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1. An introduction to the problems of matrix updating  

The subject of this study is a general problem of updating rectangular (or square) matrices, which 

can be formulated as follows. Let A be an initial matrix of dimension NM with row and column 

marginal totals MAeuA  , AevA N  where Ne  and Me  are N1 and M1 summation column 

vectors with unit elements. Further, let Auu   and Avv   be exogenous column vectors of 

dimension N1 and M1, respectively. The problem is to estimate a target matrix X of dimension 

NM at the highest possible level of its structural similarity (or closeness, etc.) to initial matrix A 

subject to N+М equality constraints 

uXe M ,                vXe N                                                   (1) 

and under the consistency condition  

veue MN  .                                                               (2) 

It is assumed that initial matrix A does not include any zero rows or zero columns, does not 

have less than N+М nonzero elements, does not include any rows or columns with a unique 

nonzero element, and does not contain any pairs of rows and columns with four nonzero elements 

in the intersections. Otherwise, it is advisable to clean matrix A from those undesirable features 

before applying any matrix updating method in practice. 
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Clearly, the system of equations (1) is dependent at consistency condition (2) which 

provides an existence of target matrix X. However, it is easy to show that any N+М–1 among 

N+М constraints (1) are mutually independent. Furthermore, it is evident that any feasible 

solution of matrix updating problem X can be simply transformed into another one by letting, 

e.g., 

 ijijimimnjnjnmnm xxxxxxxx newnewnewnew ,;,  

where  is an arbitrary scalar, or 

2,2,;2,2, newnewnewnewnewnew  ikikijijimimnknknjnjnmnm xxxxxxxxxxxx , 

and so on. 

Thus, general problem of matrix updating significantly depends on a definition of the 

measure for structural similarity between initial and target matrices. Various definitions of this 

measure generate a great manifold of different methods and techniques for matrix updating. As 

Temurshoev et al. (2011, p. 92) rightly noted, “it is impossible to consider all updating methods, 

because theoretically their number is infinite”. 

A notion of structural similarity between initial and target matrices has a Hvague H framework 

that can be slightly refined in an axiomatic manner. In this context let us consider a particular 

case of strict proportionality between row and column marginal totals Auu k  and Avv k  for 

target and initial matrices with the same scalar multiplier k. Here the main question arises: can we 

accept the matrix AX k  as optimal solution for proportionality case of a general matrix 

updating problem? At first sight this solution can be appreciated as rather logical and, moreover, 

it allows preserving in X the same location of zeros as in the initial matrix. However, it is to be 

emphasized that the above question indeed seems neither simple nor evident, and its proposition 

cannot be proved formally. 

Nevertheless, in most practical situations an affirmative answer to this question is almost 

obvious. In particular, the well-known and widely used RAS and Kuroda’s methods for matrix 

updating serve as an additional instrumental confirmation to such an answer. 

2. The proportionality case from the viewpoint of RAS method 

The key idea of the RAS method is triple factorization of target matrix 

sArsArRASX ˆˆ                                                    (3) 

where r and s are unknown N1 and M1 column vectors. Here angled bracketing around a 

vector’s symbol or putting a “hat” over it denotes a diagonal matrix, with the vector on its main 

diagonal and zeros elsewhere (see  Miller and Blair, 2009, p. 697). 

Putting (3) into (1), we have the system of nonlinear equations 
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urAsAsresAr  ˆˆˆ M ,            vrAssArsAre  ˆˆˆN . 

Proper transformations of this system lead to following pair of iterative processes: 

uvrAAr
11

)1()(



 ii ,      i = 1I;           vrAs
1

)()(


 II ;                    (4) 

vuAsAs
11

)1()(



 jj ,       j = 1J;          uAsr
1

)()(


 JJ                      (5) 

where i and j are iteration numbers, and the character “  ” between the lower and upper bounds 

of index’s changing range means that the index sequentially runs all integer values in the 

specified range. 

As concerning a case of strict proportionality between row and column marginal totals 

Auu k  and Avv k , it can be easily shown that under starting condition Ner )0(  or Mes )0(  

the RAS method iterative process (4) or (5) demonstrates one-step convergence to pair of vectors 

Ner  , Mkes   or to Nker  , Mes  , respectively. Hence, RAS algorithm’s implementation 

gives  ksr mn   for any n and m, n = 1N, m = 1M, from which X = kA. Besides, it is easy to see 

that replacing the initial matrix A with its homothety kA leaves the RAS method iterations (4) 

and (5) invariant. 

3. The proportionality case from the viewpoint of Kuroda’s method 

Kuroda (1988) proposed an original method for matrix updating that reduces to constrained 

minimization of the twofold-weighted quadratic objective function 

  vvuuvu xWxxWxxx 21K 2

1

2

1
,f                                       (6) 

where 1W  and 2W  are the nonsingular diagonal matrices of order NM  with the relative reliability 

or relative confidence factors (weights), ux  and vx  are NM-dimensional column vectors that are 

defined through applying the vectorization operator “vec”, which transforms a matrix into a 

vector by stacking the columns of the matrix one underneath the other (see Magnus and 

Neudecker, 2007), as follows: 

 AuXux Au
11 ˆˆvec    ,           11 ˆˆvec   Av vAvXx . 

