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Abstract 

This paper presents a matrix balancing technique based on Generalized Cross 

Entropy (GCE) that can be suitable for matrices containing both positive and 

negative entries. This technique makes possible sing flips in the cells of the 

initial and the estimated matrices, which can be something desirable in 

situations where assuming sign-prevention for all the entries of the matrix 

could be too restrictive. An additional advantage is that GCE allows for doing 

some inference with the estimates, something not possible when using 

biproportional balancing techniques like Generalized RAS (GRAS), which is 

the method commonly applied to balance matrices with positive and negative 

cells. The basic idea of the proposed GCE method is to assume each cell of the 

target matrix as a random variable for which we have partial information in 

the initial matrix. The GCE procedure assumes each observation in this 

matrix as a specific realization of a random process that generates the cells 

and it requires setting exogenously some bounds for the maximum and 

minimum values that this random process could generate. From this 

information, together with some partial data on the target matrix, the 

adjustment process is approached as a -constrained- minimization problem of 

a Kullback-Leibler divergence. A simple illustrative example shows how GCE 

works when adjusting a matrix characterized by having positive and negative 

entries within a Supply and Use (SUT) framework. Additionally, its 

performance is evaluated by means of a numerical simulation.  

                                            
1 The author gratefully acknowledges the financial support by the grant ECO2013-48161-R 

from the Spanish Ministry of Economy and Competitiveness. The usual disclaimer applies. 
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1. Introduction 

The information contained in an Input-output (IO) table summarizes the 

interactions that characterize a certain economy. IO tables and Social 

Accounting Matrices (SAM’s) are an essential quantitative tool both economic 

researchers and policy makers, given the huge number of possible 

applications, including Computable General Equilibrium (CGE) models, for 

analyzing productivity across industries, evaluating tax policies, studying 

income inequality, calculating global value chains in international trade or 

investigating environmental issues (see Miller and Blair, 2009, for a recent 

and exhaustive list of potential applications). IO datasets based on detailed 

surveys are, however, expensive and time-consuming for the statistical 

agencies. As a consequence, most of countries produce survey-based IO tables 

characterized by not being available for every year but every several years –

intervals of five years is the most common situation-. Additionally, there 

normally is a considerable lag between the moment of the data collection and 

the publication of the IO table. In this context, the use of some non-survey 

method for estimating IO matrices becomes useful if not necessary in many 

cases. Many different non-survey methods can be employed, but all they 

basically consist in some type of matrix adjusting or balancing: the general 

solution is a matrix that diverges least with respect to some prior matrix 

while being consistent with some aggregate observable information.  

 

The well-known biproportional RAS adjustment lies within this general 

problem and is the most frequently applied technique if all the cells in the 

matrix are positive. Adjusting a matrix with both positive and negative 

entries, however, implies some practical problems for RAS. If a RAS 

adjustment is applied to a matrix that contains negative cells, it easily leads 

to a solution that may largely deviate from the structure of the prior matrix. 

Junius and Oosterhaven (2003) proposed the so-called generalized RAS 

(GRAS) as an alternative adjustment for such situations.2 The original GRAS 

                                            
2 As Temurshoev et al. (2013) point out, the proposal by Junius and Oosterhaven (2003) 

actually bases on a previous methodology developed by Günlük-Senesen and Bates (1988). 
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formulation is a sign-preserving technique for adjusting a matrix, and it can 

be applied directly to positive and negative cells. This technique, as well as 

several other sign-preserving adjusting techniques, defines an objective 

function written in terms of absolute values with respect to the matrix 

entries.  

 

GRAS and its variants are the most popular techniques for matrix balancing 

given its computational simplicity, but their sign-preserving nature can be 

problematic in some cases. Consider, for example, the case of an initial matrix 

with all its entries in a particular row being positive (negative) whose 

elements are going to be adjusted to make them consistent with some 

posterior aggregate which is negative (positive). This is a typical case labelled 

as GRAS-infeasible, since the original GRAS formulation cannot deal with 

such a situation. Recent papers have addressed this issue, like Temurshoev 

et al. (2013) and Lenzen et al. (2014), which in a similar fashion proposed 

modifications in the GRAS algorithm to allow for sing flips in the elements to 

be adjusted. These techniques are recommended for dealing with these 

infeasibilities and to find a balanced solution by means of GRAS.   

 

But non-preserving the sign of an element in the initial matrix could be 

desirable even when the balancing problem remains feasible. This could 

happen when one or several elements of the initial matrix could have actually 

sign flipped, but the aggregate data that act as a constraint is compatible with 

the initial sign.3 In such a situation the mentioned techniques that modify 

GRAS to make it non sign-preserving will not be applied because the 

balancing problem is GRAS-feasible. However, accounting for the changes in 

                                            
3 For an example, consider the case of an initial input-output matrix like the one depicted in 

Table 1 (taken from Junius and Oosterhaven, 2003, page 94), where the total output in one 

industry is given by the intermediate and final demand plus net exports. The cell ‘next 

exports’ in the first row of Table 1 is negative (-3) and a GRAS adjustment will preserve this 

negative sign, even when in the -unknown- target matrix this cell could have turned into 

positive. 
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the sign of this set of elements would be desirable since it would improve the 

accuracy of the estimated target matrix. 

