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A general linear problem of input–output analysis is considered in this study as a system of equations 
written in terms of free variables for any rectangular supply and use table given. This system spans the regular 
linear equations for material and financial balances, a batch of predetermined values for exogenous variables 
and an additional set of linkage equations that provides the exact identifiability for all unknown variables. 

The study is concerned with some operational opportunities for constructing a set of the identifying 
linear equations in the cases of evaluating the response of the economy to exogenous changes in final demand 
and value added. To this end, two matrix-valued linear cost functions with product and industry outputs as their 
arguments (based on Leontief technical coefficients and Ghosh allocation coefficients to be fixed) are 
involved. The main types of economy’s response to exogenous changes is found out, namely, in terms of 
quantity changing, price changing, and combined price and quantity changes. The latter types of economy’s 
response seem to be implausible artifacts that are out of economic sense. In particular, there are some certain 
doubts about plausibility of underlying background for an industry technology assumption and a fixed product 
sales structure assumption, which are used for transforming supply and use tables to symmetric input-output 
tables. 

It is shown that in a square case (all matrices are square) the cost function with product outputs as its 
arguments forms an underlying algebraic framework of Leontief demand-driven model, whereas the cost 
function with industry outputs as its arguments provides an algebraic foundation of Ghosh supply-driven 
model. For a symmetric (production matrix is diagonal) square case, the equivalence of Ghosh supply-driven 
model and Leontief price model as well as the equivalence of Leontief demand-driven model and Ghosh 
quantity model are proved. 

Besides, two matrix-valued linear production functions with industry and product intermediate 
consumption as their arguments are involved into consideration (they based on “quasi-reciprocal” technical and 
allocation coefficients to be fixed). It is shown that the models with the matrix-valued production functions and 
the models with the matrix-valued cost functions are pairwise equivalent that can be appreciated as a 
demonstration of general equilibrium in the theory of input–output analysis.. Thus, technical and allocation 
coefficients should be regarded as helpful ways of economic interpretation rather than as basic framework or 
operational tools for modeling. 
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models 
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1. A general linear problem of input–output analysis 

Any supply and use table in an economy with N of products (commodities) and M industries 

(sectors) for the certain time period (say, period 0) is defined by a pair of rectangular matrices, 

namely supply (production) matrix X0 and use for intermediates (intermediate consumption) 

matrix Z0 of the same dimension NM both (see Eurostat, 2008). In mathematical notation supply 

and use table’s data satisfies to the vector equation for material balance of products’ intermediate 

and final uses  

00 yeZ0eX  MM                                                           (1) 
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and to the vector equation for financial balance of industries’ intermediate and primary 

(combined into value added) inputs 

000 vZeXe   N

Ne Me

N                                                           (2) 

where  and  are N1 and M1 summation column vectors with unit elements, y0 is a 

column vector of net final demand with dimensions N1, and v0 is a column vector of value 

added with dimensions M1. Here putting a prime after vector’s (matrix’s) symbol denotes a 

transpose of this vector (matrix). 

“One of the major uses of the information in an input–output model is to assess the effect 

on an economy of changes in elements that are exogenous to the model of that economy” (Miller 

and Blair, 2009, p. 243). For analytical purposes, system of balance equations (1), (2) must be 

rewritten in terms of free variables. Let x MXe

x

be N-dimensional column vector of product 

outputs, and let XeN

ZN

 zz ,,

x

 be a row vector of industry outputs with dimensions 1M. Also, let 

 be a column vector of product amounts in intermediate use with dimensions N1, and 

let  be M-dimensional row vector of industry expenditures for intermediate 

consumption. The vectors  are sometimes called the product and industry 

marginal totals for the production matrix X and the intermediate consumption matrix Z.  

MZez 

ez 

 xx ,

The system of N+M scalar equations (1), (2) can be written in free vector variables as 

follows: 

yz   ,          x vz   .                                             (3) 

As noted above, the main aim of constructing similar balance models is to assess an impact 

of the exogenous changes (either absolute or relative) in net final demand and, by virtue of 

symmetry of the balance equations under consideration, the exogenous changes in gross value 

added on simultaneous behavior of the economy. Balance models do not usually reflect the true 

causes of  the certain changes in final demand or value added, so the response of the economy to 

any exogenous disturbance is evaluated in the mode of getting answers to questions like “what 

would happen if ...? ”. 

The balance model (3) contains N+M linear equations with 3(N+M) scalar variables. 

Assume that exogenous disturbance is expressed in terms of k exogenous variables. To provide 

exact (or strict) identifiability of the model it is required to incorporate into the model 2(N+M) –

 k auxiliary independent equations as a certain set of linkages between the variables. In particular, 

N+2M independent equations are needed at k = N, and 2N+M equations are needed at k = M. The 
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structure of initial supply and use table serves as an informational framework for constructing the 

auxiliary linkage equations. 