By the way, the vectorization operator, if it applies to matrix B with dimensions NM for 

obtaining NM-element column vector b, can be represented as the column vector expansion  

 



M

m
mMNmM

1
,,vec BeEeBb                                              (7) 

where NE  is an identity matrix of order N, the character “  ” denotes the Kronecker product for 
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two matrices, and mM ,e  is mth column vector from the natural basis for M-dimensional vector 

space, with mth element equal to 1 and zeros elsewhere. It can be shown that the corresponding 

inverse transformation is determined by matrix expansion 

 


 
M

m
mMNmM

1
,,

1vec ebEebB . 

To continue with the Kuroda’s method, in the proportionality case the row and column 

marginal totals for target matrix are Auu k  and Avv k , hence 







   AXuAuXu AA k

1
ˆˆˆ 111  ,          111 ˆ

1
ˆˆ  






  AA vAXvAvX

k
. 

Thus, at AX k  the vectors ux  and vx  vanish, and the quadratic function (6) reaches its absolute 

minimum value equal to zero. It means that from viewpoint of Kuroda’s method, as well as RAS 

method, the matrix AX k  provides the optimal solution for proportionality case of a general 

matrix updating problem. 

4. The proportionality case once more: Kullback – Leibler divergence 

The RAS method is fairly associated with a more general notion of conditional minimizing non-

negative function called the Kullback – Leibler divergence that can be used for comparing 

“true” and “test” probability distributions (see Kullback and Leibler, 1951). Letting MNa Aee  

and MNx Xee , we have the first distribution as A/a, and the second one – as X/x, or possibly 

vice versa, but with much more vague interpretation. So all elements of A and X are implied to 

be non-negative.  

In these denotations the Kullback – Leibler divergence (sometimes called “information 

gain”) has genuine representation as 

a

x

ax

a

a

x

a

a
xa
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M
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KL 
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XAXA                        (8) 

and inverse representation, with an opposite order of its arguments, as 

x

a
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1

ln);(f KL
1 1
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






 

 

AXAX                        (9) 

where );(fKL XA  and );(fKL AX  are corresponding Kullback – Leibler functions for non-

normalized data.  

Thus, the approach based on the Kullback – Leibler divergence comes to minimization of 

objective function (8) or (9) subject to linear constraints (1) under the consistency condition (2). 

It is easy to see that in the proportionality case with AX k  the non-negative functions (8) and 
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(9) reach their absolute minimum (zero) values since 
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It means that from viewpoint of the Kullback – Leibler divergence approach, as well as RAS and 

Kuroda’s methods, the matrix homothety AX k  can be considered as optimal solution for 

proportionality case of a general matrix updating problem. 

Notice, finally, that the function );(fKL AX  for non-normalized data from the inverse 

representation of Kullback – Leibler divergence (9) despite a certain shortcoming in its 

interpretation serves as an objective function in mathematical programming formulation of the 

RAS method, e.g., in Appendix 7.1 “RAS as a Solution to the Constrained Minimum Information 

Distance Problem” to Miller and Blair (2009). Moreover, it is to be emphasized that the 

Kullback – Leibler divergence is not a distance function really because the symmetry and triangle 

inequality conditions do not hold for it. 

5. On measurement of structural similarity between initial and target matrices 

Acceptance of the matrix AX k  as optimal solution for proportionality case leads to 

establishing the fact that the matrices from homothetic family Ak  demonstrate an excellent 

structural similarity between each other. This conclusion can be helpful for refining a collection 

of matrix updating methods based on constrained minimization of the distance functions. 

A quite common approach to define a measure for the structural similarity between initial 

and target matrices is to use some matrix norm for the difference AX   to be minimized 

subject to linear constraints (1) under the consistency condition (one can find the proper reviews, 

e.g., in Miller and Blair, 2009 and Temurshoev et al., 2011), so that the optimal solution is 

AXX
X

 minarg . However, now we can set a goal to dispose the target matrix as close as 

possible not to initial matrix A, but to its homothetic family kA. As a result, the optimal solution 

becomes   AXX
X

kk
k



,
minarg, , and, clearly, it cannot be “worse” (in terms of the 

certain matrix norm chosen) than the original one. 

The problem to minimize the distance between target matrix X and uniparametrical family 

kA is presented above in preliminary formulation. The further handling of this problem becomes 

more operational with a vectorization of matrices A and X by applying a vector expansion (7) for 

transforming them into NM-element column vectors, respectively, Aa vec  and Xx vec . It is 
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fruitful to express the latter vector in form of multiplicative pattern qax ˆ  where q is NM-

dimensional column vector of unknown relative coefficients. Note that if the initial matrix 

contains at least one zero element then diagonal matrix â  is singular. 

In vector notation the transition from ax   to ax k  leads to an idea of orthogonal 

projecting an unknown target vector x onto the homothetic ray ka in NM-dimensional vector 

space with scalar product operation. To make this vector norm minimization problem 

independent on scale of initial data, it is expedient to introduce into consideration the relative 

distance function NMkeq  instead of ax k , i.e., to consider the orthogonal projection of an 

unknown target vector q onto the relative homothetic ray NMke . 

6. Reducing a dimension of the target vector with zero elements 

The multiplicative vector pattern qax ˆ  can be written in matrix notation as 

AQX                                                                  (10) 

where Q is NM matrix of unknown coefficients nmq , and the character “  ” denotes the 

Hadamard’s product for two matrices of the same dimensions. For example, in the RAS method 

srQ  , as shown above. It is important to note here that model (10) provides in X (and in x too) 

the same location of zeros as in the initial matrix (vector). 