 

In this paper a Generalized Cross-Entropy (GCE) estimation is proposed for 

this type of problems. One of the advantages of the proposed technique is that 

it introduces more flexibility in the adjustment and that it allows for potential 

changes in the sign of the cells, if the researcher considers that not preserving 

the sign in some of the cells of the matrix to be balanced could make sense -

even when the adjustment problem remains feasible to be solved by means of 

conventional GRAS-. In other words, the technique suggested here assumes 

that a change in the sign of the entries could be improbable but not absolutely 

impossible. Additionally, applying GCE allows for doing some inference with 

the estimates, which is not possible when using some biproportional 

balancing technique. 

 

The paper is divided into four additional sections. Section two presents the 

basic formulation of the proposed technique, whereas section three shows its 

solution and several inference and diagnosis tools that can be implemented 

by using GCE in this context, together with an illustrative example. Section 

four compares the performance of the GCE estimation with other adjustment 

sign-preserving techniques, including GRAS, by means of a numerical 

simulation. Finally, section five presents the main conclusions and finishes 

the paper.  

 

2. Formulation 

Consider a prior (𝑇 × 𝐾) matrix 𝐀 with cells 𝑎𝑖𝑗 to be adjusted to a target 

matrix 𝐗 with unknown cells 𝑥𝑖𝑗, but with observable row and column totals 

𝒖 and 𝒗 respectively. The traditional GRAS problem is to find the matrix 𝐗 

that deviates least from 𝐀 and is consistent with the row and columns 

margins.  

 



5 

 

Junius and Oosterhaven (2003) formulated their proposed solution as a 

variant of the traditional RAS problem, but allowing for the presence of both 

positive and negative entries. Lenzen et al. (2007) suggested some 

modifications in the target function in order to account for the distance 

between the initial and the target matrix. The formulation proposed in 

Lenzen et al. (2007) is: 

𝑧𝑖𝑗 = arg  𝑚𝑖𝑛 ∑ ∑|𝑎𝑖𝑗|

𝐾

𝑗=1

𝑇

𝑖=1

𝑧𝑖𝑗𝑙𝑛 (
𝑧𝑖𝑗

𝑒
) being 𝑧𝑖𝑗 = 𝑥𝑖𝑗 𝑎𝑖𝑗⁄  (1) 

 

And 𝑒 is the base of the natural logarithm.  This minimization is subject to 

the row and column constrains: 

∑ 𝑎𝑖𝑗𝑧𝑖𝑗
𝑇
𝑖=1 = ∑ 𝑥𝑖𝑗

𝑇
𝑖=1 = 𝑣𝑗; 

 ∑ 𝑎𝑖𝑗𝑧𝑖𝑗
𝐾
𝑗=1 = ∑ 𝑥𝑖𝑗

𝐾
𝑗=1 = 𝑢𝑖  

(2) 

 

In this paper an alternative updating method applicable for matrices with 

both positive and negative cells is proposed. The proposed technique can be 

seen as an extension of the paper by Golan et al. (1994). In that paper, a 

Generalized Cross Entropy (GCE) procedure was proposed to recover 

intersectoral information from incomplete data. The context for applying this 

idea was, however, somewhat restricted since it only considered matrices of 

coefficients (bounded between 0 and 1). In this article this method is extended 

to cases where the entries of the target matrix are flows instead of coefficients 

and that can contain both positive (larger than 1) and negative cells.  

 

The point of departure is considering each element of the prior and target 

matrices, 𝐀 and 𝐗, as realizations of random variables that can take a range 

of 𝑀 possible values which are contained in a vector 𝒃′𝒊𝒋 = [𝑏𝑖𝑗1, … , 𝑏𝑖𝑗
∗ , … , 𝑏𝑖𝑗𝑀] 

with values that are set exogenously. Each support vector 𝒃𝒊𝒋 can be different 
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for every cell and contains an odd number of values that are centered on point 

𝑏𝑖𝑗
∗  symmetrically. The entries in the prior matrix determine the central 

points 𝑏𝑖𝑗
∗  for each vector. More specifically, each cell 𝑎𝑖𝑗 in the initial matrix 

𝐀 is assumed to be this particular point of its corresponding vector (𝑎𝑖𝑗 = 𝑏𝑖𝑗
∗ ), 

although any of the other points contained in 𝒃𝒊𝒋 could have been observed 

instead. These other values for each vector are specified arbitrarily by the 

researcher, depending on our beliefs about how much it is possible to deviate 

from 𝑏𝑖𝑗
∗ .  