In this context, a general linear problem of input–output analysis is considered as the 

system of equations (3) together with a chosen specification of exogenous disturbance and a 

corresponding set of linear linkages between the variables, which provides the strict identification 

of all unknown variables. Note that the general problem of input–output analysis becomes 

nonlinear if at least one of its equations is nonlinear. 

2. On constructing the linear linkages between the model’s variables 

Consider some operational opportunities in constructing a set of identifying linear equations for 

balance model (3) in the cases of evaluating the response of the economy to exogenous changes 

in the net final demand vector 0yyy  

vv  

 with dimensions N1 or in the gross value added 

vector  with dimensions M1. As noted earlier, the unique informational source for 0v

constructing the auxiliary linkages between the model variables is the initial supply and use table. 

Thus, the linkages should be formulated in terms of production matrix X0 and intermediate 

consumption matrix Z0 given. 

The simplest formal way of using this available data for input–output modeling comes to 

factorization of unknown production matrix X and unknown intermediate consumption matrix Z 

into a pair of matrix factors each. There are two following main techniques for pair factorizing 

any (NM)-dimensional matrix: 

(i) as a product of a matrix with dimensions NM and a square matrix of order M; 

(ii) as a product of a square matrix of order N and a matrix with dimensions NM. 

The rectangular matrices in (i) and (ii) are obviously either X0 or Z0 . Further, the square 

matrix factors  0f FF,MM  and  0f FF,NN   MM , EFF must have the evident properties M  00

,FF0

f  

and , where EM and EN are the identity matrices of order M and N respectively, 

and an auxiliary matrix F with dimensions NM is equal to either X or Z in turn. Hence, the 

postmultiplying and premultiplying square matrix factors can be represented by the simplest 

  NE0NNf

patterns in terms of relative changes in auxiliary matrix’s product and industry marginal totals as 

follows: 

  1
00f  FFMM ,   FeFe NN ,             

1
00


  MMNN , eFFeFFf               (4) 

where angled bracketing around a vector’s symbol (or putting a “hat” over it) denotes a diagonal 

matrix with the vector on its main diagonal and zeros elsewhere (see Miller and Blair, 2009, 

p. 697). 
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Because of applying the multiplicative patterns (4), we get four factorizations for unknown 

intermediate consumption matrix Z, namely 

1
0


0  XeXeZZ NN ,                     0

1
0 ZeXXe

 MMZ ,                  (5) 

1
0


0  ZeZeZZ NN ,                     0

1
0 ZeZZeZ

 MM ,                  (6) 

and the other four factorizations for unknown production matrix X as follows: 

1
0


0  ZeZeXX NN ,                     0

1
0 XeZZeX

 MM ,                  (7) 

1
0


0  XeXeXX NN ,                     0

1
0 XeXXeX

 MM .                 (8) 

The obtained formulas (5) – (8) establish the operational base for constructing the various 

sets of identifying linear equations in addition to the balance model (3). 

3. An incorporation of the matrix-valued linear cost functions into the model 

The linkage equations (5) reflect the dependencies of intermediate consumption matrix Z on the 

vector of industry outputs Xex N MXex  and the vector of product outputs . These 

dependencies are linear, since 

 xAXe ˆ1
N

 XeZZ 00 N ,                                             (9) 

BxZ 
  ˆ0

1
MeXXeZ  0M                                            (10) 

where A and B are the computable (NM)-dimensional matrices of relative coefficients; here the 

obvious commutativity property of diagonal matrices is used. It is easy to see that formula (9) at 

 and formula (9) at 0Xex N MeXx 0  determine the initial intermediate consumption 

matrix Z0 given. 

One can classify (9) and (10) as the matrix-valued linear cost functions because of their 

production arguments. Matrices 
1

00

 XeZ NA  and 0

1

0 ZeXB
 M

 exA Mˆ

 are known in special 

literature as (Leontief) technical coefficients matrix and (Ghosh) allocation coefficients matrix 

respectively (see, e.g.,  Miller and Blair, 2009). 

From the expression for cost function (9), it follows that 

Ax  Zez M ,                 Aexx N ˆAeZez NN   

since  for any pair of vectors c and d with the same dimensions. After current result’s 

substitution, the system of linear equations (3) becomes 

cddc ˆˆ 

Axx y  ,                   vAex   Nx .                                (11) 

Next, the expression for cost function (10) gives 
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  BexZez M ˆ  xBe MM BxBxeZez  ,               ˆNN , 

and the system of linear equations (3) is transformed to 

yxBe  M vBxx x ,                

vyxx ,,, 

.                                 (12) 

Thus, we get two models, namely (11) and (12), each of which comprises N+M linear 

equations with 2(N+M) scalar variables . To provide exact (strict) identifiability of 

all variables in the models with exogenous disturbances, it is expedient to supplement the models 

(11) and (12) with the linear equations that link the vector of product outputs x  and the vector 

of industry outputs .  



x

To this end, the factorizations (8) do seem to be helpful. By introducing new matrix 

denotations, we have 

 xGXe ˆ1
N

 XeXX 00 N ,                                           (13) 

HxX 
  ˆ0

1
MeXXeX  0M                                             (14) 

where G and H are the computable (NM)-dimensional matrices of relative coefficients. 