It is easy to see that Hadamard-multiplicative model (10) is not strictly identifiable if the 

initial and target matrices do contain one or more zero elements. Indeed, if the matrices A and X 

are known both and 0 nmnm xa  for some n and m then one cannot determine the coefficient 

nmq  unambiguously. That is why it is advisable to exclude all zero elements from the initial and 

target vectors in advance. 

In this context, to formulate properly the problem of matrix updating on the criterion base 

presented above, one needs to convert left-hand sides of the constraints (1) into vector notation. It 

is easy to see that the NNM matrix NM EeG  , which consists of M identity matrix NE  located 

horizontally, and the MNM matrix NeEH  M  – N-fold successive replication of each column 

from identity matrix ME  – are the proper substitutes of summation vectors Me  and Ne  in (1) 

respectively. Thus, the system of equations (1) and original NM-dimensional multiplicative 

pattern qax ˆ  can be combined as follows: 

uqaGGxXe  ˆM ,               vqaHHxeX  ˆN .                           (11) 

The procedure of eliminating all zero elements from the initial and target vectors can be 

implemented during simultaneous premultiplication of vectors a, x and q by identity matrix of 
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order NM which is transformed by deleting those rows that correspond to zero elements of a. Let 

NME  denote this rectangular matrix with dimensions JNM where NMJ   is the number of 

nonzero elements in the initial matrix (and vector). Then the matrices G and H in (11) must be 

replaced by NJ matrix NMEG   and MJ matrix NMEH   respectively. For convenience, we will 

keep on the previous denotations a, x, q, G and H throughout the text below. 

Thus, the operation of excluding zero elements allows reducing the dimension of solution 

space for the matrix updating problem in more or less degree. It is to be emphasized that in 

practice the macroeconomic matrices of high dimensions often appear to be very sparse, up 

to more than 90% of zero elements. In such cases, the efficiency of ensuing computations 

increases rather significantly. 

Recall that under consistency condition (2) any N+М–1 among N+М constraints (11) are 

mutually independent. Note also that each column of G and H includes exactly one nonzero 

(unit) element such that JMN eHeGe  . 

7. Vector formulations of the Hadamard-multiplicative model 

Harthoorn and van Dalen (1987) applied Hadamard-multiplicative model (10) in the problem of 

minimizing the quadratic function 

     NMNM eqawaeqq   ˆˆˆf 1
HvD                                      (12) 

subject to linear constraints (11). Here ŵ  is the known diagonal NMNM matrix of relative 

confidence factors for the elements of initial vector â . Objective function (12) is being 

minimized and so determines the shortest (weighted) path from the point q to the point NMe . 

0BWith a goal to dispose the target vector q as close to the relative homothetic ray Jke  as 

possible, we can formulate the generalized problem of matrix updating in the solution space of 

reduced dimension as follows: to minimize the objective distance function Jkk eqq );(f  

with a scalar parameter k subject to mutually dependent linear constraints (11). In practical case 

the generalized problem can be instantiated by means of certain choice of a vector norm, e.g., one 

from well-known family of Hölder norms with parameter p, etc. 

At the choice of Euclidean norm (p = 2) which corresponds to Frobenius matrix norm (as in 

Harthoorn and van Dalen’s method), the uniparametrical objective function of matrix updating 

problem in the Euclidean solution space of reduced dimension in accordance with general least 

squares (GLS) principles becomes 

)()();(f JJ kkk eqWeqq                                               (13) 

where k is a scalar parameter unknown a priori, and wW ˆ  is a nonsingular diagonal matrix of 
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order J  with the relative reliability (relative confidence) factors for elements of vector q. In terms 

of GLS vector Jke  can be interpreted as a mean of random vector q, and W – as a inverse 

covariance matrix for q in case of zero autocorrelations. Usually vector w is assumed to be 

normalized by multiplying it on a proper factor, i.e., 1 weJ . 

Objective function (13) is to be minimized subject to mutually dependent linear constraints 

(11); it determines the shortest weighted path from the solution point q to the relative homothetic 

ray Jke . This function is rather similar to (12) proposed by Harthoorn and van Dalen (1987). 

Nevertheless, there are at least two significant distinctions between them. First, Harthoorn and 

van Dalen do have used metric (not relative) measure based on vector x – a, and secondly, they 

have not used the operation of orthogonal projecting onto a homothetic ray. 

8. Homothetic and angular measures for matrix similarity 

Let (y, z) = y'Wz = z'Wy be an scalar product of vectors y and z in J-dimensional weighted 

Euclidean space. Orthogonal projection of q on the ray Jke  is determined by coefficient 

JJJk WeeWqe   from evident condition 0)(  
JJ k eqWe  and equals vector Jk e . Hence, the 

shortest path from the point q to the ray Jke  is lying along the vector 

q
Wee

Wee
Eeqδ 











 

JJ

JJ
JJk .                                          (14) 

Note that the scalar product of vectors δ  and Je  equals 0 WqeWqeWδe JJJ  so δ  

is indeed orthogonal to homothetic ray Jke  and besides has zero weighted sum of all elements. 

The shortest path from the point q to the ray Jke  can serve as a measure for deviation of relative 

target vector q from homothetic ray Jke  that is further called homothetic measure of structural 

similarity between initial and target matrices.  