 

For the sake of simplicity, let us illustrate this idea by considering the 

simplest case whit 𝑀 = 3. In this situation, the support vector would be 

defined as 𝒃′𝒊𝒋 = [(1 − 𝑟)𝑎𝑖𝑗 , 𝑎𝑖𝑗  , (1 + 𝑟)𝑎𝑖𝑗 ] = [𝑏𝑖𝑗1 , 𝑏𝑖𝑗
∗  , 𝑏𝑖𝑗2 ]. The scalar 𝑟 

represents a rate of variation imposed by the researcher with respect to 𝑎𝑖𝑗, 

which determines the minimum and maximum value assumed as possible for 

this cell. Note that if we set any |𝑟| ≤ 1, we prevent the possibility that this 

element could change its sign from positive to negative or vice versa, but this 

sign-preserving character can be removed just by setting a scalar  |𝑟| > 1.4    

  

Once the possible realizations for each entry in the matrices have been 

specified, given that we assume that they are generated by a random process, 

some probability distribution should be assigned to them. Although the 

support vectors for the cells of 𝐀 and 𝐗 are common, the distribution 

probabilities are different. In the case of 𝐀, these probabilities are set a priori 

by the researcher, but they are unknown for our target matrix 𝐗.  

 

Starting with the elements of matrix 𝐀, we need to specify a probability 

distribution as 𝒒′
𝒊𝒋

= [𝑞𝑖𝑗1, … , 𝑞𝑖𝑗
∗ , … , 𝑞𝑖𝑗𝑀] for each element 𝑎𝑖𝑗.  Continuing 

with the simplest case with 𝑀 = 3, one natural way of doing this is by 

                                            
4 I assume here that this scalar is common to all the cells in the matrix, but this assumption 

can be relaxed easily.  
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assuming that all the values are equally probable and setting 𝑞𝑖𝑗1 = 𝑞𝑖𝑗
∗ =

𝑞𝑖𝑗2 = 1 3⁄ . This solution gives to the value actually observed (𝑏𝑖𝑗
∗ ) the same 

probability as to the extreme cases 𝑏𝑖𝑗1 and 𝑏𝑖𝑗2. An alternative could be to 

assign an arbitrarily high probability 𝑞𝑖𝑗
∗  to 𝑏𝑖𝑗

∗   and to assume that the two 

extreme cases are equally probable to each other. Whatever the specific 

probabilities chosen, the general rule 𝑞𝑖𝑗1 = 𝑞𝑖𝑗2 = (1 − 𝑞𝑖𝑗
∗ ) 2⁄  guarantees 

that: 

𝑎𝑖𝑗 = ∑ 𝑞𝑖𝑗𝑚𝑏𝑖𝑗𝑚

𝑀

𝑚=1

 (3) 

  

We apply the same reasoning with the elements of the target matrix 𝐗, but 

now the probability distributions 𝒑′
𝒊𝒋

= [𝑝𝑖𝑗1, 𝑝𝑖𝑗2, … , 𝑝𝑖𝑗𝑀] are unknown and 

must be estimated. The value of each cell of this matrix is given by the 

expression: 

 

𝑥𝑖𝑗 = ∑ 𝑝𝑖𝑗𝑚𝑏𝑖𝑗𝑚

𝑀

𝑚=1

 (4) 

 

In this framework of analysis, the original problem of adjusting matrix 𝐗 from 

matrix 𝐀, has been transformed in a new problem where a set of posterior 

probabilities 𝐏 will be estimated from the a priori probabilities 𝐐.    

 

3. The GCE solution 

3.1. The GCE procedure: numerical optimization 

A constrained minimization problem is applied in order to find the solution to 

the GCE estimator. The estimation problem can be posed as a minimization 

program like: 
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𝑀𝑖𝑛
𝑷

𝐷(𝐏‖𝐐) = ∑ ∑ ∑ 𝑝𝑖𝑗𝑚

𝐾

𝑗=1

𝑇

𝑖=1

𝑙𝑛 (
𝑝𝑖𝑗𝑚

𝑞𝑖𝑗𝑚
)

𝑀

𝑚=1

 (5) 

Subject to:  

∑ 𝑥𝑖𝑗

𝐾

𝑗=1

= ∑ ( ∑ 𝑝𝑖𝑗𝑚𝑏𝑖𝑗𝑚

𝑀

𝑚=1

) = 𝑣𝑖

𝐾

𝑗=1

;  ∀𝑖 (6) 

∑ 𝑥𝑖𝑗

𝑇

𝑖=1

= ∑ ( ∑ 𝑝𝑖𝑗𝑚𝑏𝑖𝑗𝑚

𝑀

𝑚=1

) = 𝑢𝑗

𝑇

𝑖=1

;  ∀𝑗 (7) 

 

In the original paper by Junius and Oosterhaven (2003, pp. 90-91) and in the 

correction proposed by Lenzen et al. (2007, pp. 464-465) proofs of the bi-

proportionality of the solution of the GRAS algorithm are presented. In a 

similar fashion, this section presents the solution of the GCE program 

contained in equations (5)-(7) and it shows that the solution –estimates of the 

target matrix- achieved are not biproportional to the information contained 

in the prior matrix.  