Obviously, formula (13) at x 0Xe N MeXx 0 and formula (14) at   determine the initial 

production matrix X0 given. Matrices 
1

00
 XeXG N  and 0

1
0 XeX

 M



H  are known in 

special literature as product-mix matrix (with shares of each product in output of an industry in a 

column) and market shares matrix (with contributions of each industry to the output of a product 

in a row) respectively (see Eurostat, 2008). 

The equation (13) implies that   GxexG Mˆ

x

AxGx

Xex M ; it allows eliminating the 

variable  in turn from the models (11) and (12), which become 

y  ,                   vAex   Nx .                                (15) 

yGx  xBeM vBGx Gx  ,                 

HxHxe 

.                             (16) 

The equation (14) gives Xex  N

x

ˆN

xHAx

. After its substitution to the models 

(11) and (12) for eliminating the variable , we obtain 

y  ,                   vAeHx 
 NHx 

 .                            (17) 

yxBe  M vBxHx x ,                 

vyx ,,

.                                  (18) 

Note that each model (15) – (18) consists of N+M linear equations with different numbers 

of unknown scalar variables, namely N+2M scalar variables  as in (15) or (16), and 
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vy,,

0vvv 

2N+M scalar variables x  as in (17) or (18). Therefore, supplementing the exogenous value 

added condition  

0yyy

 provides a just identifying closure of the models (15) and (16), 

whereas an exact identifiability of variables in the models (17) and (18) can be achieved by direct 

incorporation of the exogenous final demand condition  

0yyy 

.  

However, if the values of N and M coincide, alternative choice of exogenous condition 

appears to be also feasible, namely one can use the condition    for closure of the 

models (15) and (16) as well as the condition 0vvv    for closure of the models (17) and (18). 

Thus, if all the matrices in (15) – (18) are square, each model has a supplementary solution 

corresponding to alternative exogenous condition. All possible situations for models (15) – (18) 

are grouped in Table 1. 

Table 1. The various exact identifiable specifications of linear input–output analysis 

problem with the matrix-valued linear cost functions and exogenous variables 

Model 
Model 
code 

Matrices 
fixed 

Vector 
variables 

Number of 
variables 

Exogenous 
variable 

Alternative exogenous 
variable at N = M 

(15) AG GA , vyx ,,  N+2M  vv   yy  

(16) BG GB, vyx ,,  N+2M  vv   yy  

(17) AH HA, vyx ,,   2N+M  yy   vv  

(18) BH HB, vyx ,,   2N+M  yy   vv  

So, in terms of exogenous final demand and value added variables, each specification of the 

linear input–output analysis problem (15) – (18) has two solutions – a regular one and a 

supplementary one with an alternative exogenous vector at N = M = K.  

4. The solutions of linear input–output analysis problem: algebraic properties 

The regular and supplementary solutions of linear input–output analysis problem have some 

important algebraic properties, which can be explored without direct solving the linear equation 

systems (15) – (18) under various specifications of an exogenous disturbance. In particular, from 

(13) and (9) one can conclude that in the model AG (15) an unknown production matrix X and an 

unknown intermediate consumption matrix Z are associated with the initial matrices X0 and Z0 

by postmultiplying the latters on the same diagonal matrix both as follows: 

qXx ˆˆ 0XeXxGX ˆ 1
00  

 N ,           qZxX ˆˆ 0
1

0 


x

eZxAZ ˆ 0   N           (19) 

where q is a column vector of dimension M1 strictly identifiable together with the vector of 

industry outputs  at any feasible exogenous condition. However, it is not so difficult to make 
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sure that other models (16) – (18) have the different algebraic properties. 

Indeed, formulas (14) and (10) imply that in the model BH (18), in full contrast to 

model AG, unknown matrices X and Z are associated with the initial matrices X0 and Z0 by 

premultiplying the latters on the same diagonal matrix both as follows: 

00 ˆXpX 1
0ˆˆ eXxHxX  

 M ,           00
1 ˆZpZe 

M

x

0ˆˆ XxBxZ            (20) 

where p is a column vector of dimension N1 exactly identifiable together with the vector of 

product outputs  at any feasible exogenous condition.  

Further, for the models BG (16) and AH (17) one needs to combine the formulas from (19) 

and (20) pairwise in a criss-cross manner, namely  

BG0 qXx̂G X  ,            0BG
ˆ ZpBxZ                                   (21) 

and  

0AH Xpˆ Hx X  ,            AH0ˆ qZxA  



x



x

Z                                 (22) 

respectively. Here q  is a column vector of dimension M1 unambiguously computable from the 

models BG or AH together with the vector of industry outputs  at any feasible exogenous 

condition, whereas p  is a column vector of dimension N1 unambiguously computable from the 

models BG or AH together with the vector of product outputs  at any feasible exogenous 

condition. 