It can be shown that symmetric idempotent matrix in parentheses in (14) has zero 

eigenvalue with unit multiplicity and corresponding eigenvector Je , and also has unit eigenvalue 

with multiplicity J–1 and corresponding eigenvector z from the hyperplane 0 Wze J , which is 

orthogonal to homothetic ray. Therefore, this singular matrix has rank J–1. 

Nevertheless, the most natural measure for similarity between a vector and a ray can be 

defined as a value of the angle qe  between q and Jke  at k  0, which is assumed to be acute. It 

is easy to detect a linkage between angular and homothetic measures for matrix similarity 

because a solution of the right triangle with the sides δeq  and , Jk  gives  
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Wqq

Wδδ
qe 


2sin .                                                          (15) 

From geometrical viewpoint, one can establish that angular measure (15) and homothetic 

measure based on (14) are consistent only for any pair of relative target vectors q and p satisfying 

orthogonality condition 0)(  pqWeJ , i.e., all testing target vectors must have the same 

orthogonal projection onto homothetic ray.  

As a conclusion, an angle between target vector q and homothetic ray Jke  at k  0 can be 

considered as a universal measure of structural similarity between target and initial matrices. 

Main “technical” disadvantage of angular measure appears to be its nonlinearity along with 

arising difficulties of using (15) to construct competing (in particular, with Harthoorn and van 

Dalen’s method) algorithms of matrix updating. Based on orthogonal projecting operation and 

associated with length of vector (14), homothetic measure is the simplified version of an angular 

measure with some shortcomings. Nevertheless, homothetic measure demonstrates a row of 

helpful properties and may become operational in various algorithmic schemes. 

9. Minimization of angular measure via homothetic measure  

The expressions (14) and (15) in conjunction with monotonicity of function x2sin  at acute angles 

x generates the following nonlinear programming problem: to minimize the fractional quadratic 

objective function, or, as it is sometimes called, Rayleigh quotient 

Wqq

q
q

Wee

Wee
Eq

Wqq
q


















)f(1

)F(
JJ

JJ
J                                        (16) 

subject to mutually dependent linear constraints (11). Note that angular measure (16) has the 

same value F(q) along a straight line kq at any k  0. Recall that symmetric idempotent matrix in 

parentheses has rank J–1. Singularity of this matrix serves as an obvious technical obstacle for 

the analytical solving of constrained minimization problems (16), (11), but this obstacle can be 

bypassed in a special way proposed below. 

It can be shown that nonlinear programming problem (16), (11) with auxiliary constraint 

JJJ k WeeWqe   (where k is assumed to be an arbitrary constant) is equivalent to quadratic 

optimization problem that prescribes to minimize uniparametrical objective function (13) subject 

to constraints (11) and the orthogonality condition  

0)(  JJ keqWe ,                                                       (17) 

in which k is playing the role of an instrumental variable. Clearly, the solution point q for this 

quadratic optimization problem is lying on the hyperplane (17), which is orthogonal to 

homothetic ray and crosses it at the point Jke . As established earlier, angular measure (15) and 
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homothetic measure based on (14) are consistent on this orthogonal hyperplane. 

Thus, the solution of nonlinear programming problem (16), (11) can be obtained in two 

stages. At first stage one needs to solve quadratic optimization problem (13), (11), (17) for every 

k and to find uniparametrical vector family )(kq  that provides a local constrained minimum of 

homothetic measure 

 0)(,ˆ,ˆ);(fmin)(f  JJ kkk eqWevqaHuqaGq
q

                      (18) 

on each hyperplane (17). As a result, we obtain a geometric place of feasible points located at a 

minimal distance from points Jke  on homothetic ray at various values of parameter k. 

At second stage the unconstrained minimum  
















)()(

)(f
)F(minF

kk

k
k

k Wqq
                                                (19) 

is to be found together with corresponding vector q  as the optimal solution of angular measure 

minimization problem (16), (11). Besides, the other unconstrained minimum 

 )(fminf k
k

                                                             (20) 

corresponds to global minimization of homothetic measure along homothetic ray. 

10. Uniparametrical constrained minimization of homothetic measure 

The Lagrangean function for problem to minimize quadratic objective function (13) with 

unknown scalar parameter k subject to linear constraints (11) and (17) is 

)()ˆ()ˆ()()(),,;;(Lf JJJJJ kγkkk WeeWqevqaHμuqaGλeqWeqμλq      (21) 

where λ  and μ  are vectors of Lagrange multipliers with dimensions N1 and M1, and  is a 

scalar Lagrange multiplier. By setting the partial derivatives of (21) with respect to q, λ , μ ,   

equal to zero, we obtain the system of J+N+M+1 linear equations 

JJJ γk 0WeμHaλGaeqW  ˆˆ)(2 ,   N0uqaG ˆ ,   M0vqaH ˆ ,   0 JJJ k WeeWqe . 

While W is nonsingular matrix, the first equation can be resolved with respect to q as 

  JJ γk eμHλGaWeq
2

1
ˆ

2

1 1   . 

