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Abstract

Recent developments in price of production models have proposed a hypothesis
on the structure of the input coefficient matrices to explain the empirical near-
linearity and monotonicity found in prices as a function of income distribution
—the tendency towards zero of subdominant eigenvalues. The objective of this
paper is twofold: First, based on the behavior of observed eigenvalues, the paper
shows that they cannot explain by their own the regularities found in prices of
production. Second, it is shown theoretically and empirically the existence and
relevance of an additional force acting on the input matrix and the labor coefficient
vector: the concentration of industries’ vertically integrated compositions of capital
around their average. It is argued that the combined effect of these two factors
produces the empirical regularities in relative prices. The tendency of the vertically
integrated labor to means of production proportions to cluster around their average
reveals the existence of an economic force acting on the structure of technology of
observable economies and calls for an explanation. The paper relies on the US 1987-
2007 Input-Output accounts, at the highest disaggregation level (between 370-466
sectors), for the empirical evidence in this paper.
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and Anwar Shaikh for all the conversations on this topic and the discussion of the results. This paper
equally beneficiated from multiple discussions with Duncan Foley, Juan Jacobo, and Jangho Yang. This
research received financial support from Mexico’s CONACYT and DGRI-SEP.

1



Contents

1 Introduction 3

2 The Sraffian price of production model 6

2.1 Standard prices and their changes as an effect of changes in distribution . . 8

2.2 Empirical evidence for the US economy 1987-2007 . . . . . . . . . . . . . . 9

3 An evaluation of the random matrix hypothesis to explain the empirical

regularities in standard prices 12

3.1 The spectral representation and the random matrix hypothesis . . . . . . . 13

3.2 Empirical evidence of eigenvalues . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 An assessment of the hypothesis . . . . . . . . . . . . . . . . . . . . . . . . 17

4 An additional constraint on technology 19

4.1 Eigenlabors and eigenvalues behavior . . . . . . . . . . . . . . . . . . . . . 19

4.2 The relationship between the labor coefficient vectors and the Standard

Labor proportions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 The concentration of industries’ vertically integrated compositions of capi-

tal around the average . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Discussion of the results 24

Appendices 30

A Eigenvalues-eigenlabors relationship 30

2



1 Introduction

One of the main objectives of Sraffa’s Production of Commodities by Means of Commo-

dities is to study the behavior of prices of production and the profit rate as the effect

of changes in the wage rate. In his model of prices of production with single product

industries and pure circulating capital, relative prices as a function of income distribution

depend on the structure of technology of the whole economy. The components of techno-

logy are the input coefficient matrix A and the labor coefficient vector l, whereas their

individual characteristics and their relation define its structure.

Sraffa, and many after him, consider that relative prices in general do not have a

simple behavior as income distribution changes (Sraffa, 1960, pp. 12, 15; Pasinetti, 1977,

p. 82; Bidard and Krause, 1996, p. 51). It is argued that as the wage rate moves from

its maximum to zero, relative prices might alternate in rising and falling, experiencing

complex patterns (Sraffa, 1960, p. 15); so that the normal case is one with complicated

curvatures (Schefold, 1976, p. 26-7). However, it is equally possible that this model

generates simple price patterns, like constant or linear functions of income distribution.

The reason for this coexistence in degrees of complexities in price trajectories is the

absence of relevant constraints on the structure of technology of the model. Movements in

relative prices depend in the last instance on “the inequality of the proportions in which

labour and means of production are employed in the various industrie” (Sraffa, 1960, p.

12). The interindustry input-output network contained in the input matrix A links the

proportions of all the industries. Hence, the structure of technology is captured by the

labor to means of production proportions, or compositions of capital, of all the industries

directly and indirectly intervening in the production of every commodity. However, the

only constraints on A and l that are usually assumed in the price models are that of

non-negativity, indecomposability, primitivity, and productivity of A and the positivity

of l —all of them consistent with “simple” and “complicated” relative price patterns.

In an effort to characterize the technological structure of observed economies, Sche-

fold (1976) proposes the Regular Sraffian System, consisting of an input coefficient matrix

with non-zero semi-simple eigenvalues λt 6= 0 and an input matrix-labor vector relation

such that l cannot be orthogonal to any right eigenvector qR
t of A —that is, lqR

t 6= 0.

Schefold proposes these features on the grounds that irregular systems are only possible

by a fluke (p. 27). However, these non-equality ( 6=) constraints on the elements of A and

on its relation with l only prevents a limited set of outcomes, which actually corresponds

to the cases of simple behavior, like constant or linear price functions. Therefore, this

regular system maintains a highly unconstrained technological structure, which allows
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Schefold to conclude that “prices of production follow a twisted curve in function of the

rate of profit” (1976, p. 46).

In contrast with the complex outcomes expected from the price of production model,

empirical estimations of these models have consistently produced results in the opposite

direction.1 First, observed standard prices of production (prices measured in terms of

Sraffa’s standard commodity) are in most cases monotonic functions of the profit rate.

Linear and quadratic functions approximate well actual price curves. The same charac-

teristics can be found for industries’ output-capital ratios. Second, the wage rate as a

function of the profit rate (the wage-profit curve) is also a nearly linear curve.2 Finally,

several distance measures show that prices of production, direct prices (prices proportio-

nal to total labor time) and market (observable) prices are close to each other, with small

overall deviations.

The reason of this contrast between expected and observed price behavior is the

existence of forces acting on the technology of actual economies in such a way that regu-

lates A and l (and therefore the labor to means of production proportions) by imposing

constraints on them. The observed technological structure, represented by the interindu-

stry economic statistics, is a snapshot of the ongoing process of technical change. Hence,

the explanation of the empirical regularities in price of production models must consider

the technology structure and the forces that ultimately produce the interindustry confi-

guration of labor and means of production relations. This discussion has been generally

absent in the theoretical and empirical literature on prices of production until recently.

In order to explain the empirical regularities in price of production models, recent

developments in this literature have studied systematically the structure of A, specifically

its eigenvalues. Under the hypothesis that all the eigenvalues, with the exception of the

maximum, are zero, Schefold derives linear prices as a function of the profit rate and

argues that the observed near-linearity in these prices can be explained by small subdo-

minant eigenvalues (2013a, p. 1177). This hypothesis is also known as the random matrix

hypothesis. Following this new perspective,3 the literature has studied the economic and

algebraic properties of the spectral representation of the model, i.e. the expression of

1A comprehensive review of this empirical literature can be found in Mariolis and Tsoulfidis (2016b)
and Shaikh (2016, chapter 9).