 

The Lagrangean function related to (5)-(7) is:     

ℒ = ∑ ∑ ∑ 𝑝𝑖𝑗𝑚

𝐾

𝑗=1

𝑇

𝑖=1

𝑙𝑛 (
𝑝𝑖𝑗𝑚

𝑞𝑖𝑗𝑚
) + ∑ 𝜆𝑗 [𝑢𝑗 − ∑ ( ∑ 𝑝𝑖𝑗𝑚𝑏𝑖𝑗𝑚

𝑀

𝑚=1

)

𝑇

𝑖=1

]

𝐾

𝑗=1

𝑀

𝑚=1

+ ∑ 𝜋𝑖 [𝑣𝑖 − ∑ ( ∑ 𝑝𝑖𝑗𝑚𝑏𝑖𝑗𝑚

𝑀

𝑚=1

)

𝐾

𝑗=1

]

𝑇

𝑖=1

 

(8) 

 

With corresponding derivatives: 

𝜕ℒ

𝜕𝑝𝑖𝑗𝑚
= 𝑙𝑛 (

𝑝𝑖𝑗𝑚

𝑞𝑖𝑗𝑚
) + 1 − 𝜆𝑗𝑏𝑖𝑗𝑚 − 𝜋𝑖𝑏𝑖𝑗𝑚 = 0 (9) 
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Imposing the optimality conditions in (9) yields: 

𝑙𝑛(𝑝𝑖𝑗𝑚) = 𝜋𝑖𝑏𝑖𝑗𝑚 + 𝑙𝑛(𝑞𝑖𝑗𝑚) + (𝜆𝑗𝑏𝑖𝑗𝑚 − 1); 

or 

𝑝𝑖𝑗𝑚 = 𝑒𝑥𝑝 (𝜋𝑖𝑏𝑖𝑗𝑚)𝑞𝑖𝑗𝑚𝑒𝑥𝑝(𝜆𝑗𝑏𝑖𝑗𝑚 − 1)=�̃�𝑖𝑗𝑚𝑞𝑖𝑗𝑚�̃�𝑖𝑗𝑚 

(10) 

 

Being �̃�𝑖𝑗𝑚 = 𝑒𝑥𝑝 (𝜋𝑖𝑏𝑖𝑗𝑚) and �̃�𝑖𝑗𝑚 =  𝑒𝑥𝑝(𝜆𝑗𝑏𝑖𝑗𝑚 − 1). Note that this 

biproportional relationship between the a priori and posterior distributions 𝐐 

and 𝐏 does not hold for the prior and target matrices 𝐀 and 𝐗. This means 

that the GCE solution is not necessarily sign-preserving, but depends on the 

absolute value of scalar 𝑟 used to set the possible values included in the 

support vector.  

 

3.2. Inference  

One of the main advantages of the proposed GCE procedure is that, contrary 

to biproportional techniques like GRAS, makes possible doing some inference 

with the estimates, following Golan et al. (1994). Once the optimization 

problem depicted in equations (5) to (7) is solved and the elements �̂�𝑖𝑗𝑚 are 

recovered, point estimates of the entries of 𝐗 are calculated as in (4) by the 

expression �̂�𝑖𝑗 = ∑ �̂�𝑖𝑗𝑚𝑏𝑖𝑗𝑚
𝑀
𝑚=1 . These point estimates can be complemented 

by calculating some indicator of the variability in �̂�𝑖𝑗, given that the 

stochastics nature of the elements 𝑥𝑖𝑗 present in the GCE procedure allows 

for estimating their variances as well. The following expression: 

𝑉𝑎𝑟(�̂�𝑖𝑗) = ∑ [�̂�𝑖𝑗𝑚𝑏𝑖𝑗𝑚
2 ] − [ ∑ �̂�𝑖𝑗𝑚𝑏𝑖𝑗𝑚

𝑀

𝑚=1

]

2𝑀

𝑚=1

 
(11) 
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 calculates the estimated variances of each estimate in the target matrix. An 

additional indicator of uncertainty for each estimated cell through the 

Shannon’s entropy measure: 

𝑆(�̂�𝑖𝑗) = − ∑ �̂�𝑖𝑗𝑚 𝑙𝑛(�̂�𝑖𝑗𝑚)

𝑀

𝑚=1

, (12) 

  

which can be conveniently re-scaled from 0 to 1 by dividing it by its maximum 

value 𝑙𝑛 (𝑀). Values of 𝑆(�̂�𝑖𝑗)/𝑙𝑛 (𝑀) close to 1 will be indicating a high degree 

of uncertainty associated to the estimate of entry 𝑥𝑖𝑗, while the opposite 

situation happens for values of 𝑆(�̂�𝑖𝑗)/𝑙𝑛 (𝑀) close to 0. 