5. Economic interpretation of the solutions’ properties 

The vectors p’s with dimensions N1 in (19) – (22) have a natural interpretation as the relative 

price indices for products (goods and services), and the vectors q’s with dimensions M1 should 

be considered as the relative volume (quantity) indices for industries (sectors) of the economy. 

Thus, the expressions (19) – (22) allow recognizing four different types of the economy response 

to exogenous changes in net final demand and gross value added in accordance with the models 

(15) – (18). 

The model AG (15) and its generated disturbances in production and intermediate 

consumption matrices (19) describe an impact of exogenous changes in final demand or value 

added exclusively in terms of the production quantity changing at constant prices for the 

products. Meanwhile, the model BH (18) and its response (20) characterize this impact only in 

terms of price changing at constant level of production in the industries. At the same time, the 

models BG (16) and AH (17) and their responses (21) and (22) should be classified as mixed – 

because they combine price and quantity changes – and are needed some special attention. 
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In the model BG (16) according to (21) we have 
 xXeqBG

1
0N , 

 xeXp
1

0BG M

  Gxx

 

and . Putting the latter expression into the second one gives 

BG

1
0 Hqx 


BG

1
00

1
0

1
0 XeHxXeXeXGxeXp  





NNMM .         (23) 

As it was shown by (21), in model BG the production matrix under estimation undergoes 

exclusively quantity changes, whereas the matrix of intermediate consumption – only price 

changes. This result is highly difficult to interpret from economic point of view. Here the total 

equilibration of resulting supply and use table is provided by “forced” matching a pair of vector 

indices  and , which are functionally linked through matrix H. By means of the equation BGp BGq

(23), the latter statement can be clearly illustrated using a simple transformation for the initial 

vector of product outputs as follows: 

MXeqX  BG0MMMM qXeXeXHqeXeXp  
BGBGBG 0

1
0000 .           (24) 

So from (21) we have BG0 qXX  , but (24) implies that   Me N0XpX  0BG N0 where is a 

zero column vector of dimension N1. These are the reasons why the model BG (16) seems to be 

implausible artifact that is out of economic sense. 

Further, in the model AH (17) according to formulas (22) we have 
 xeX

1
0AH Mp , 


 xXe 1

0N   xHxqAH  and . Putting the latter expression into the second one gives 

AH

1
pGx 


MAH 0

1
00

1
0

1
0 eXGxeXXXexHXeq  





MNN .             (25) 

From the formulas (22) it follows that in model AH the production matrix undergoes only 

price changes, whereas the matrix of intermediate consumption – exclusively quantity changes. 

As earlier with model BG, this fact is highly difficult to interpret from economic point of view. 

Again, the total equilibration of resulting supply and use table is provided by “forced” matching a 

pair of vector indices  and p , which are functionally linked through transpose matrix G. AHq AH

By means of the equation (25), the latter proposition can be confirmed using a simple 

transformation for the initial vector of industry outputs as follows: 

XeXp N 0AHXeXeXpXeGpqXe NNNN  
0

1
0000 AHAHAH .             (26) 

So from (22) we have 0AH XpX  , but (26) gives   M0qX AH0 M0N Xe   where  is a zero 

row vector of dimension 1M. Thus, the model AH (17) as well as BG (16) seem to be 

implausible artifact that is out of economic sense. 

Nevertheless, the model AH is still widely used in current practice of input–output analysis 

for transformation of supply and use tables to symmetric input–output tables in the product-by-

http://www.lingvo-online.ru/ru/Search/Translate/GlossaryItemExtraInfo?text=%d0%b2%d1%8b%d1%81%d0%ba%d0%b0%d0%b7%d1%8b%d0%b2%d0%b0%d0%bd%d0%b8%d0%b5&translation=proposition&srcLang=ru&destLang=en
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0vvv

product format on the base of industry technology assumption (model B as in Eurostat, 2008) and 

in the industry-by-industry format on the base of fixed product sales structure assumption (model 

D as in Eurostat, 2008) 

As a result, only the models AG and BH are of great theoretical and practical interest 

among all the specifications of linear input–output analysis problem with matrix-valued cost 

functions listed above in Table 1. So it is advisable to go to the direct solution of linear equation 

systems (15) and (18). 