2The wage-profit curve as well as any commodity aggregate derived from the price of production
model (like the aggregated capital-output ratio) depends, in addition to the technology structure, on the
output proportions. In order to present our contribution to the literature as simply as possible, this paper
concentrates on individual prices of production and on the structure of technology. However, Section 5
briefly considers the regularities found in wage-profit curve estimations in the light of our results.

3See Iliadi et al. (2014), Mariolis and Tsoulfidis (2011, 2014, 2015, 2016a), Nassif and Shaikh (2015),
Schefold (2013a,b, 2014, 2016) and Shaikh (2016, ch. 9 and appendix 10).
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prices in terms of the eigenvalues and eigenvectors of A, and explored the behavior of

eigenvalues in actual economies. They have identified a structural constraint on observed

λA,t: the vast majority of eigenvalues are clustered around zero. These authors consider

that the relevant constraint needed to explain the observed behavior of relative prices

acts solely on the eigenvalues, implicitly summarizing the structure of labor to means of

production proportions in the information contained in A, with no reference to l.

The purpose of this paper is twofold. First, it provides an assessment of the random

matrix hypothesis as a hypothesis to explain the empirical regularities in price of pro-

duction models. It will be argued on theoretical and empirical grounds that these regula-

rities cannot be explained by assuming a tendency to zero of the subdominant eigenvalues.

The main problem with this hypothesis is that empirical evidence shows that observed

input matrices, at any level of aggregation, have an important number of eigenvalues with

considerable magnitude, and this number and the magnitude itself increases with the size

of the matrix. On the other hand, the spectral representations of the price models by the

supporters of this hypothesis omit the effects that the relationship between A and l might

have on relative prices —i.e. relative prices depend not only on λt, on the structure of A,

but also on the eigenlabors, l∗t = lqR
t , the labor vector representation on the coordinate

space given by the left eigenvectors of A. Eigenvalues and eigenlabors jointly determine

the labor to means of production proportions.

Second, this paper provides an alternative and empirically relevant structural con-

straint that is consistent with the regularities in prices of production and the eigenvalues.

This technological constraint involves A and l: the concentration of industries’ vertically

integrated compositions of capital around their average, that is, the tendency for total

(direct and indirect) labor to means of production proportions of each industry to cluster

around the average value.

When estimating standard prices of production, eigenvalues, and eigenlabors for

the US economy (1987-2007) at the highest level possible (between 370-466 industries),

it is found the following results: 1) in general, standard prices are monotonic functions

of the profit rate; 2) eigenlabors cluster around zero and at a rate higher than the one

experienced by the eigenvalues; 3) the deviations between the labor vectors and the Perron

left eigenvector cluster around a mean value with a fairly symmetric dispersion; 4) the

same can be said about the vertically integrated compositions of capital; and 5) for

capital-output ratios, these two evaluated at both direct prices and market prices. Hence,

the empirical evidence of eigenvalues and eigenlabors suggests a tendency of observed

economies towards Irregular Systems, i.e. it indicates that the structure of technology of
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observed economies is constrained in such a way that their industries have similar means

of production proportions and a tendency for their vertically integrated compositions of

capital to cluster around their average.

The rest of the paper is organized as follows. Section 2 presents the price of pro-

duction model and the estimations of standard prices for the US economy. Section 3

presents the assessment of the random matrix hypothesis as the explanation of the empi-

rical regularities in standard price, whereas Section 4 presents our alternative hypothesis.

Section 5 discusses the precedents and implications of the results.

2 The Sraffian price of production model

This paper considers the Sraffian price of production model for n single product industries

and circulating capital only. Prices of production p
n×1

> 0, or “prices” from now onwards,

are commodities’ exchange values that yield profits proportional to the value of the capital

invested in each industry.4 These prices depend on two exogenously given economic

factors. On the one hand, they depend on income distribution, that is, the functional

distribution between wages and profits. On the other hand, prices depend on technology,

i.e. on the uses of labor and means of production. Sraffa constructed this model to study

the behavior of prices pj and the rate of profit r as an effect of changes in the wage rate w,

holding output and the technology constant. It is assumed that wages are not part of the

value of the capital advanced. Labor is assumed to be homogeneous and each unit is paid

the same w, whereas means of production are commodities produced within the system

and valuated at prices. The mathematical representation of the technology is given by

the non-negative input coefficients matrix A
n×n

= {aij}, aij ≥ 0 and the strictly positive

vector of direct labor coefficients l
n×1

> 0, which represent the means of production and

labor requirements per unit of gross output ( x
1×n

> 0), respectively. The price and the

output system are then:

p = (1 + r) pA + wl (1)

x = Ax + y, (2)

4The present research will not consider the process of equalization of profitability conditions and
competition. Recent evidence of the equalization process can be found in Shaikh (2016, ch. 7, 8) and
Scharfenaker and Semieniuk (2016).
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where y
1×n
≥ 0 is the exogenously given net output vector.5 This condition assumes that

the system is productive in the sense that gross output in each industry at least covers

its requirements as means of production Ax ≤ x. Finally, it is assumed that matrix A is

indecomposable or that all industries produce basic commodities —i.e, every commodity

enters directly or indirectly into the production of all the commodities.

Equation (1) shows that pj (r) depend on the structure of technology, that is, on the

individual characteristics of A and on the relationship maintained with l. The technology

can be represented in terms of the composition of capital or the proportions of labor to

means of production. Hence, the structure of technology generates a structure in the

composition of capital. Given that all the industries are interconnected due to its direct

or indirect participation in the production of the means of production of every industry,

the compositions of capital are also interconnected and its structure involves the whole

economy. Hence, it is convenient to re-express the price and output system (1)-(2) in

terms of total (direct plus indirect) or vertically integrated quantities of labor, means of

production, and gross output required to produce one unit of net output:

p = rpH + wv (3)

x = [I−A]−1 y, (4)

where [I−A]−1 is Leontief’s inverse, H = A [I−A]−1 is the total inputs coefficient

matrix, and v = l [I−A]−1 is the total labor requirements vector or the labor value

vector.