 

Additionally, hypothesis testing is also possible in the GCE framework basing 

on the relationship between the objective functions of restricted and 

unrestricted GCE problems. Let 𝐷𝑈(𝐏‖𝐐) = ∑ ∑ ∑ �̂�𝑖𝑗𝑚
𝐾
𝑗=1

𝑇
𝑖=1 𝑙𝑛 (

𝑝𝑖𝑗𝑚

𝑞𝑖𝑗𝑚
)𝑀

𝑚=1  be the 

Kullback-Leibler divergence evaluated at the solutions �̂�𝑖𝑗𝑚 of optimization 

problem as in equations (5) to (7) and 𝐷𝑅(𝐏‖𝐐) be the same function where 

the solutions are restricted to fulfil 𝐽 additional constraint (�̂�𝑖𝑗 = 0, for 

example, if  𝐽 = 1). Under some mild assumptions, Golan et al. (2000, pages 

407-408) show that: 

 

2[𝐷𝑅(𝐏‖𝐐) − 𝐷𝑈(𝐏‖𝐐)] → 𝜒𝐽
2 (13) 

 

3.3. An illustrative example 

This subsection illustrates how the GCE procedure can be implemented by 

solving the same balancing problem as in Junius and Oosterhaven (2003). As 

point of departure, the same initial matrix 𝑨 used by Junius and Oosterhaven 

(2003, page 94) to illustrate the GRAS procedure is taken as reference:  
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<<Insert   
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Table 1  around here>> 

Cells in Table 1 will be adjusted to make them consistent with the totals 

observable for the posterior matrix, as presented in Table 2: 

 

  <<Insert Table 2 around here>> 

Applying GCE requires the specification of the 𝑀 points contained in the 

support vectors 𝒃′𝒊𝒋 and that define the possible values taken in the target 

cells 𝑥𝑖𝑗. I opted for a simple case with 𝑀 = 3, where 𝒃′𝒊𝒋 = [(1 − 𝑟)𝑎𝑖𝑗 , 𝑎𝑖𝑗  , (1 +

𝑟)𝑎𝑖𝑗 ] and setting 𝑟 = 0.5, which allows each cell in the initial matrix to be 

adjusted to ±50% of its value as maximum.5 

 

The probability distributions 𝒒′
𝒊𝒋

 associated to each element 𝑎𝑖𝑗 are the other 

important point in the GCE adjustment. They implicitly reflect our beliefs 

about how much deviation can be assumed between the observed realization 

in the cell 𝑎𝑖𝑗 and its unknown counterpart 𝑥𝑖𝑗. If we believe that the 

“extreme” values (1 − 𝑟)𝑎𝑖𝑗 or (1 + 𝑟)𝑎𝑖𝑗 are not probable -i.e., the 𝑥𝑖𝑗 element 

are expected to be close to the initial cell 𝑎𝑖𝑗-, we can assign a prior 

distribution with a mass probability in the central point and 𝑞𝑖𝑗𝑚 ≃ 0 for the 

rest of values. If, on the contrary, we consider that the entry 𝑥𝑖𝑗 is not 

necessarily very close to the initial 𝑎𝑖𝑗 but it can take values across all the 

parameter space defined in 𝒃′𝒊𝒋 with equal probability, we can assume an 

uniform distribution  𝑞𝑖𝑗1 = 𝑞𝑖𝑗
∗ = 𝑞𝑖𝑗2 = 1 3⁄ . In this example I apply this 

uniform distribution and also a “spike” one as 𝒒′
𝒊𝒋

= [0.025, 0.95, 0.025]. 

 

Table 3 and Table 4 present the solutions produced by GCE under the two 

alternative a priori probability distributions considered, uniform and spike 

respectively. Each cell in these tables report the point estimates of each cell, 

                                            
5 For the sake of simplicity, in this example I prevent sign flips by setting a scalar 𝑟 < 1. 
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together with estimations of its standard deviation –in brackets- and the 

value of the normalized entropy indicator –in parentheses- described in (12). 