6. Regular and supplementary solutions for the models AG and BH 

Under the exogenous gross value added condition   , second equation of system (15) in 

a very general case MN EAe   can be resolved with respect to the vector of industry outputs, 

namely  

  
 vAe

1

NM  Ex .                                                 (27) 

From (19) it follows that 
 xXeq ˆˆ 1

0N , and by substituting (27) we get the regular 

solution for model AG (15) at the exogenous changes in value added: 

    



  vvvZ 1

0

1

0 ˆ

0yyy  


  eXevAeEXeeqq 0

11

0ˆ NNNMNM .              (28) 

Analogously, under the exogenous net final demand condition , first equation 

of system (18) in a very general case NM EBe   can be resolved with respect to the vector of 

product outputs as 

  
 yBe

1

MN  Ex .                                                    (29) 

From (20) it follows that 
1

0ˆˆ 

 MeXxp , so by substituting (29) we obtain the regular 

solution for model BH (18) at the exogenous changes in final demand: 

    1
0

1

0 ˆ 


  yyeZ M

0vvv

0

1

0

1ˆ 


  eXyeXBeEypep MMMNN .             (30) 

It should be noted that the solutions (28) and (30) are valid at any numbers of products and 

industries in the economy. Nevertheless, both these regular solutions are trivial because a 

response of model AG to the disturbance  

y 

 comes to the alternate multiplying the 

columns of production and intermediate consumption matrices X0 and Z0 on the growth indices 

of value added through all industries at constant prices for the products, and a response of model 

BH to the disturbance  can be calculated by the alternate multiplying the rows of 

matrices X0 and Z0 on the value indices of final demand through all products at constant level of 

production in the industries. 

0yy 



10 
 

0yyy

As noted in Section 3, a choice of alternative exogenous condition at N = M = K is also 

feasible for finding a supplementary solution of the linear input–output analysis problem. Under 

the exogenous final demand condition   , first equation of system (15) can be resolved 

with respect to the vector of industry outputs as 

  
 yAG 1

AG

x ,                                                    (31) 

of course, if an inverse of square (at N = M = K) matrix   exists as it is expected to be. Note 

that matrix G (together with initial production matrix X0) usually has the dominant main 

diagonal. 

From (19) it follows that 
 xXeq ˆˆ 1

0K , and by substituting (31) we get the 

supplementary solution for model AG (15) at the exogenous changes in final demand: 

     



  yXeAGyAGXeeqq

1
0

11
0ˆ KKK   

 yZX 1
00

0vvv 

.             (32) 

Similarly, under the exogenous value added condition   , second equation of 

system (18) can be resolved with respect to the vector of product outputs, namely 

  



 vBH 1

BH

x ,                                                     (33) 

if an inverse of square (at N = M = K) matrix   exists as it is expected to be because matrix 

H (together with G and initial production matrix X0) usually has the dominant main diagonal. 

From (20) it follows that 
1

0ˆˆ 
 KeXxp , and by substituting (33) we obtain the 

supplementary solution for model BH (18) at the exogenous changes in value added: 

     



  veXBHvBHeXepp

1
0

11
0ˆ KKK   

 vZX 1
00 .            (34) 

The supplementary solutions (32) and (34) are valid only if the values of N and M coincide, 

but in contrast to regular solutions (28) and (30) they are not trivial. It is interesting here to pay 

attention to the fact that models AG (15) and BH (18) do demonstrate a remarkable set of duality 

properties in pairwise comparison of the regular solutions (28) and (30) as well as the 

supplementary solutions (32) and (34) at N = M = K. 

7. The Leontief and Ghosh quantity and price models 

The model AG (15), its regular solutions (28) together with supplementary solution (32) and the 

resulting disturbances in production and intermediate consumption matrices (19) describe an 

impact of exogenous changes in final demand in terms of the production quantity changing at 

constant prices for the products. The model BH (18), its regular solutions (30) together with 

supplementary solution (34) and the resulting disturbances in production and intermediate 
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consumption matrices (20) characterize an impact of exogenous changes in value added in terms 

of price changing at constant level of production in the industries. 

Model AG (15) at N = M = K is well-known as a Leontief demand-driven model (see Miller 

and Blair, 2009, Section 2.2.2). It serves to assess an impact of exogenous (absolute or relative) 

changes in final demand on the economy at constant prices. Indeed, as it follows from (19), the 

main model’s statements are  and qXX ˆ0 qZZ ˆ0  where  

       
 yeX

1
0

1
K




  BHyBHeXyZXq
1

0
1

00 K                  (35) 

according to (32). Total requirements matrix, which links the vector of product outputs with the 

final demand vector, can be derived as follows: 

     





  EyXZXyZXXqXXex
11

000
1

0000 KK   
 yXZ

11
00 . 

Model BH (18) at N = M = K is known as a Ghosh supply-driven model (see Miller and 

Blair, 2009, Section 12.1). It helps to evaluate an impact of exogenous (absolute or relative) 

changes in value added on the economy at fixed production scales. As it follows from (20), the 

main model’s statements are  and Z0ˆ XpX  0ˆZp  where 

       
  vXe

1
0

1
K




  AGvAGXevZXp
1

0
1

00 K                 (36) 

in accordance with (34). Ghosh analogue of total requirements matrix, which links the vector of 

industry outputs with the value added vector, can be derived as follows: 

      





  EvXZXvZXXpXeXx
11

000
1

0000 KK    
 vXZ

11
00 . 