The price systems (1) and (3) have n + 2 unknowns (n prices and 2 distributive

variables) and n equations. Either r or w is assumed to be given. We will consider the

p and w to be functions of r. By selecting a numeráire, which can be an individual or a

composite commodity, and giving values to the rate of profit for the range 0 ≥ r ≥ R,

where R is the maximal rate of profit, relative prices are obtained as a function of the

profit rate. The solution of the price system (3) in terms of the numeráire z
1×n
≥ 0 is then:

1 = pz (5)

p (s) = wv [I− sC]−1 for 0 < s < 1 (6)

w =
[
v [I− sC]−1 z

]−1
, (7)

5This paper will not consider how the net output is divided between consumption and investment.
However, see the remarks in Section 5.
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where s = r
R

is the relative profit rate and C = RH. When s = 0 relative prices are

proportional to their total quantities of embodied labor: p (0) = wv. When s = 1 (or

w = 0) prices are proportional to the left Perron eigenvector (the eigenvector associated

to the maximal eigenvalue): p (1) = pC ∝ qL
1 .6

2.1 Standard prices and their changes as an effect of changes in

distribution

The study of the behavior of prices of production as an effect of changes in income dis-

tribution based on Equations (5) and (6) can be complicated: It is not possible to know

if the trajectory of relative prices7 is caused by the influence of the numerator, the deno-

minator, or both (Sraffa, 1960, p. 18). However, Sraffa (1960, ch. IV,V) shows that if

we adopt the standard commodity as the standard of measure of prices, then we can be

sure that their movement is in fact caused by the prices we are studying and not by the

numeráire. The standard commodity yS is a composite commodity the value of which

is independent of distribution because it is proportional to the right Perron eigenvector

yS ∝ qR
1 . By normalizing yS and p such that vȳS = 1 and p̄ȳS = 1,8 we obtain the

standard wage w̄ and standard prices p̄:

w̄ = 1− r

R
= 1− s (8)

p̄ = rp̄H + w̄v = v − r
(

p̄H− 1

R
v

)
(9)

= (1− s) v [I− sC]−1 . (10)

Sraffa (1960, ch. III) shows that the behavior of relative prices, say
pf
pg

, as an effect

of changes in distribution depends on the compositions of capital of industries f and g

and on those of the industries indirectly participating in the production of their means of

production. In an economy producing only basic commodities, relative price movements

depends then on the compositions of capital of all the industries. If we take the j -th

equation of Equation (9) and rearrange it we can see that price movements depend on the

6Matrices A, H, and C have the same eigenvectors but different eigenvalues. See Section 3.1.

7Be they in terms of the numeráire pj =
v[I−sC]−1

j

v[I−sC]−1z
or any other commodity

pf
pg

=
v[I−sC]−1

f

v[I−sC]−1
g

, where

[I− sC]
−1
j is the j -th column of matrix [I− sC]

−1
.

8That is, by normalizing yS and p in such a way that had the economy would produce under the
proportions given by yS, the total quantity of labor and the value of the net output of this system would
be the same and equal to 1. See Pasinetti (1977, p. 93-103) for a full discussion on this.
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relationship between the vertically integrated compositions of capital of the j -th industry
p̄Hj

vj
and that of the industry acting as numeráire: the standard system 1

R
(Bienenfeld,

1988, p. 253-4, Eq. A4):9

p̄j
vj

= 1− r
(

p̄Hj

vj
− 1

R

)
. (11)

2.2 Empirical evidence for the US economy 1987-2007

This section estimates standard prices in order to assess the conjecture made by Sraffa

(1960) and others that the behavior of relative prices as an effect of changes in income dis-

tribution generates complex patterns. For this, Equation (10) is estimated at the highest

disaggregation ever employed (between 360-466 industries) and evaluate three aspects of

these functions: monotonicity, price-labor value reversal, and visual inspection of their

shapes. If a function is monotonic, then it is always either non-increasing (decreasing or

constant) or non-decreasing (increasing or constant) —it cannot change direction. Price-

labor value reversal is a particular case of non-monotonic behavior: the change in the

price and labor value relation pj ≷ vj as the relative profit rate changes. Finally, by

giving a visual inspection of standard prices for 0 ≥ s ≥ 1 allows us to assess the degree

of complexities that price movements might have.

The empirical estimation of standard prices requires one to have empirical estimates

of the input coefficient matrix A and the labor coefficient vector l. We take from Torres

and Yang (2016) the input coefficient matrices for the US economy for years 1987, 1992,

1997, 2002, and 2007. Full details of the construction can be found in their appendix.

However, these are the main aspects of it: The matrices were constructed from the Use

and the Make tables after redefinitions from BEA’s Benchmark Input-Output Accounts

for the mentioned years under the industry-based technology assumption.10 A number of

manipulations were needed to obtain a non-negative and irreducible (only basic commodi-

ties) A, with positive industrial value-added and non-fictitious industries, which involved

the elimination of a small number of industries and commodities (between 6 and 4 percent

of the industries were discarded).

As for l, Shaikh’s (2012, p. 98) approach is followed and l is estimated as a skilled-

adjusted labor vector, under the assumption that differences in skills are represented by

wage differentials. Hence, each industry’s wage bill (obtained from the Use table referred

9The standard system is the collection of all the industries producing basic commodities with techno-
logy (A, l), under output proportions given by the standard commodity, and with the total quantity of
labor equal to that of the actual systems.

10This accounts are based on a commodity-by-industry distinction and deals with industries’ secondary
production. See Miller and Blair (2009, ch. 5) for a detailed treatment of this topic.
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Concept 1987 1992 1997 2002 2007
Number of Basic Industries 456 466 464 411 370
Number of monotonic prices 331 399 207 320 308
Number of non-monotonic prices 125 67 257 91 62
% of non-monotonic prices 27.4 14.4 55.4 22.1 16.8
Prices with 2 changes in direction 0 2 0 3 2
Number of price-labor value reversals 62 37 245 39 33
% with price-labor value reversal over total 13.6 7.9 52.8 9.5 8.9
% with price-labor value reversals over non-monotonic 49.6 55.2 95.3 42.9 53.2
Maximal number of price-labor value reversals 1 1 1 1 1

Table 1: Monotonicity evaluation of standard prices as a function of income distribution: US economy,
1987-2007. Standard prices are calculated at 21 equally spaced relative profit rates s = r

R ∈ [0, 0.99].
Most industries have monotonic standard prices. Industries that experience non-monotonicity have over-
whelmingly only one change in direction. Instances of price-labor value reversal were even less frequent.
There were no more than 2 changes in direction and only for 7 cases.

above and for the industries considered in the construction of matrix A) is divided by

the economy-wide average wage rate, i.e. by the ratio of total employee compensation to

total (full and part-time) employment.

Table 1 shows the evaluation of standard prices calculated for 21 equally-spaced

relative profit rates s in the range 0 ≤ s ≤ 1: s = {0, 0.05, 0.10, ..., 0.95, 0.99}. Compared

with the previous empirical exercises of the literature on standard prices, the present

results are of interest for two reasons. First, due to the level of detail, it is between 5

and 10 times higher than previous exercises. Second, because of its results: Except for

the year 1997, the results are consistent with those using highly aggregated information,

showing that the empirical regularities found in the literature are structural and that

aggregation does not generates the regularities.