<<Insert Table 3 around here>> 

<<Insert Table 4 around here>> 

 

The solutions reported in these two tables are similar to each other in terms 

of the point estimates- and they are, in turn, similar to the GRAS solution in 

the original paper by Junius and Oosterhaven- indicating that the choice of 

the a priori probability distribution does not condition largely the estimates 

in this example. There are bigger differences, however, regarding the 

variability of the estimates, both in terms of their variance and the indicator 

of uncertainty measured by the normalized Shanon’s entropy indicator, which 

are lower in general when a spike a priori distribution is chosen.  Despite the 

differences between both cases, the results show how some particular cells –

like the Net exports of ‘Goods’ or the Final Consumption of ‘Services’, for 

example- exhibit large variability and uncertainty indicators. This outcome 

is an indication that the estimation of these cells can be problematic in terms 

of their reliability and that collection of data regarding these cases is 

particularly important in order to alleviate these problems.6 

 

4. A numerical experiment 

In this section the proposed GCE solution will be compared with the other 

techniques by means of a numerical simulation under several possible 

scenarios. Again, the same initial matrix 𝐀 shown in Table 1 will be the point 

of departure for the experiment. The target matrix to be estimated is different 

                                            
6 Large variability or uncertainty indicators can be taken as a signal of higher risk of making 

large estimation errors in these specific cells. See Hosoe (20014) for a recent study on the 

consequence of errors when estimating IO datasets that are later used as the basis for CGE 

models. 
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in in each trial of the numerical simulations and it is generated modifying 

each cell of Table 1 by introducing some noise: 

𝑥𝑖𝑗 = 𝑎𝑖𝑗 × 𝜀𝑖𝑗, where 𝜀𝑖𝑗~𝑁(1, 𝜎) (14) 

 

This generation process for the cells of the target preserves the zeros present 

in the initial matrix. Additionally, the standard deviation 𝜎 conditions the 

distance between the initial and the final elements. Initially I set 𝜎 = 0.1, 

given that with such a standard deviation the possibility of changes in the 

sign of the cells is virtually prevented. Additionally I try with different values 

of 𝜎 (specifically 𝜎 = 0.2 and 0.5) in order to consider larger differences 

between 𝐀 and 𝐗. Note that a standard deviation as 0.1 or 0.2 virtually 

prevents a change in the sign of the cell, but a standard deviation in 𝜀𝑖𝑗 as big 

as 0.5 allows the possibility of such a change.7 The row and column totals are 

assumed as observable in the target matrices generated and they are 

incorporated as constrains to the adjustment problem. 

 

Again, the 𝑀 points of the support vectors 𝒃′𝒊𝒋 are set for a case with 𝑀 = 3, 

and the rate of maximum and minimum change that each initial value is 

assume to vary is given by scalar 𝑟. Specifically, the values 𝑟 = 1, 2 and 10 are 

set in the experiment in order to have some indication about the sensitivity 

of the estimates to this specification. The a priori distributions 𝒒′
𝒊𝒋

 are also 

specified following the same approach as in the previous section and for each 

cell of the matrix, the GCE solutions have been obtained from two alternative 

a priori distributions: one “spike” distribution that assigns a probability close 

to one to the central values in the supporting vectors –and, consequently, a 

probability close to zero to values on the extremes- and one uniform 

                                            
7 Given the nature of the table taken as basis for the experiment, some of the cells cannot be 

negative by definition, so their sing in the target matrix should be preserved as positive. In 

order to keep the realism in the simulation, the cells reflecting flows from ‘Goods’ and 

‘Services’ to themselves and to ‘Consumption’ in the simulated final matrices are generated 

as in equation (17), but replacing 𝜀𝑖𝑗 by |𝜀𝑖𝑗| if it is originally generated  negative. The 

deviation measures calculated in the experiment are not sensitive to this correction. 
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distribution with prior probability 1/3 for all the points in the supporting 

vectors. 

 

The GCE solutions found in the experiment are compared with those by other 

balancing techniques, being one of them the GRAS algorithm. In order to 

enhance this comparison, other procedures have been considered as well. The 

recent papers by Huang et al. (2008), Pavia et al. (2009) or Termushoev et al. 

(2010) evaluated alternative adjustment techniques to the GRAS objective 

function (1), suggesting the three following variants: 

𝑧𝑖𝑗 = arg  𝑚𝑖𝑛 ∑ ∑|𝑎𝑖𝑗|(𝑧𝑖𝑗 − 1)
2

𝐾

𝑗=1

𝑇

𝑖=1

 
Improved Normalized 

Squared Differences (INSD) 

(15) 

𝑧𝑖𝑗 = arg  𝑚𝑖𝑛 ∑ ∑(𝑎𝑖𝑗)
2

(𝑧𝑖𝑗 − 1)
2

𝐾

𝑗=1

𝑇

𝑖=1

 
Improved Squared 

Differences (ISD) 

(16) 

𝑧𝑖𝑗 = arg  𝑚𝑖𝑛 ∑ ∑|𝑎𝑖𝑗
3 |(𝑧𝑖𝑗 − 1)

2
𝐾

𝑗=1

𝑇

𝑖=1

 
Improved Weighted Squared 

Differences (IWSD) 

(17) 

 

To evaluate the performance of these five estimation approaches (GCE, 

GRAS, INSD, ISD and IWSD), 1,000 trials have been carried out. There are 

several different deviation measures that can be applied to evaluate the 

adjustment (see Lahr 2001, appendix 3, for a survey of the possible measures). 

