]𝐑𝐑1𝑓𝑓1𝑁𝑁𝑁𝑁𝑁𝑁 − [𝚪𝚪0 ⊗ 𝐇𝐇0

𝑁𝑁𝑁𝑁𝑁𝑁][𝐓𝐓0 ⊗ 𝚺𝚺�0 ⊗ 𝐒𝐒�0]𝐑𝐑1𝑓𝑓1𝑁𝑁𝑁𝑁𝑁𝑁 

 +[𝚪𝚪0 ⊗𝐇𝐇0
𝑁𝑁𝑁𝑁𝑁𝑁][𝐓𝐓0 ⊗ 𝚺𝚺�0 ⊗ 𝐒𝐒�0]𝐑𝐑1𝑓𝑓1𝑁𝑁𝑁𝑁𝑁𝑁 − [𝚪𝚪0 ⊗ 𝐇𝐇0

𝑁𝑁𝑁𝑁𝑁𝑁][𝐓𝐓0 ⊗ 𝚺𝚺�0 ⊗ 𝐒𝐒�0]𝐑𝐑0𝑓𝑓1𝑁𝑁𝑁𝑁𝑁𝑁 

 +[𝚪𝚪0 ⊗𝐇𝐇0
𝑁𝑁𝑁𝑁𝑁𝑁][𝐓𝐓0 ⊗ 𝚺𝚺�0 ⊗ 𝐒𝐒�0]𝐑𝐑0𝑓𝑓1𝑁𝑁𝑁𝑁𝑁𝑁 − [𝚪𝚪0 ⊗𝐇𝐇0

𝑁𝑁𝑁𝑁𝑁𝑁][𝐓𝐓0 ⊗ 𝚺𝚺�0 ⊗ 𝐒𝐒�0]𝐑𝐑0𝑓𝑓0𝑁𝑁𝑁𝑁𝑁𝑁 
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Or, more in more compact form: 

 ∆𝚷𝚷 = 𝚷𝚷1 − 𝚷𝚷0 

 = [(∆𝚪𝚪) ⊗𝐇𝐇1
𝑁𝑁𝑁𝑁𝑁𝑁][𝐓𝐓1 ⊗ 𝚺𝚺�1 ⊗ 𝐒𝐒�1]𝐑𝐑1𝑓𝑓1𝑁𝑁𝑁𝑁𝑁𝑁 

 +[𝚪𝚪0 ⊗ (∆𝐇𝐇𝑁𝑁𝑁𝑁𝑁𝑁)][𝐓𝐓1 ⊗ 𝚺𝚺�1 ⊗ 𝐒𝐒�1]𝐑𝐑1𝑓𝑓1𝑁𝑁𝑁𝑁𝑁𝑁 

 +[𝚪𝚪0 ⊗𝐇𝐇0
𝑁𝑁𝑁𝑁𝑁𝑁][(∆𝐓𝐓) ⊗𝚺𝚺�1 ⊗ 𝐒𝐒�1]𝐑𝐑1𝑓𝑓1𝑁𝑁𝑁𝑁𝑁𝑁 

 +[𝚪𝚪0 ⊗𝐇𝐇0
𝑁𝑁𝑁𝑁𝑁𝑁][𝐓𝐓0 ⊗ (∆𝚺𝚺�) ⊗𝐒𝐒�1]𝐑𝐑1𝑓𝑓1𝑁𝑁𝑁𝑁𝑁𝑁 

 +[𝚪𝚪0 ⊗𝐇𝐇0
𝑁𝑁𝑁𝑁𝑁𝑁]�𝐓𝐓0 ⊗ 𝚺𝚺�0 ⊗ (∆𝐒𝐒)� �𝐑𝐑1𝑓𝑓1𝑁𝑁𝑁𝑁𝑁𝑁 

 +[𝚪𝚪0 ⊗𝐇𝐇0
𝑁𝑁𝑁𝑁𝑁𝑁][𝐓𝐓0 ⊗ 𝚺𝚺�0 ⊗ 𝐒𝐒�0](∆𝐑𝐑)𝑓𝑓1𝑁𝑁𝑁𝑁𝑁𝑁 

 +[𝚪𝚪0 ⊗𝐇𝐇0
𝑁𝑁𝑁𝑁𝑁𝑁][𝐓𝐓0 ⊗ 𝚺𝚺�0 ⊗ 𝐒𝐒�0]𝐑𝐑0(∆𝑓𝑓𝑁𝑁𝑁𝑁𝑁𝑁) 

The change variable in parentheses (recognized by the Δ symbol) identifies how to interpret 

each of the seven terms or components.  

1) The first shows the contribution from the change in regional shares in national labor 

use (𝚪𝚪),  

2) the second reveals the effects of change in the national labor multipliers (H),  

3) the third identifies the effects due to changes in the supplying region’s share of the 

regional final demand (T),  

4) the fourth reveals the effects of due to changes in the differences between regional and 

national final demand mixes (𝚺𝚺�),  

5) the fifth reports the effects due to changes in the national final demand mix (𝐒𝐒�),  

6) the sixth shows the effects due to changes in the shares of regional total final demand 

in the national final demand (R),  and  

7) the seventh reports the effects of due to changes in total national final demand (𝑓𝑓𝑁𝑁𝑁𝑁𝑁𝑁). 

Clearly this is just one extreme decomposition of many we could have expressed to 

achieve the same analysis. Fortunately, Dietzenbacher and Los (1997) have noted that a 

simple average of the above decomposition and its polar opposite very reasonably represents 

the average of all possible decompositions. Moreover, while the above is an additive 

decomposition, multiplicative decompositions are also conceivable (see, e.g., Dietzenbacher, 

Hoen and Los, 2000; Dietzenbacher, Lahr and Los, 2004). Indeed, they can offer the added 

benefit of decomposing on supply- and demand-side factors simultaneously.  

A key point to be made here is that the sort of analyses we suggest here would be 

hampered by roughly estimated final demand accounts. If performed using a multiplicative 

approach, the analyses could be even more compromised if value added components were 
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also only roughly estimated. In this vein, analyses of national I-O tables, for which 

extraordinary care has been taken to formulate the input-output accounts, within a broader 

framework of nations—perhaps those sharing a trade agreement (e.g., EU, BRICs, 

NAFTA)—could be ideal targets for the sort of SSA-SDA analyses that we are suggesting. In 

such instances, regions R and S in the framework described above would be representative of 

countries in the trade group to be analyzed (effectively the “nation” in our framework), and T 

reflecting relationships with countries outside of it. Still, the basic form of the equations 

would remain the same, but the number of regions and, hence, partitions composing the 

matrices would generally be greater and requiring specific adaptations. 

In a similar vein, note that our framework only identifies two periods. Clearly more 

periods could be analyzed using the framework we have outlined. They need only be studied 

serially, following the example of traditional dynamic SSA (Thirlwall, 1967; Barf and 

Prentice, 1988). Indeed, many authors have already applied SDA in such a fashion. Perhaps 

the best example is Arto and Dietzenbacher (2014), who performed what might be termed a 

“dynamic” SDA to examine the effect of trade changes on the growth of global CO2 

emissions. Indeed, armed with this SSA-SDA approach and a panel of interregional I-O 

tables, it might be interesting to revisit the aims of Oosterhaven and Escobedo-Cardeñoso 

(2011) who demonstrated that regional I-O tables can be forecasted fairly well, using a set of 

multi-regional I-O tables over a number of years. 
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