The first 4 rows shows that most of the prices are monotonic —only between one

fifth and one forth of the prices are non-monotonic. Moreover, except for 7 cases, non-

monotonic prices experience only one change in direction. The referred 7 cases experienced

2 changes in direction, which were the highest for the five years. The remaining rows

explore the price-labor value reversal. About half of the non-monotonic prices experienced

price-labor value reversal, which means that the latter cases were even less frequent, with

no more that one reverse in direction.

In order to complement the analysis of monotonicity and price-labor value rever-

sal and to have a notion of the actual shapes of standard price, Figure 1 presents a

random sample of them, two for each year and for each type of behavior: monotonic,

non-monotonic with 1 change in direction, price-labor value reversal, and non-monotonic

with 2 changes in direction (for this last one, we present all the 7 cases). Following Shaikh
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Figure 1: Sample of standard prices, normalized by their labor values, as a function of income distribu-
tion by type of behavior: US economy, 1987-2007. The series description indicates the number of industry
and the year. Except for Non-Monotonic prices with 2 changes in direction, the rest of the prices are
randomly selected (2 for each year). The graphics gives a visual representation of the types of standard
prices found in Table 1.

(1998), standard prices are normalized by their labor value (or its standard price at a zero

profit rate, p (0)j = vj), so they all start at 1. We want to call to attention of two aspects

from this figure. First, the randomly selected normalized standard prices give a visual

representation of each type of behavior detected in Table 1. Being constrained to nor-

mally have between 0 and 1 changes in direction, the degree of curvature of the functions

is rather limited. Therefore, the average standard price does not seem to have the com-

plex pattern from Sraffa’s (1960) conjecture. Second, if we discard standard prices from

1997, there is a pattern emerging from the scale, partially noticed by Shaikh (1998, p.

230): non-monotonic standard prices present considerable less absolute variability than

monotonic prices. Non-monotonic prices are closer to their labor values than monotonic

prices. Even more, the standard prices that experience price-labor value reversal and 2

changes in direction (row 2 of Figure 1) have the smallest variability. Of course, this visual

appreciation is highly susceptible to the scale of the y axis, that is why the appreciation

is in relative terms, comparing monotonic and non-monotonic prices.
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3 An evaluation of the random matrix hypothesis to

explain the empirical regularities in standard pri-

ces

In order to explain the contrast between the expected and observed behavior in standard

prices, recent developments in this literature have studied the features of the structure

of technology that might explain this paradox.11 The authors have advanced a hypot-

hesis that constrains the technology and therefore the possible movements of standard

prices. The constraint operates only on the input matrix A and acts particularly on

the eigenvalues. By providing an alternative representation of the price model in terms

of the eigenvalues and eigenvectors of A, called the spectral representation, the authors

show how the movements of prices is affected by different eigenvalue configurations. Now

is is presented the mathematical results on A used in the spectral representation of the

price model in Section 3.1, whereas Section 2.2 and 3.3 respectively reviews the empirical

evidence of eigenvalues and assesses the hypothesis advanced by the modern literature.

We call scalar λ an eigenvalue of A and qL

1×n
6= 0 and qR

n×1
6= 0 respectively the left

and right eigenvector corresponding to λ, if qLA = λqL and AqR = λqR (Meyer, 2001,

pp. 490).12 By the Perron-Frobenius theorem, if matrix A is non-negative and irreducible,

then it has a real, positive, and simple maximum eigenvalue λ1, associated with a unique

positive left qL
1 > 0 and right qR

1 > 0 eigenvector (Meyer, 2001, pp. 673). These vectors

will be called the Perron eigenvectors. If in addition A is productive and primitive, then

its maximal eigenvalue is bounded by 0 < λ1 < 1 and λ1 > |λ|t6=1 (Vegara, 1978, pp. 23;

Meyer, 2001, pp. 674). Finally, it is assumed that A is diagonalizable and, for sake of

simplicity, that all its eigenvalues are simple. Under these assumptions, the input matrix

has the following spectral decomposition:

A = QΛQ−1, (12)

where Λ = diag {λ1, ..., λn}, matrix Q has as columns eigenvectors
{
qR
t

}
whereas matrix

Q−1 has as rows eigenvectors
{
qL
t

}
(Meyer, 2001, pp. 517), and the eigenvalues, ordered

according to their modulus, have the following ranking: 1 > λ1 > |λ2| ≥ ... ≥ |λn| ≥ 0.

11See Iliadi et al. (2014), Mariolis and Tsoulfidis (2011, 2014, 2015, 2016a), Nassif and Shaikh (2015),
Schefold (2013a,b, 2014, 2016) and Shaikh (2016, ch. 9 and appendix 10)

12We will refer to the eigenvalue of A with the Greek letter λ. Eigenvalues from different matrices will
be indicated in λ’s subscript.
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The left and right eigenvectors are normal to each other, so (Meyer, 2001, pp. 517)

Q−1Q = I (13)

qL
fq

R
g =

{
1 if f = g

0 if f 6= g.
(14)

Eigenvectors qR
t and qL

t are determined up to a scale, that is, only their proportions

are uniquely determined. However, no matter the normalization used to obtain each

eigenvector, say q̄L
t = kqL

t , such that
(
kqL

t

)
A = λt

(
kqL

t

)
, for Equation (12) to hold the

normalization must fulfills Equation (14):
(
kqL

t

) (
k−1qR

t

)
= 1.

Finally, if f (z) is function defined for all λt, then (Meyer, 2001, pp. 517):

f (A) = Qf (Λ) Q−1. (15)

That is, if f (A) is for example a polynomial function of A and λt is an eigenvalue of A,

then f (λi) is an eigenvalue of f (A). It is important to highlight that both A and f (A)

have the same eigenvectors. Therefore, matrix functions such as [I− rH]−1 in Equation

(3) can be equivalently be represented as

[I− rH]−1 = Q [I− rΛH]−1 Q−1, (16)

where ΛH = Λ [I−Λ]−1 and λH,t = λt (1− λt)−1.