In the experiment I opted for calculating the Weighted Absolute Percentage 

Error (WAPE), which has been largely used when evaluating the performance 

of adjusting techniques (see Jiang et al., 2010a and 2010b, for recent 

examples). This measure averages the percentage error giving larger weights 

to errors in large cells than errors in small cells (Oosterhaven et al, 2008). It 

is defined as: 

𝑊𝐴𝑃𝐸 = ∑ ∑ 100
|𝑥𝑖𝑗 − �̂�𝑖𝑗|

∑ ∑ |𝑥𝑖𝑗|𝐾
𝑗=1

𝑇
𝑖=1

𝐾

𝑗=1

𝑇

𝑖=1

 (18) 
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where the �̂�𝑖𝑗 elements denote the estimated entries. Additionally, the so-

called Standardized weighted absolute difference (SWAD) is calculated as 

follows:  

𝑆𝑊𝐴𝐷 = ∑ ∑
|𝑥𝑖𝑗| × |𝑥𝑖𝑗 − �̂�𝑖𝑗|

∑ ∑ [𝑥𝑖𝑗]
2𝐾

𝑗=1
𝑇
𝑖=1

𝐾

𝑗=1

𝑇

𝑖=1

 (19) 

 

The SWAD is a deviation measure similar to WAPE, but now the absolute 

deviations are weighted by the size of the true transactions (Lahr, 2001). 

Table 5 shows the results. 

  <<Insert Table 5 around here>> 

 

Deviation measures in Table 5 indicate a very similar performance between 

GRAS and INSD, which both clearly beat ISD and IWSD under any of the 

three scenarios simulated. These results are similar to those reported in 

Temurshoev et al. (2011) where several adjusting techniques were evaluated 

by means of an empirical application for The Netherlands and Spain (see 

Tables 2, 3 and 4 in Temurshoev et al., 2011).  The proposed GCE technique, 

however, slightly outperforms GRAS and INSD and the gains in 

comparatively smaller deviations become larger when scalar 𝜎 grows. This 

result is not surprising, given that the GCE technique is not a strictly sign-

preserving: it departs from the cell present in the prior matrix but allows for 

a potential change of sign in the corresponding posterior cell. We can assume 

this change as more or less likely by setting the a priori probabilities 𝒒. 

Generally speaking, the higher the probability assigned to the central point 

in the support vectors (𝑞𝑖𝑗
∗ ), the smaller the probability of a change in the sign 

of the solution. The performance of the technique seems relatively insensitive 

to changes in the support vectors (by changing the scalar 𝑟) or to changes in 

the a priori distributions set in  𝒒. 
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5. Concluding remarks 

An adjustment technique for matrices with positive and negative cells has 

been proposed in this paper. The suggested Generalized Cross-Entropy (GCE) 

method has as one its main advantages a higher flexibility when compared 

with other traditional sign-preserving techniques. Given that it requires the 

specification of a supporting vector containing all the possible realizations of 

each cell, it allows for preventing changes in the sign simply by not 

considering values that could lead to such a change. Alternatively, supporting 

vectors with values that change the sign of a cell can be included with an 

arbitrarily low a priori probability. This situation can reflect researcher’s 

belief about the behavior of a specific entry in a matrix, where a change in its 

sign can be improbable but not totally impossible. Additionally, GCE offers 

the possibility of doing some inference with the estimates, something that is 

not possible with traditional balancing techniques based on biproportional 

adjustment.  

 

The numerical experiment conducted in the paper, producing smaller 

deviation measures than other competing procedures, suggests that the 

proposed GCE technique can be considered as an alternative to other 

adjustment methods. The possibility of deriving indicators of variability and 

uncertainty for each estimated cell of the matrix is also attractive, since it 

allows for identifying specific cells that can be problematic. Interestingly, one 

potential application of this technique is to use it combined with other sign-

preserving techniques like GRAS: in the estimation of Supply and Use Tables 

(SUT’s), GRAS can be used when changes in the sign are virtually impossible 

–i.e., in the case of the matrix of intermediate demand- while GCE can be 

applied only to parts of the table where these changes are possible –i.e., the 

final demand matrix-. 
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Table 1. Initial matrix to be adjusted 

 

 
Goods Services Consumption Net exports 

Total 

output 

Goods 7 3 5 -3 12 

Services 2 9 8 1 20 

Net Taxes -2 0 2 1 1 

Total Use 7 12 15 -1 33 

Value added 5 8 0 0 13 

Total input 12 20 15 -1  

Source: Junius and Oosterhaven (2003, page 94) 

 

 