Putting this expression into fourth equation gives 

 μHλG
Wee

ae
e 





JJ

J
J , 

and after backward substitution we obtain 

 μHλG
Wee

ae
aWeq 











 

JJ

J
Jk ˆ

2

1 1 .                                 (22) 
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The second and the third equations from system above and (22) can be combined into N+M 

equations with Lagrange multipliers λ  and μ  as unknown variables: 

 Gauμπλπμ
Wee

HaGa
HaWaGλ

Wee

GaGa
GaWaG k

JJJJ
























  2ˆˆˆˆ 1211

11 ,    (23) 

 Havμπλπμ
Wee

HaHa
HaWaHλ

Wee

GaHa
GaWaH k

JJJJ
























  2ˆˆˆˆ 2221

11 .    (24) 

It can be shown that NMN 0eπeπ  1211 , MMN 0eπeπ  2221 , i.e., the columns of 

symmetric matrix , which is formed by blocks 22211211 ,,, ππππ , are linearly dependent, so 

matrix  is singular. Thus, the general solution to corresponding homogeneous system (23), (24) 

is  
Nceλ 0 ,  

Mceμ 0  with the same scalar constant c. 

Since general solution to nonhomogeneous linear system equals the sum of general solution 

to corresponding homogeneous system and any particular solution to nonhomogeneous system, 

let    10 λλλ   and    10 μμμ  , where  1λ ,  1μ  is particular solution to system (23), (24). 

Recall that JMN eHeGe  , so putting these formulas into round-bracketed vector expression in 

the right-hand side of (22) gives 

             111111 μHλGμHλGeeμeHλeGμHλG  JJMN cccc . 

Therefore, to find any particular solution of system (23), (24) means to solve 

uniparametrical constrained minimization problem with quadratic objective function (13) subject 

to linear constraints (11) and (17). Notice that N+М–1 among N+М equations of system (23), 

(24) – as well as constraints of system (11) – are mutually independent under consistency 

condition (2). 

11. Analytical solutions for Lagrange multipliers 

The Lagrange multipliers λ  and μ   can be found from system (23), (24) in two ways.  

Since any N+М–1 among N+М equations (23), (24) are mutually independent, without loss 

of generality any one of them can be eliminated from the system together with the corresponding 

unknown Lagrange multiplier. The reduced system can be solved in standard manner using well-

known formulas for the inverse of a partitioned matrix (for details, see Miller and Blair, 2009, 

Appendix A). 

Another way is based on the “easy-to-check” fact that, although matrix  is singular, but its 

square blocks 11π  and 22π  are not if initial matrix A does not have any zero rows and columns. 

So one can construct a pair of iterative processes resembling (4) and (5) and then solve the 

system (23), (24) by numerical methods. 
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Anyway, after huge algebraic transformations we get 

λλ yzλ kk 22)(  ,        μμ yzμ kk 22)(  , 

from which 

    yzyHyGzHzGμHλG μλμλ kkkk 2222)()(                      (25) 

where μμλλ yzyz ,and,  are column vectors computable from (23), (24) with dimensions N1 and 

M1, respectively. It is important to note that J-dimensional column vector y does not depend on 

u and v (marginal totals for target matrix) in contrast to vector z of dimensions J1. 

Now a general solution of constrained minimization problem for homothetic measure (13), 

(11), (17) can be derived by putting (25) into (22). Thus, we have the uniparametrical vector 

family 

  )(ˆ)( 1 yzDeyz
Wee

ae
aWeq kkkkk J

JJ

J
J 











 

                        (26) 

which is obtained in accordance with a requirement formulated in (18). Note that D is a square 

matrix of order J. Along with (13) and (26) the scalar function (18) becomes polynomial of 

second order as 

WDyDyWDzDyWDzDzyzWDDyz  
22)(f )()( kkkkk .             (27) 

These analytical results complete a first stage of solving process for nonlinear programming 

problem (16), (11). 

12. The global minimum of homothetic measure 

Formula (26) describes a geometric place of feasible points )(kq  located at a minimal distance 

from points Jke  on homothetic ray at various values of parameter k. It is important to emphasize 

that vector )()( yzDeq kkk J   is orthogonal to homothetic ray at any k according to model 

construction because of the orthogonality condition (17) among constraints. Indeed, 

J
JJ

J
JJ 0aa

Wee

ae
aWWeWDe 











  ˆ1                                (28) 

so that   0)()(   yzWDeeqWe kkk JJJ  at any k.  

The first and the second derivatives of quadratic function (27) with respect to k are 

determined as 

WDyDyWDzDy  k
k

k
22

d

)(df
,                 02

d

)(fd
2

2

 WDyDy
k

k
. 

Clearly, this convex function of k has a unique minimum at the parameter value that equals 

WDyDyWDzDy k (here the first derivative vanishes). 
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As a result, the global minimum of homothetic measure along homothetic ray 

 0)(,ˆ,ˆ);(fminminf  JJ
k

kk eqWevqaHuqaGq
q

, 

which corresponds to a requirement formulated in (20), is reached according to (26) at the point 

)()( Dye
WDyDy

WDzDy
DzDyeDzq 




  JJk                             (29) 

with the objective function value 

      
WDyDy

WDzDy
WDzDz

WDyDy

WDzDy

WDyDy

WDzDy
WDzDz













222 )()()(

2f            (30) 

where z and y are J-dimensional column vectors defined in (25). It can be shown that formulas 

(29) and (30) also define the solution of a quadratic programming problem, in which it is required 

to minimize the objective function (13) subject to linear constraints (11), and  unknown 

parameter k is determined from a statement that vector Jkk eq  )(  is to be orthogonal to 

homothetic ray.  

12. The solution of unconstrained minimization problem for angular measure 

At second stage of solving process for nonlinear programming problem (16), (11) we have 

another objective function 

   )()()()(

)(f
)F(

)()(

yzDeWyzDe

yzWDDyz

qWq kkkk

kk

kk

k
k

JJ 










                     (31) 

that is obtained by substituting (27) and (26) into the function in braces from (19). In accordance 

with a requirement formulated in (19) it is to be minimized. However, this function of k is 

fractional quadratic and, hence, can have more than one minimum. 