3.1 The spectral representation and the random matrix hypot-

hesis

The spectral representation of standard prices in Equation (10) consists in expressing

them in terms of the eigenvalues λC,t and eigenlabors v∗t , that is, in expressing C and

v in the coordinate space given by the eigenvectors
{
qL
t

}
and

{
qR
t

}
: ΛC = Q−1CQ

and v∗ = vQ =
{
v∗j
}

=
{
vqR

t

}
, where ΛC = λ−1

H,1ΛH, λC,t = λ−1
H,1λH,t, λC,1 = 1, and

v = v∗Q−1 =
∑n

t=1 v
∗
tq

L
t . By plugging in Equation (16) into (10) we get:

p̄ = (1− s) vQ [I− sΛC]−1 Q−1

=
n∑
t=1

(1− s)
1− sλC,t

v∗tq
L
t = v∗1q

L
1 +

n∑
t=2

(1− s)
1− sλC,t

v∗tq
L
t , (17)
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For a given particular value of s, Equation (17) expresses standard prices as a linear

combination of the left eigenvectors having as weights two terms, which represent the two

aspects of the structure of technology: the eigenvalues λH,t (the individual characteristics

of A) and the eigenlabors v∗t (the relationship between A and v).13

We can alternatively re-express solution (10), together with its spectral representa-

tion, in terms of dated quantities of labor (Sraffa, 1960, ch. VI). Provided the viability

assumption, λH,1 = 1
R
< 1, the inverse matrix [I− rH]−1 is the result of the infinite (but

convergent) sum [I + rH + r2H2 + ...], so that p̄ =
(
1− r

R

)
v [I− rH]−1 is expressed as:

p̄ = v + r

[
vH− 1

R
v

]
+ r2

[
vH− 1

R
v

]
H + r3

[
vH− 1

R
v

]
H2 + ... (18)

= v + rv∗ [ΛH − λH,1I] Q−1 + r2v∗ [ΛH − λH,1I] ΛHQ−1 + ...

p̄j = vj + r
n∑
t=2

v∗t (λH,t − λH,1) qL
t,j + r2

n∑
t=2

v∗t (λH,t − λH,1)λH,tq
L
t,j

+ r3

n∑
t=2

v∗t (λH,t − λH,1)λ2
H,tq

L
t,j + ... (19)

The conclusion reached by the empirical literature that linear and quadratic functi-

ons are accurate approximations of full standard prices, has led the authors working

on the spectral representation to identify constraints in the technology structure that

might produce these particular functions. If standard prices could be parametrized as

p̄ = a + rb + r2c + r3d + ..., then constant, linear, and quadratic standard prices would

be respectively p̄c = a, p̄l = a + br, and p̄q = a + br+ cr2. What then are the economic

and mathematical constraints required for standard prices to have such functions?

The case of constant standard prices p̄c = a requires a specific constraint on the

relationship between the input matrix and the labor vector: the same (direct and vertically

integrated) compositions of capital, and equal to that of the standard industry
vHj

vj
= 1

R
,

in every industry, so that
[
vH− 1

R
v
]

= 0. This implies that v ∝ qL
1 , so that v = v∗1q

L
1

or v∗t≥2 = 0. This constraint does not depend on the eigenvalues because A is primitive

(λ1 cannot be equal to |λ|t6=1). So v∗t = 0 for t = 2, ..., n is necessarily needed. Hence,

because at r = 0 we have p̄ = v and at r = R we have p ∝ qL
1 , the equal compositions

of capital constraint on technology (or the zero “subdominant” eigenlabors), imply that

13Given that v∗t =
l∗t

1−λt
and λH,t = λt (1− λt)−1

, we can express the spectral representation of standard

prices without vertical integration as p̄ =
(
1− r

R

)∑n
i=1

l∗j
1−(1+r)λt

qL
t = l∗1q

L
1 +

∑n
i=2

1−(1+r)λ1

1−(1+r)λt
l∗jq

L
t . So

strictly speaking, the (total) eigenlabor v∗t captures both the individual characteristics of the input matrix
and its relationship with the labor vector. However, for any given eigenvalue, v∗t is determined by l∗t .
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p̄ = a = v = v∗1q
L
1 , i.e., standard prices (prices) are equal (proportional) to labor values

at the whole range 0 ≤ s ≤ 1.

Under the constraint of zero subdominant eigenvalues λt≥2 = 0, Schefold (2013a,

p. 1174) has derived linear standard prices and argues that the observed near-linearities

found in the empirical calculations of standard prices can be explained by small subdomi-

nant eigenvalues. If λH,t≥2 = 0, then all the quadratic and higher order polynomial terms

go to zero and p̄ = a+br, where a = v and b =
∑n

t=2 v
∗
t (λH,t − λH,1) qL

t = (vH− 1
R

v) or

bj = vj

[
vH
vj
− 1

R

]
.14 Mariolis and Tsoulfidis (2011, 2014, 2015, 2016a) and Shaikh (2016,

p. 440-2, 864-6) have adopted this view as well. Bienenfeld (1988) shows that a quadratic

function improves substantially the accuracy of the approximation to full standard prices.

Iliadi, et al. (2014, p.4-5), in studying the conditions in which vC τ → qL
1 for τ = 1, 2,

argues that the empirical results in the linear and quadratic approximations are caused

by small subdominant eigenvalues.

This constraint on the subdominant eigenvalues comes from Brody’s Conjecture or

the “random matrix hypothesis” (Shaikh, 2016, pp. 441). Based on a random matrix

model15 and an estimation procedure of the dominant λ1 and the absolute value of the

subdominant eigenvalue |λ2|, Brody (1997) conjectures that the spectral gap |λ2|
λ1

tends to

zero as the size of the random matrix n increases.16 Brody (1997, p. 256) states that actual

“market mechanisms” are “efficient” in the sense that actual price and output proportions

“converges in just a few steps” to the equilibrium proportions, suggesting that the feature

of the actual economy that generates this efficiency is a technology structure which can

be represented with an input matrix with close to zero subdominant eigenvalues. We

now present empirical evidence on eigenvalues in order to assess if the random matrix

hypothesis can explain the empirical regularities in standard prices.17

3.2 Empirical evidence of eigenvalues

Parallel to the developments on the spectral representation of the model, the modern

literature on prices of production has conducted an extensive study of eigenvalues of ob-

14Bienenfeld (1988) and Shaikh (1998) mention that linear standard prices p̄j = aj + bjr = vj +

vj

[
vHj

vj
− 1

R

]
r are the equivalent of Marx’s transformation of values into prices of production.

15Each column of the input matrix consists of a sample of size n of a positive random variable with a
given mean and variance.

16Bidard and Schatteman (2001), Goldberg et al. (2000), and Goldberg and Neumann (2003) give
proofs of Brody’s Conjecture and the same hypothesis on the spectral gap for similar models.

17This paper does not evaluate the random matrix models and Brody’s Conjecture as adequate repre-
sentations of the information contained in observed input matrices. It only evaluates the latter as an
hypothesis to explain the empirical regularities in standard prices.
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Figure 2: Eigenvalues of the Direct λt and the Vertically Integrated λH,t = λt

1−λt
input coefficient

matrices: US economy, 1987-2007. The number of industries is in the range of 370-466. Rows 1 to 4 gives
the complex plane, histograms, and rank-plots. There are two main patterns. Although the modulus, the
real and the imaginary components of most of the eigenvalues cluster around zero, there is an important
number of them with considerable magnitude —there is no evidence of zero subdominant eigenvalues.

served input matrices for different countries, years, and aggregation levels.18 The authors

have found the same behavior in every case, indicating the existence of a stylized fact

on observable A. Our own results displayed in Figure 2 for the US economy for years

for 1987-2007, with the number of industries ranging between 370-466, are consistent

with their results. However, there is a significant difference in our reading of these results,

which leads to a substantial difference in the assessment of the random matrix hypothesis.