Here it is worth to mention the duality properties of models AG (15) and BH (18) again, 

because a response of model AG to the disturbance of the final demand coefficients 




yeX
1

0 M  is described by matrices H and B, whereas a response of model BH to the 

disturbance of the value added coefficients 
 vXe

1
0N  – by matrices G and A. 

Vectors q and p are defined above using an assumption that all the matrices in (35) and 

(36) are square (at N = M = K). In addition, let the initial production matrix X0 be a diagonal one 

as in a symmetric input–output table. Then the Leontief and Ghosh models under consideration 

can be easily led to a “classical” view.  

For diagonal matrix X0 of order K, 

KK eXXe 00 

x

XX 00  .                                               (37) 

One can obtain the most famous Leontief formula, using (35), (37) and some algebraic 

properties of diagonal matrices along the sequential transformations of the product output 

marginal totals  as follows:  
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     





  yXeZXyZXXqXXex

11
000

1
0000 KK   

 yAE 1
K . 

Its analogue for Ghosh supply-driven model can be easily derived in the similar manner, using 

(36) and then (37) along the sequential transformations of the industry output marginal totals x  

as follows: 



     





  veXZXvZXXpXeXx

11
000

1
0000 KK   

 vBE 1
K . 

Further, direct putting (37) into Ghosh model (36) gives well-known formula 

      
  vXe

1

0
1

K



  AEvZXevZXp

1

00
1

00 KK  

for so-called Leontief price model (see Miller and Blair, 2009, p. 44). Thus, in the case of a 

symmetric input-output table the Ghosh supply-driven model coincides with the Leontief price 

model (see Dietzenbacher, 1997). 

It can be shown in similar manner that the Leontief demand-driven model serves as the 

Ghosh quantity model. Indeed, direct substituting (37) into Leontief model (35) gives 

      
 yeXB

1

0
1

K



  EyZeXyZXq

1

00
1

00 KK . 

It is appropriate to mention here that all formulas obtained above in this and previous 

sections demonstrate a remarkable set of duality properties. 

8. An incorporation of the matrix-valued linear production functions into the model (3) 

Up until now in this paper, the study has focused on applying two factorizations of unknown 

intermediate consumption matrix (5) and two factorizations of unknown production matrix (8) for 

constructing the various sets of identifying linear equations in addition to the general balance 

model (3). Now it is time to explore the other two opportunities provided by two factorizations 

(7) together with two factorization (6). 

The linkage equations (7) reflect the dependencies of production matrix X on the vector of 

industry expenditures for intermediate consumption Zez N

MZez 

 and the vector of product 

amounts in intermediate use . These dependencies are linear, since 

 zZe ˆ1 AN
 ZeXX 00 N ,                                           (38) 

B
  zX ˆ0

1
M eZZeX 0M                                             (39) 

where A and B are the computable (NM)-dimensional matrices of relative coefficients. It is 

easy to check that formula (38) at 0Zez N MeZz 0 and formula (39) at  determine the 

initial production matrix X0 given. 

Matrix-valued dependencies (38) and (39) can be classified as the linear production 
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functions because of their cost arguments. Matrices 
1

00
 ZeX NA  and 0

1
0 XeZ

 MB  are 

apparently not known in special literature in contrast to the Leontief technical coefficients matrix 

1

00

 XeZA N  and the Ghosh allocation coefficients matrix 0

1

0 ZeX
 M

 

B . It is easy to see 

that matrices A and A as well as B and B are in certain “quasi-reciprocal” relations. 

From the expression for production function (38), it follows that 

  Xex AM zAez Mˆ ,               ANez  ANN zeXex  ˆ . 

After current result’s substitution, the system of linear equations (3) becomes 

yzz A  ,                   vz  ANez .                               (40) 

Further, the expression for production function (39) gives 

  zXex M Bˆ  zee MM B BB  ,               zzeXex ˆNN , 

and the system of linear equations (3) is transformed to 

yzze MB vzz ,                     B

vyzz ,,, 

.                                 (41) 

Thus, we get two models (40) and (41), each of which contains N+M linear equations with 

2(N+M) scalar variables . To provide exact identifiability of all variables in the 

models with exogenous disturbances, let us supplement them with the linear equations that link 

the vector of product amounts in intermediate use  and the vector of industry expenditures for 

intermediate consumption .  

z

z

To this aim, the factorizations (6) do seem to be useful. By introducing new matrix 

denotations, we have 

 zZe ˆ1 GN
 ZeZZ 00 N ,                                           (42) 

H
  zZ ˆ0

1
M eZZeZ 0M                                             (43) 

where G and H are the computable (NM)-dimensional matrices of relative coefficients. 

Obviously, formula (42) at 0Zez N MeZz 0 and formula (43) at   determine the initial 

intermediate consumption matrix Z0 given. Matrices 
1

00
G ZeZ N  and 0

1
0 ZeZ

 MH  

are apparently not known in special literature in contrast to their mirror-images, namely the 

product-mix matrix 
1

00
 XeX NG  and the market shares matrix 0

1
0 XeX

 M



H . 