Putting (28) into the denominator of (31) gives 

    )()(2)()( yzWDDyzWeeyzDeWyzDe kkkkkkk JJJJ    

so F(k)  1 at any values of k. Note that the maximum of F(k) equals 1 and is achieved at zero 

value of k. 

It can be shown that first derivative of the fractional quadratic function (31) with respect to 

k is determined as 

 22 )()(

)(2

d

)(dF

yzWDDyzWee

WDyDzWDzDzWee

kkk

kk

k

k

JJ

JJ







. 

It seems clear that function (31) has a unique maximum at k = 0 and a unique minimum at 

WDzDyWDzDzWDyDzWDzDz k . The first case concerns an orthogonality of the 

relative target vector to homothetic ray whereas the second one is associated with a minimal 
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angle between the relative target vector and homothetic ray. 

As a result, the global minimum of angular measure  )F(minF k
k

 , which corresponds to 

a requirement formulated in (19), is reached at the point 

)()( Dye
WDzDy

WDzDz
DzDyeDzq 




 
JJk                             (32) 

with the objective function value 



















 
































 






y
WDzDy
WDzDz

zWDDy
WDzDy
WDzDz

zWee
WDzDy
WDzDz

y
WDzDy
WDzDz

zWDDy
WDzDy
WDzDz

z

JJ

2F             (33) 

where z and y are J-dimensional column vectors defined in (25). Thus, formulae (32) and (33) 

define the solution of a nonlinear programming problem in which it is required to minimize the 

objective function (16) subject to linear constraints (11). 

13. Notes on sensitivity analysis in minimization problem for homothetic measure 

Applying a technique of partial derivatives for sensitivity analysis in minimization problem for 

homothetic measure represents a quite complicated task because of mutually dependent linear 

constraints (11). In such cases the Lagrange multipliers can not be identified unambiguously. 

Any disturbance of marginal total vector u through the frame of consistency condition (2) 

generates some compensating changes in the elements of v, and vice versa. Clearly, some 

disturbances lead to an increasing of constrained minimum for objective function (13), while 

others contribute to decrease it. 

Along with vector-valued linear function μHλG  , NM-dimensional matrix  

)()( MNMNMNMNNMNM kkkk eμeeeλeeeeμeeλμeeλL    

is invariant under any change of parameter k. It is easy to see that its element nml  can be 

considered as a coefficient of the constrained minimum’s sensitivity under impact of the 

simultaneous increasing un and vm by the same small value . Thus, to decrease the minimum  

)(f),(f k vu , a small scalar  is to be chosen with the sign reversed from the sign of nml . 

In this context the larger absolute values of matrix L’s elements are of great interest. Let 

nml  be an element with the largest absolute value of any one in matrix L. Then the best strategy 

for a local enhancing of constrained minimum is to disturb un and vm by the same small value 

)sgn( nml  where  > 0 and sgn() is a signum function. 

Further, let 0l  and 0l  be a maximal and a minimal elements of L respectively. Then 

the best two-component strategy for a local enhancing of constrained minimum at the fixed grand 
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total veue MNx   is to decrease the elements of u and v corresponding to l  by – and to 

increase the elements of u and v corresponding to l  by  simultaneously.  

In general, total sensitivity effect is formulated as 

vuvuvu ΔμλΔvuΔvΔuΔΔ   )()()( ,f,f,f ,                        (34) 

where vectors uΔ  and vΔ  are exogenous disturbances for u and v respectively satisfying the 

consistency condition Δvu ΔeΔe xMN  . To express the right-hand side of (43) in matrix L 

terms it is necessary to consider two cases, namely, 0Δx  and 0Δx . 

The disturbances uΔ  and vΔ  with zero sums 0 Δvu ΔeΔe xMN  play an important role in 

statistical practice. They entail the redistributions of u’s and v’s components while the grand total 

Δxx   is being fixed. It is easy to see from (34) that the total redistribution effect depends on the 

marginal totals of matrix L and is estimated by 

vuvuΔvu LΔeLeΔΔeμeλΔΔΔ NMMN NM
x   11

0, )()()(f           (35) 

where  and  are average values of the Lagrange multipliers. Here the first summand implies 

that in the total effect calculation an each value n)( uΔ  is uniformly distributed among M 

components of vΔ  and generates M elementary effects, sum of which is proportional to a row 

marginal total n for L divided by M. By analogy, the second summand in (35) implies that an 

each value m)( vΔ  is uniformly distributed among N components of uΔ  and generates N simple 

effects, sum of which is proportional to a column marginal total m for L divided by N. 

On the other hand, the bilinear function of disturbances vuLΔΔ  can be transformed as 

follows: 

)()()()( vuΔvuvuvuvu ΔμλΔΔμeΔΔeλΔΔμeeλΔLΔΔ  xNMNM . 

Hence, the total sensitivity effect can be represented as  

vu
Δ

vuΔvu LΔΔΔμλΔΔΔ 
x

x
1

0, )(f                                (36) 

where the disturbance grand total Δx  is assumed to be nonzero. Recall, that in contrast to (36) 

formula (35) is well defined only for the redistribution case 0Δx . 