We agree with the literature regarding two statistical characteristics. First, all the

graphs show that most of the eigenvalues cluster around zero. That is, relative to the set

of all eigenvalues, the real and imaginary components of most of the eigenvalues, as well

as their modulus, have small magnitudes. Although this is shared for the eigenvalues of

both A and H, the eigenvalues of the latter cluster strongly around zero. Second, the

histogram and rank-plot of eigenvalues’ moduli show a fast rate of decline, indicating that

18See Iliadi et al. (2014), Mariolis and Tsoulfidis (2011, 2014, 2015, 2016a), Nassif and Shaikh (2015),
Schefold (2013a). Gurgul and Wojtowicz (2015) have concentrated on the spectral gap in order to evaluate
Brody’s Conjecture, with no specific reference to the price of production literature.
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only few of them do not cluster around zero. Mariolis and Tsoulfidis (2011) state that an

exponential function fits well the rank-plot for all their cases of study.

The difference in the reading of the results relates to the number of eigenvalues

with considerable magnitude. On the one hand, it has been shown that, contrary to

Brody’s Conjecture, the spectral gap increases with the level of disaggregation. Mariolis

and Tsoulfidis (2014) and Gurgul and Wojtowicz (2015) take two aggregation levels and

show respectively for the US and European Union countries that the spectral gap increases

considerably. Nassif and Shaikh (2015) takes 176 aggregation levels for the US 2002 input

matrix and show that the spectral gap increases in a piecewise fashion from around 0.5 up

to 0.85. From the complex plane graphs in Figure 2, we can see that in all cases the fist

and second eigenvalue are close together. This evidence suggest that at least we have two

significant eigenvalues that, according to Equations (17) and (19), “activates” higher order

polynomial terms. However, this is just a particular result from a more general outcome.

By plotting the rank of eigenvalues’ moduli for eight aggregation levels (15, 17, 30, 63,

120, 161, 342, and 403) Nassif-Pires and Shaikh (2015, figure 4) show that the number

of eigenvalues with considerable magnitude increases with the matrix size. Even more, it

is possible to appreciate that the magnitude of the bigger subdominant eigenvalues (not

only the second one) increases as well with the size of the matrix. From the rank plot

graphs in Figure 2 we can see that there is an important number of eigenvalues which

hardly can be considered to be close to zero, compared with the maximum eigenvalue.

3.3 An assessment of the hypothesis

From this section, it is concluded that the empirical regularities in standard prices as a

function of income distribution cannot be explained solely by the behavior of observed

eigenvalues. Equations (17) and (19) show that the curvature of standard prices is affected

by the magnitude of subdominant eigenvalues and that with sufficiently small magnitudes

we can approximate nearly linear curves. However, empirical evidence shows that for

every aggregation level there is an important number of eigenvalues with considerable

magnitude. In addition, this number increases with the size of the matrix. The increase

in the number of important eigenvalues is lesser in proportion than the increase in n.

This yields to a tendency for most eigenvalues to cluster around zero but cast doubts on

the hypothesis that all subdominant eigenvalues tend to zero. So how it is possible to

observe nearly linear standard prices and at the same time have an important number

of eigenvalues with significant magnitude? The reason is that prices depend not only on

income distribution and the eigenvalues, but also on the eigenlabors and eigenvectors.
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Figure 3: Standard prices p̄j (s), eigenvalues (λH,t), and eigenlabors (v∗t ) for examples of different
technology structures. Each row combines a particular input matrix (A1,A2) with two opposite total
labor vectors (l): nearly proportional lSL and disproportional lOSL to the Standard Labor proportions
of the two matrices. Comparison of columns 3 and 4 shows that the shapes of p̄j (s) can be altered by
varying v∗t , without any modification of λH,t.

The eigenlabors and eigenvectors have not been considered by the authors working

on the spectral representation of the model as factors contributing to the regularities in

estimated prices. As was mentioned, modern literature has focused its attention solely on

the individual characteristics of A and the eigenvalues, and the constraints on them that

would produce the empirical regularities, ignoring the possible effects that the relationship

between A and l might have on standard prices. An element involved in this omission has

been the renormalization procedures of the eigenvectors in the spectral representation of

standard prices. By re-scaling the eigenvectors q̄L
t = v∗tq

L
t in such a way that the new

eigenlabors are equal to one, v̄ =
∑n

t=1 q̄L
t so that v̄∗ = (1, 1, ..., 1), the authors have put

a veil on the eigenlabors. However, their effect remains intact in the equations.

The eigenlabors seem to have a different effect over standard prices than the eigen-

values in Equation (17): while small eigenvalues tend to generate a constant term out of

each term (1−s)
1−sλC,t

v∗tq
L
t , small eigenlabors tend to eliminate the whole term. However, if

we look at the alternative representation of standard prices in Equation (17), then it is

shown that both eigenvalues and eigenlabors tend to wipe out the coefficients of the k -th

order term:
∑n

t=2 v
∗
t (λH,t − λH,1)λk−1

H,t q
L
t,j. Figure 3 shows the influence of eigenvalues

and eigenlabors on standard prices by constructing 4 examples made out of the combina-

tion of two extreme cases of the two aspects of the structure of technology: the individual

characteristics of A and its relationship with l.

As in Figure 1, standard prices p̄j are divided by their labor value, so all prices start
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at 1. Columns 1 and 2 present the raw data and the rank-plot graphs for the different

eigenvalues and eigenlabors. The first row considers a system with an input matrix with

nearly proportional columns, generating small subdominant eigenvalues. The second row

is a diagonally dominant matrix with all the eigenvalues with significant magnitude. These

two extreme cases of individual characteristics of matrix A are combined with two different

ways in which A and l are related. Column 3 shows standard prices when l is closely

proportional to the left Perron eigenvector or what this paper calls the Standard Labor

Proportions l ≈ l∗1q
L
1 . This closeness generates “subdominant” eigenlabors close to zero

l∗t≥2 ≈ 0. Column 4 presents standard prices when l is far from being proportional to the

Standard Labor Proportions, so that several eigenlabors have a significant magnitude. It

is important to note that the scale of the graphs are the same for all cases.