The equation (42) gives   zez GG MˆZez M

z

. After its substitution to the models 

(40) and (41) for eliminating the variable , we obtain 
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z yz  GA  ,               vze  ANz .                                   (44) 

yz  zze  GGB M vz  ,               BG
HH 

.                             (45) 

The equation (43) implies that    zze ˆN

z

zHA

Zez N ; it allows eliminating the 

variable  in turn from the models (40) and (41), which become 

yz   ,               vz  HAez H N .                             (46) 

yz  ze MB vzz ,                  HB

vyz ,,

vyz ,,

0vvv  

0yyy

.                                  (47) 

Each model (44) – (47) consists of N+M linear equations with different numbers of 

unknown scalar variables, namely N+2M scalar variables  as in (44) or (45), and 2N+M 

scalar variables  as in (46) or (47). Therefore, supplementing the exogenous value added 

condition  provides a just identifying closure of the models (44) or (45), whereas an 

exact identifiability of variables in the models (46) or (47) can be achieved by direct 

incorporation of the exogenous final demand condition   .  

If all the matrices in (44) – (47) are square, each model also has a supplementary solution 

corresponding to alternative exogenous condition (see Section 3). All possible situations for 

models (44) – (47) are listed in Table 2. 

Table 2. The various exact identifiable specifications of linear input–output analysis 

problem with the matrix-valued linear production functions and exogenous variables 

Model 
Model 
code 

Matrices 
fixed 

Vector 
variables 

Number of 
variables 

Exogenous 
variable 

Alternative exogenous 
variable at N = M 

(44) AG GA , vyz ,,  N+2M  vv   yy  

(45) BG GB, vyz ,,  N+2M  vv   yy  

(46) AH HA , vyz ,,   2N+M  yy   vv  

(47) BH HB, vyz ,,   2N+M  yy   vv  

It can be shown that the regular and supplementary solutions of the linear equation systems 

(44) – (47) under various specifications of an exogenous disturbance have similar algebraic 

properties as the solutions for models (15) – (18) in Section 3. 

Indeed, unknown matrices X and Z in the model AG (44) according to (38) and (42) are 

associated with the initial matrices X0 and Z0 by postmultiplying the latters on the same diagonal 

matrix both as follows: 

qXz ˆˆ 0ZeXzX ˆ 1
00  

 NA ,           qZzZ ˆˆ 0
1

0 


eZzZ ˆ 0   NG         (48) 
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z

where q is a column vector of dimension M1 strictly identifiable together with the vector of 

industry expenditures for intermediate consumption  at any feasible exogenous condition. 

Hence, the model AG and its response (48) describe an impact of exogenous changes in final 

demand or value added just in the terms of the production quantity changing at constant prices for 

the products. 

Further, formulas (39) and (43) imply that in the model BH (47), in full contrast to 

model AG, matrices X and Z are associated with the initial matrices X0 and Z0 by premultiplying 

the latters on the same diagonal matrix both as follows: 

00 ˆ Xp1
0ˆˆ XeZzzX  

 MB ,            00
1 ˆZpZe 

M

z

0ˆˆ ZzzZ  H         (49) 

where p is a column vector of dimension N1 unambiguously identifiable together with the 

vector of product amounts in intermediate use  at any feasible exogenous condition. Therefore, 

the model BH and its response (49) characterize an impact of exogenous changes in final 

demand or value added only in the terms of price changing at constant level of production in the 

industries. 

Finally, for the cases of models BG (45) and AH (46) one needs to combine appropriate 

formulas from (48) and (49) pairwise in a criss-cross manner. So, the models BG (45) and AH 

(46) seem to be implausible artifacts that are out of economic sense, as well as the models 

BG (16) and AH (17) in Section 4. 

9. Regular and supplementary solutions for the models AG and BH 

Under the exogenous value added condition 0vvv   , second equation of system (44) in a 

very general case MENe A  can be resolved with respect to the vector of industry 

expenditures for intermediate consumption, namely  

  
 vE

1
MNA  ez .                                                  (50) 

From (48) it follows that 
 zZeq ˆˆ 1

0N , and by substituting (50) we obtain the regular 

solution for model AG (44) at the exogenous changes in value added: 

    



  vvvZ 1

0
1

0 ˆ

0yyy 


  eXevEeZeeqq 0

11
0ˆ NNMNNM A .              (51) 

Similarly, under the exogenous net final demand condition   , first equation of 

system (47) in a very general case NM Ee B  can be resolved with respect to the vector of 

product amounts in intermediate use as 
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  
 yEe

1
NM z B .                                                  (52) 

From (49) it follows that 
1

0ˆˆ 
 MeZzp , so by substituting (52) we get the regular 

solution for model BH (47) at the exogenous changes in final demand: 

    1
0

1
0 ˆ 

  yyeM

0yyy

0
1

0
1ˆ 


  ZeXyeZEeypep MMNMN B .             (53) 

It is easy to see that both these regular solutions are trivial. However, as noted above, at 

N = M = K each model also has a supplementary solution corresponding to alternative exogenous 

condition. Under the exogenous final demand condition   , first equation of system 

(44) can be resolved with respect to the vector of industry expenditures for intermediate 

consumption as 

  
 y1GA

G

z ,                                                     (54) 

of course, if an inverse of square (at N = M = K) matrix A   exists as it is expected to be. Note 

that matrix A (together with initial production matrix X0) usually has the dominant main 

diagonal. 