13. Numerical examples and concluding remarks 

Consider the Eurostat input–output data set given in “Box 14.2: RAS procedure” (see Eurostat, 

2008, p. 452) for compiling several numerical examples. The 34-dimensional initial matrix A 

combines the entries in intersections of the columns “Agriculture”, “Industry”, “Services”, “Final 
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d.” with the rows “Agriculture”, “Industry”, “Services” in “Table 1: Input-output data for year 

0”. Note that all the elements of this matrix are nonzero. The row marginal total vector u of 

dimension 31 is the proper part of the column “Output” in “Table 2: Input-output data for year 

1”, and the column marginal total vector v  of dimension 14 involves the proper entries of the 

row “Total” in the near-mentioned data source.  

Initial matrix A and marginal totals u, v  are presented in the left half of Table 1. The first 

numerical example is to handle the data set available by RAS method with iterative processes (4) 

or (5) and by methods (29), (30) and (32), (33) proposed to solve the constrained minimization 

problem for homothetic and angular measures (13), (11) and (16), (11) – briefly, by HOM and 

ANG methods respectively. The computation results at NMNMNMNM eEeEW   are grouped in 

the right half of Table 1 for RAS method and in Table 1a for HOM and ANG methods; they seem 

to be very similar among themselves. 

Table 1. Initial matrix A with nonzero elements and RAS results for its updating 

 A     Au  u  RAS X     Xu  u  
 20.00 34.00 10.00 36.00 100.00 94.78  17.94 32.77 9.76 34.31 94.78 94.78 

 20.00 152.00 40.00 188.00 400.00 412.86  19.36 158.08 42.12 193.30 412.86 412.86

 10.00 72.00 20.00 98.00 200.00 212.68  9.98 77.17 21.70 103.84 212.68 212.68

Av  50.00 258.00 70.00 322.00 700.00  Xv 47.28 268.02 73.58 331.44 720.32  

v  47.28 268.02 73.58 331.44  720.32 v 47.28 268.02 73.58 331.44  720.32

Table 1a. HOM and ANG results for updating of data set from Table 1 

HOM X     Xu  u  ANG X     Xu  u  
 18.35 32.41 10.03 33.99 94.78 94.78  18.33 32.41 10.04 34.00 94.78 94.78 

 19.07 158.82 42.60 192.37 412.86 412.86  19.08 158.81 42.58 192.40 412.86 412.86

 9.86 76.79 20.95 105.08 212.68 212.68  9.87 76.80 20.96 105.04 212.68 212.68

Xv  47.28 268.02 73.58 331.44 720.32  Xv 47.28 268.02 73.58 331.44 720.32  

v  47.28 268.02 73.58 331.44  720.32 v 47.28 268.02 73.58 331.44  720.32

Nevertheless, HOM and ANG methods demonstrate the stable 5-percentage advantage 

over RAS method both in homothetic measure of matrix similarity based on (14) and in angular 

measure (15) as follows: 

RASδ = 0.0549,          HOMδ = 0.0522,          ANGδ = 0.0522,           RASHOM δδ = 95.10%; 

RAS
qe = 3.1161,          HOM

qe = 2.9677,         ANG
qe = 2.9675,           RASANG

qeqe  = 95.23%. 

The next numerical example is assigned to test the methods’ response to zero elements in 

the initial matrix. So let us disturb one element of our data set, say (3, 1), by putting it equal to 

zero for years 0 and 1. After recalculation of the marginal totals we get the data set in the left half 

of Table 2. 
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The results of computations are collected in the right half of Table 2 for RAS method and 

in Table 2a for HOM and ANG methods; as earlier, they seem to be very similar among 

themselves. 

Table 2. Initial matrix A with zero element and RAS results for its updating 

 A     Au  u  RAS X     Xu  u  
 20.00 34.00 10.00 36.00 100.00 94.78  18.02 32.74 9.75 34.27 94.78 94.78 

 20.00 152.00 40.00 188.00 400.00 412.86  19.46 158.05 42.11 193.25 412.86 412.86

 0.00 72.00 20.00 98.00 190.00 202.88  0.00 77.23 21.72 103.92 202.88 202.88

Av  40.00 258.00 70.00 322.00 690.00  Xv 37.48 268.02 73.58 331.44 710.52  

v  37.48 268.02 73.58 331.44  710.52 v 37.48 268.02 73.58 331.44  710.52

Table 2a. HOM and ANG results for updating of data set from Table 2 

HOM X     Xu  u  ANG X     Xu  u  
 18.36 32.40 10.04 33.98 94.78 94.78  18.35 32.40 10.05 33.98 94.78 94.78 

 19.12 158.80 42.58 192.37 412.86 412.86  19.13 158.78 42.55 192.39 412.86 412.86

 0.00 76.82 20.96 105.10 202.88 202.88  0.00 76.84 20.98 105.07 202.88 202.88

Xv  37.48 268.02 73.58 331.44 710.52  Xv 37.48 268.02 73.58 331.44 710.52  

v  37.48 268.02 73.58 331.44  710.52 v 37.48 268.02 73.58 331.44  710.52

Again, HOM and ANG methods still keep on the 5-percentage advantage over RAS method 

both in homothetic and angular measures as follows: 

RASδ = 0.0543,          HOMδ = 0.0516,          ANGδ = 0.0516,           RASHOM δδ = 95.04%; 

RAS
qe = 3.0805,         HOM

qe = 2.9291,         ANG
qe = 2.9286,           RASANG

qeqe  = 95.07%. 