The comparison of the graphs in column 3 shows that price systems with either

high and low subdominant eigenvalues are compatible with nearly linear standard prices,

provided that the labor vector is close to the standard labor proportions —i.e. with

v∗t≥2 ≈ 0. The upper graphs of columns 3 and 4 show that almost linear standard prices

are generated by close to zero subdominant eigenvalues, irrespectively of how close or far

is the labor vector to the standard labor proportions. Finally, the comparison of column

3 and 4 in row 2 shows how the curvature of standard prices might be affected by the

behavior of eigenlabors, even though eigenvalues are significantly different from zero.

4 An additional constraint on technology

From Equations (17) and (19) and the examples in Figure 3, we can see that the movement

of standard prices as an effect of changes in distribution is determined not only by the

eigenvalues, that is, by the individual characteristics of matrix A, but also by the eigen-

labors, or the relationship between A and l. The empirical regularities of standard prices

point to the existence of constraints on the structure of technology. We saw in Section 2.2

how eigenvalues are systematically constrained. Hence, a series of questions arises: Are

eigenlabors also constraint? What is the connection between the behavior of eigenlabors

and the relationship between the labor vectors and the standard labor proportions. What

is the connection of these results with the compositions of capital?

4.1 Eigenlabors and eigenvalues behavior

Figure 4 presents the complex plane, histograms, and rank plots of different aspects of the

eigenlabors of the vertically integrated labor requirements v∗j . There are two results that
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Figure 4: Eigenlabors of the vertically integrated labor coefficients (v∗t ): US economy, 1987-2007. Row
1 and 2 show the complex plane and histograms, whereas row 3 the rank-plots. As the eigenvalues (λH,t),
the modulus, real, and imaginary components of v∗t cluster around zero. However, the rate of decay of
v∗t is considerably faster than that for the λH,t, yielding a smaller number with considerable magnitude.

are highlighted. First, just as eigenvalues, the eigenlabors tend to cluster around zero and

have a fast rate of decay in their magnitudes. Both eigenvalues and eigenlabors belong

to the field of complex numbers. Rows 1 and 2 show the real and imaginary components

clustering around zero. The empirical frequency distribution of the imaginary part, by the

algebraic properties of the eigenvalues, is symmetric, whereas the real parts show a small

bias towards negative values. The histogram of the absolute value is positively valuated,

and, like the eigenvalues, shows a rapid decay. Second, as shown by the rank-plots in row

3 and 4, compared with the eigenvalues, eigenlabors have a faster rate of decline so there

are fewer eigenlabors with significant magnitude. Overall, only one or two eigenlabors

have a magnitude that is substantially different from the rest.19

19There is one aspect that it is briefly mentioned here and in the Appendix and that needs further
research. Although scatter plots of the absolute value and the real and imaginary parts of the eigenvalues
and the eigenlabors do not show a clear relationship, the eigenlabors with higher magnitude belong to
the eigenpairs

(
λt,q

R
t

)
containing the eigenvalues with the highest magnitude.
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4.2 The relationship between the labor coefficient vectors and

the Standard Labor proportions

The conclusion that in general only one or two eigenlabors have a magnitude that is

substantially different from the rest, which are clustered around zero, suggests that the

labor vector is in some sense close to the standard labor proportions. As it was already

shown, the vertically integrated labor vector can be expressed as a linear combination of

the n linearly independent left eigenvectors v =
∑n

t=1 v
∗
tq

L
t = v∗Q−1. If v∗t≥2 = 0, then

v = v∗1q
L
1 .20 Hence, it is of interest to study the relationship between v and qL

1 .

1987 1992 1997 2002 2007

10 20 30 40 50 60 70
lj

20

40

60

80

100

q
˜
1,j
L

Scatter plot between lj and q
˜
1,j
L

5 10 15 20 25 30
lj

10

20

30

40

50

60

q
˜
1,j
L

Scatter plot between lj and q
˜
1,j
L

5 10 15 20
lj

50

100

150

200

250

q
˜
1,j
L

Scatter plot between lj and q
˜
1,j
L

5 10 15
lj

10

20

30

40

50

60

q
˜
1,j
L

Scatter plot between lj and q
˜
1,j
L

2 4 6 8 10 12 14
lj

5

10

15

20

25

30

q
˜
1,j
L

Scatter plot between lj and q
˜
1,j
L

20 40 60 80
vj

20

40

60

80

100

q
˜
1,j
L

Scatter plot between vj and q
˜
1,j
L

5 10 15 20 25 30
vj

10

20

30

40

50

60

q
˜
1,j
L

Scatter plot between vj and q
˜
1,j
L

5 10 15 20 25
vj

50

100

150

200

250

q
˜
1,j
L

Scatter plot between vj and q
˜
1,j
L

5 10 15 20
vj

10

20

30

40

50

60

q
˜
1,j
L

Scatter plot between vj and q
˜
1,j
L

4 6 8 10 12 14 16
vj

5

10

15

20

25

30

q
˜
1,j
L

Scatter plot between vj and q
˜
1,j
L

-100 -50 0 50

20

40

60

80

100

l j-q1, j
L Histogram

-40 -20 0 20
0

10

20

30

40

50

60

l j-q1, j
L Histogram

-250 -200 -150 -100 -50 0

50

100

150

200

250

l j-q1, j
L Histogram

-50 -40 -30 -20 -10 0 10
0

10

20

30

40

l j-q1, j
L Histogram

-20 -10 0 10
0

5

10

15

20

25

l j-q1, j
L Histogram

-50 0 50

20

40

60

80

100

vj-q1, j
L Histogram

-40 -20 0 20
0

10

20

30

40

50

60

vj-q1, j
L Histogram

-200 -150 -100 -50 0

50

100

150

200

250

300

vj-q1, j
L Histogram

-40 -30 -20 -10 0 10 20
0

10

20

30

40

50

60

vj-q1, j
L Histogram

-20 -15 -10 -5 0 5 10 15
0

5

10

15

20

25

30

vj-q1, j
L Histogram

Figure 5: The relationship between the direct (l) and total (v) labor coefficient vectors and the Standard
Labor Proportions

(
q̄L1
)

(left Perron eigenvector): US economy, 1987-2007. Rows 1 and 2 show the scatter
plots and rows 3 and 4 present the histogram of the their differences. If the scatter plots do not show a
clear pattern between the pairs (lj , q̄

L
1,j) and (vj , q̄

L
1,j), the histograms in rows 3 and 4 show a tendency

of their deviations to cluster around their average, with a highly symmetric dispersion.

Figure 5 presents different graphics that consider the relationship of both l and v

with q̄L
1 , the normalized standard labor proportions. The normalization condition is such

that we have equal total employment under both proportions: L = lx = q̄L
1 x. Row 1

and 2 present the scatter plots of the labor vectors and the standard labor proportions,

20If 0 =
∑n
i=2 v

∗
t q

R
t , or as a matter of fact 0 =

∑k
i=2 v

∗
t q

R
t for 2 ≤ k ≤ n, then the eigenlabors, the

coefficients in that linear combination, have to be zero, because the
{
qL
t

}
are linearly independent.
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whereas rows 3 and 4 show the histograms of their deviations. The scatter plots show no

clear sign of relationship between the labor vectors and the standard labor proportions.