From (48) it follows that 
 zZeq ˆˆ 1

0K , and by substituting (54) we obtain the 

supplementary solution for model AG (44) at the exogenous changes in final demand: 

     



  yZeyZeeqq

1
0

11
0ˆ KKK GAGA   

 yZX 1
00

0vvv 

.             (55) 

Analogously, under the exogenous value added condition   , second equation of 

system (47) can be resolved with respect to the vector of product amounts in intermediate use, 

namely 

  
 v

1
HB

HB
z ,                                                     (56) 

if an inverse of square (at N = M = K) matrix   exists as it is expected to be because matrix 

B (together with A and initial production matrix X0) usually has the dominant main diagonal. 

From (49) it follows that 
1

0ˆˆ 
 KeZzp , and by substituting (56) we get the 

supplementary solution for model BH (47) at the exogenous changes in value added: 

     





  veZveZepp
1

0

11
0ˆ KKK HBHB   

 vZX 1
00 .            (57) 

The supplementary solutions (55) and (57) are valid only if the values of N and M are equal 

to each other, but in contrast to regular solutions (51) and (53), they are not trivial. Besides, the 

regular and supplementary solutions (51) and (55) exactly coincide with the regular and 

supplementary solution (28) and (32), i.e., model AG (15) with the matrix-valued linear cost 
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function (9) and model AG (44) with the matrix-valued linear production function (38) are 

equivalent. Moreover, the regular and supplementary solutions (53) and (57) also exactly 

coincide with the regular and supplementary solution (30) and (34), i.e., model BH (18) with the 

matrix-valued linear cost function (10) and model BH (47) with the matrix-valued linear 

production function (39) are equivalent, in their turn. 

The latter facts can be appreciated as an ostensive demonstration of general equilibrium in 

the theory of input–output analysis. 

10. Discussion of results and concluding remarks 

It is advisable to point out four main results developed in this paper. 

First, a general linear problem of input–output analysis is formulated as the system of 

balance equations together with a chosen specification of exogenous disturbance and a 

corresponding set of linear linkages between the variables, which provides the exact 

identification of all unknown variables. The factorization of unknown production and 

intermediate consumption matrices are proposed as a common formal method of using data 

available for input–output modeling. Thereby the operational base for constructing the various 

sets of identifying equations in addition to the general balance model is provided. It is to be 

emphasized that the factorizations (5) – (8) do not exhaust all the options for developing the 

linkage equations in this way. 

Secondly, applying the matrix-valued linear cost functions (9) and (10) with product and 

industry outputs as their arguments do allow recognizing four different types of the economy 

response to exogenous changes in net final demand and gross value added in accordance with the 

models (15) – (18): in terms of the production quantity changing at constant prices for the 

products, in terms of price changing at constant level of production in the industries, and in terms 

of combined quantity’n’price and price’n’quantity changes. Two latter types of economy’s 

response (and two corresponding models BG and AH) seem to be implausible artifacts that are 

out of economic sense. It is important to note that model AH is widely used in practice of input–

output analysis for transformation of supply and use tables to symmetric input–output tables in 

the product-by-product format on the base of industry technology assumption and in the industry-

by-industry format on the base of fixed product sales structure assumption. 

Thirdly, the models AG and BH together with its regular and supplementary solutions 

constitute a general algebraic approach to mutual analysis of Leontief and Ghosh quantity and 

price models. In particular, for a symmetric input–output table, the equivalence of Ghosh supply-

driven model and Leontief price model as well as the equivalence of Leontief demand-driven 
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model and Ghosh quantity model are proved. 

Fourthly, involving the matrix-valued linear production functions (38) of industry 

expenditures for intermediate consumption and (39) of product amounts in intermediate use 

(based on “quasi-reciprocal” technical and allocation coefficients to be fixed) does not lead to 

analysis expansion. It is shown that model AG with production function (38) and model AG 

with cost function (9) as well as model BH with production function (39) and model BH with 

cost function (10) are pairwise equivalent. These equivalencies can be considered as a testimony 

to presence of general equilibrium in input–output tables.  

The latter facts also mean that certain choice of the technical and allocation coefficients’ 

patterns does not have an influence on results of modeling, contrary to a widely accepted point of 

view that “the center-piece of input–output analysis is a matrix... of technical coefficients” (ten 

Raa, 1994, p.4). Therefore, technical and allocation coefficients should be regarded as helpful 

ways of economic interpretation rather than as basic framework or operational tools for 

modeling. 
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