An advantage of HOM and ANG methods observed here is not so impressive because of 

small number of “free” variables NM – (N + M) and NM – (N + M) –1 in our numerical examples. 

However, if the dimensions of updating matrix tend to grow, then this advantage rapidly 

increases. At the dimensions more than 37 (73) and 45 (54) a total amount of free variables 

starts to exceed total number of RAS variables, so flexibility of HOM and ANG methods 

substantially grows. Computational experiments with 1520-dimensional matrices indicates that 

HOM and ANG methods seem to be almost twice more effective than RAS in the sense of 

homothetic measure based on (14) and angular measure (15). 

As it is well-known, “… RAS can only handle non-negative matrices, which limits its 

application to SUTs that often contain negative entries…” – see Temurshoev et al. (2011, p. 92). 

Therefore, the final numerical example is assigned to test the methods’ response to negative 

elements in the initial matrix with Generalized RAS (GRAS) method proposed by Junius and 

Oosterhaven (2003) and redeveloped by Lenzen et al. (2007) instead of RAS. Let us disturb three 

elements of our data set, say (1, 3), (3, 1) and (3, 3), by reversing their sign for years 0 and 1. 
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After proper recalculation of the marginal totals we obtain the data set in the left half of Table 3. 

The results of computations are grouped in the right half of Table 3 for GRAS method and 

in Table 3a for HOM and ANG methods; now they demonstrate wide differences in the elements 

of three target matrices calculated, especially in x13, x23, x24 and x33 . 

Table 3. Initial matrix A with negative elements and RAS results for its updating 

 A     Au  u  GRAS X     Xu  u  
 20.00 34.00 -10.00 36.00 80.00 74.50  18.13 32.85 -10.87 34.40 74.50 74.50 

 20.00 152.00 40.00 188.00 400.00 412.86  19.62 158.95 39.84 194.44 412.86 412.86

 -10.00 72.00 -20.00 98.00 140.00 148.92  -10.07 76.22 -19.84 102.60 148.92 148.92

Av  30.00 258.00 10.00 322.00 620.00  Xv 27.68 268.02 9.14 331.44 636.28  

v  27.68 268.02 9.14 331.44  636.28 v 27.68 268.02 9.14 331.44  636.28

Table 3a. HOM and ANG results for updating of data set from Table 3 

HOM X     Xu  u  ANG X     Xu  u  
 18.55 32.30 -10.21 33.87 74.50 74.50  18.56 32.31 -10.26 33.89 74.50 74.50 

 19.27 159.99 39.34 194.26 412.86 412.86  19.30 159.91 39.47 194.18 412.86 412.86

 -10.13 75.73 -19.99 103.31 148.92 148.92  -10.18 75.80 -20.07 103.37 148.92 148.92

Xv  27.68 268.02 9.14 331.44 636.28  Xv 27.68 268.02 9.14 331.44 636.28  

v  27.68 268.02 9.14 331.44  636.28 v 27.68 268.02 9.14 331.44  636.28

An advantage of HOM and ANG methods in this case seems to be significant too. Indeed, 

the received estimates of homothetic and angular measures are  

RASGδ = 0.0486,         HOMδ = 0.0438,         ANGδ = 0.0438,          RASGHOM δδ = 90.19%; 

GRAS
qe = 2.7657,         HOM

qe = 2.5102,        ANG
qe = 2.5081,          GRASANG

qeqe  = 90.69%. 

The HOM and ANG methods appear to be especially effective under the complicated 

circumstances because of its immanent flexibility. They are quite applicable for updating the 

economic matrices and tables with some negative entries. In practice the proposed GLS-based 

methods provides generating much more compact distributions of the Hadamard-multiplicative 

model’s factors in comparison with other methods. 

References 

Eurostat (2008) European Manual of Supply, Use and Input–Output Tables. Methodologies and 

Working Papers. Luxembourg, Office for Official Publications of the European Communities. 

Harthoorn, R. and J. van Dalen (1987) On the Adjustment of Tables with Lagrange Multipliers. 

Occasional Paper NA-024. The Netherlands Central Bureau of Statistics, National Accounts 

Research Division. 

Junius, T. and J.Oosterhaven (2003) The Solution of Updating or Regionalizing a Matrix with 

both Positive and Negative Entries. Economic Systems Research, 15:1, 87–96. 



19 
 
Kullback, S. and R.A.Leibler (1951) On information and sufficiency. Annals of Mathematical 

Statistics, 22 (1): 79–86. 

Kuroda, M. (1988) A method of estimation for the updating transaction matrix in the input-output 

relationships. In: K. Uno and S. Shishido (eds.): Statistical Data Bank Systems. Socio-

economic database and model building in Japan. Amsterdam: North Holland, pp. 43–56. 

Lenzen, M., R. Wood and D. Gallego (2007) Some Comments on the GRAS Method. Economic 

Systems Research, 19:4, 461–465. 

Magnus, J.R. and H. Neudecker (2007) Matrix Differential Calculus with Applications in 

Statistics and Econometrics, 3d ed. Chichester, UK, John Wiley & Sons. 

Miller, R.E. and P.D.Blair (2009) Input–Output Analysis: Foundations and Extensions, 2nd ed. 

Cambridge, Cambridge University Press. 

Temurshoev, U., C.Webb and N.Yamano (2011) Projection of Supply and Use Tables: Methods 

and Their Empirical Assessment. Economic Systems Research, 23:1, 91–123. 

 