Table 2. Target matrix, only row and column totals observable  

 

 
Goods Services Consumption Net exports 

Total 

output 

Goods     15 

Services     26 

Net Taxes     -1 

Total Use 9 16 17 -2 40 

Value added 6 10 0 0 16 

Total input 15 26 17 -2  

Source: Junius and Oosterhaven (2003, page 94) 

  



21 

 

Table 3. GCE solution, uniform a priori distribution 

 

 
Goods Services Consumption Net exports 

Total 

output 

Goods 

9.51 

[1.91] 

(0.61) 

3.44 

[1.16] 

(0.94) 

5.66 

[1.96] 

(0.95) 

-3.60 

[1.11] 

(0.89) 

15 

Services 

2.30 

[0.77] 

(0.94) 

12.56 

[2.12] 

(0.50) 

10.19 

[1.96] 

(0.95) 

0.94 

[0.41] 

(0.99) 

26 

Net Taxes 

-2.81 

[0.45] 

(0.48)  

1.15 

[0.40] 

(0.40) 

0.66 

[0.29] 

(0.64) 

-1 

Total Use 9 16 17 -2 40 

Value added 6 10 0 0 16 

Total input 15 26 17 -2  

Note: point estimates are reported on each cell, together with its standard deviation in 

brackets and the normalized entropy indicator 𝑆(�̂�𝑖𝑗)/𝑙𝑛 (𝑀) in parentheses. 

 

Table 4. GCE solution, “spike” a priori distribution 

 

 
Goods Services Consumption Net exports 

Total 

output 

Goods 

9.73 

[1.45] 

(0.48) 

3.22 

[0.55] 

(0.41) 

5.68 

[1.12] 

(0.54) 

-3.63 

[0.74] 

(0.62) 

15 

Services 

2.08 

[0.29] 

(0.30) 

12.78 

[1.65] 

(0.40) 

10.18 

[1.99] 

(0.63) 

0.97 

[0.14] 

(0.29) 

26 

Net Taxes 

-2.81 

[0.39] 

(0.44)  

1.14 

[0.35] 

(0.38) 

0.66 

[0.24] 

(0.58) 

-1 

Total Use 9 16 17 -2 40 

Value added 6 10 0 0 16 

Total input 15 26 17 -2  

Note: point estimates are reported on each cell, together with its standard deviation in 

brackets and the normalized entropy indicator 𝑆(�̂�𝑖𝑗)/𝑙𝑛 (𝑀) in parentheses. 
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Table 5. Deviations between target and estimates in the numerical 

simulation (1,000 trials) 

 𝜀𝑖𝑗~𝑁(1,0.1) 

 Technique  WAPE (%) SWAD 

GRAS 4.03 0.004 

INSD 4.04 0.004 

ISD 5.96 0.006 

IWSD 9.42 0.009 

𝒒′
𝒊𝒋

= [0.333, 0.333, 0.333] 
GCE (𝑟 = 1) 3.61 0.004 

GCE (𝑟 = 2) 3.61 0.004 

GCE (𝑟 = 10) 3.61 0.004 

𝒒′
𝒊𝒋

= [0.025, 0.95, 0.025] 
GCE (𝑟 = 1) 3.60 0.004 

GCE (𝑟 = 2) 3.60 0.004 

GCE (𝑟 = 10) 3.61 0.004 

 𝜀𝑖𝑗~𝑁(1,0.2) 

 Technique  WAPE (%) SWAD 

GRAS 8.09 0.009 

INSD 8.10 0.009 

ISD 11.92 0.012 

IWSD 18.56 0.018 

𝒒′
𝒊𝒋

= [0.333, 0.333, 0.333] 
GCE (𝑟 = 1) 7.22 0.008 

GCE (𝑟 = 2) 7.22 0.008 

GCE (𝑟 = 10) 7.22 0.008 

𝒒′
𝒊𝒋

= [0.025, 0.95, 0.025] 
GCE (𝑟 = 1) 7.21 0.008 

GCE (𝑟 = 2) 7.20 0.008 

GCE (𝑟 = 10) 7.21 0.008 

 𝜀𝑖𝑗~𝑁(1,0.5) 

 Technique  WAPE (%) SWAD 

GRAS 21.34 0.023 

INSD 20.69 0.022 

ISD 29.24 0.031 

IWSD 40.54 0.042 

𝒒′
𝒊𝒋

= [0.333, 0.333, 0.333] 
GCE (𝑟 = 1) 18.12 0.019 

GCE (𝑟 = 2) 17.93 0.019 

GCE (𝑟 = 10) 18.43 0.020 

𝒒′
𝒊𝒋

= [0.025, 0.95, 0.025] 
GCE (𝑟 = 1) 18.26 0.020 

GCE (𝑟 = 2) 18.22 0.019 

GCE (𝑟 = 10) 18.00 0.019 

 

 