The relationship between l and q̄L
1 seems to suggest a non-linear negative relationship

but that of v with q̄L
1 is less clear. In spit of these associations, it is interesting that the

deviations between l and q̄L
1 and between v and q̄L

1 gives a smooth, unimodal, and close to

symmetric empirical frequency distribution, with few negative outliers coming from some

extraordinary high values in the re-scaled standard labor proportions. The same type

of distribution is repeated for the whole period, even though 1997 gives a more visual

sharpness due to the significant outliers. Hence, the empirical frequency distributions

show the existence of a systematic force maintaining the labor vectors and the standard

labor proportions close to each other, that is, a force generating a certain relationship

between the labor vector and the input matrix.

4.3 The concentration of industries’ vertically integrated com-

positions of capital around the average

We have seen that most of both eigenlabors and eigenvalues cluster around zero and only

a few of them have a considerable magnitude. In addition, there is a smooth, unimodal,

and close to symmetric empirical frequency distribution in the deviations between the

labor vectors and the standard labor proportions. This indicates the existence of relevant

constraints acting on the technology and producing the empirical regularities in standard

prices according to the spectral decompositions in Equations (17) and (19). However, it

is still needed to map the findings and constraints in Figures 4 and 5 in terms of the

compositions of capital, the ultimate source of relative price movements as an effect of

changes in income distribution. The extreme case of constant prices happens when there

are equal compositions of capital, i.e. when the labor vectors are proportional to the

standard labor proportions —when l∗t≥2 = v∗t≥2 = 0. Hence, evidence in Figures 4 and 5

suggests that industries’s compositions of capital should not be far from each other.

Figure 6 shows the empirical frequency distributions of several variables associated

with the compositions of capital —each variable shows a remarkable consistency for the

whole period. Row 1 presents the direct composition of capital of the different industries

valuated at labor values p (0)j = vj: kj (0) =
p(0)Aj

lj
=

vAj

lj
. There is a smooth empirical

frequency distribution where the value compositions of capital tend to cluster around a

unique mode but with a significant skew towards zero, the lower bound, and with a long

right tail, produced by few outliers, specially for 2007. Row 2 shows the histogram of the
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Figure 6: Histogram of industries’ composition of capital and capital-output ratios: US economy, 1987-
2007. Rows 1 and 2 present industries’ direct kj and vertically integrated V kj composition of capital
evaluated at direct prices pj(0) = vj . Rows 3 and 4 show the capital-output ratios at direct prices Kj(0)
and at market prices (i.e. column sums of the observed A). All graphs show a smooth and unimodal
empirical frequency distributions (EFD). Except for kj , the EFDs are highly symmetric. The type of
EFD in every row is consistent in every year. Overall evidence suggests a tendency for the compositions
of capital and capital-output ratios to cluster around their averages.

vertically integrated value compositions of capital V kj (0) =
p(0)Hj

vj
=

vHj

vj
. There is also a

smooth and unimodal empirical frequency distribution as well, however with a significant

reduction in the skewness —we can see that it is almost symmetric. One additional finding

is that the outlier values from row 1 seem to be reduced in the vertically integrated case.

Hence, the empirical evidence from industries’ value composition of capital suggests a

tendency for their concentration around an average value, pointing towards a constraint

on the dispersion from this central value.

There is a close relationship between compositions of capital and capital-output

ratios in the price of production model: Under the assumption of uniform wages and

profit rates, a tendency for the equalization of capital-output ratios implies a tendency

for the equalization of compositions of capital. The vertically integrated value composition

of capital V kj (0) also corresponds to industries’ vertically integrated capital-output ratios

when prices are proportional to labor values: V Kj (0) =
p(0)Hj

pj(0)
=

vHj

vj
= V kj (0). Rows 4

and 5 show the direct capital-output ratios valuated at prices proportional to labor values
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Kj (0) =
p(0)Aj

p(0)
=

vAj

v
and at market prices. The latter corresponds to the column sums

of the constructed input matrix from national accounts. These two variables also show

a smooth, unimodal, and highly symmetric empirical frequency distribution, suggesting

also a concentration tendency of capital-output ratios around their average.

5 Discussion of the results

Sraffa did not construct his model to explain the price of production dynamics caused

by actual changes in income distribution. Studying prices of production as a function of

actual income distribution while keeping the technology constant would discard one of the

most important linkages in capitalist economies. Sraffa designed his model to study “such

properties of an economic system as do not depend on changes in the scale of production

or in the proportions of ’factors’ [compositions of capital]” (Sraffa, 1960, p. v). The

objective of this paper is to use his framework to identify the structure of technology of

actual economies that, under the assumption of uniform rates of wage and profit, would

produce the empirical regularities found in the literature.

One major implication of the empirical behavior of eigenvalues, eigenlabors, labor

vectors-standard labor proportion deviations, compositions of capital, and capital-output

ratios is the existence of systematic forces shaping the structure of technology in actual

economies. Particularly, the empirical evidence shows that the technology is constrained

towards an Irregular Sraffian System, that is, away from the two conditions (constraints)

put forward by Schefold (1976) that would represent the characteristics of observable eco-

nomies: non-zero semi simple eigenvalues and non-zero eigenlabors (the non-orthogonality

of the labor vector and the right eigenvectors lqR
t = l∗t 6= 0).

In spite of its importance for prices of production, there has not been much discus-

sion about the interindustry structure of technology in the history of economic thought.

The vast majority of the constraints on technology and its relationship with income dis-

tribution is located at a macroeconomic level. For instance, although Ricardo concludes

that the effects of changes in income distribution on relative prices are small and that

relative price movements are dominated by relative quantities of labor bestowed in their

production, he does not describe the interindustry structure of technology that produces

this result. One exception is Marx, who addresses the interindustry structure in both the

schemes of reproduction and in the transformation of values into prices of production.

In the discussion of the latter, Marx actually states that there is a tendency towards the

equalization of the organic composition of capital around the social average:
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The capital invested in some spheres of production has a mean, or average,

composition, that is, it has the same, or almost the same composition as the

average social capital ... Competition [emphasis added] so distributes the social

capital among the various spheres of production that the prices of production

in each sphere take shape according to the model of the prices of production

in these spheres of average composition (Marx, 1967, p. 173).

But it is evident that the balance among spheres of production of different

composition must tend to equalize them with the spheres of average compo-

sition, be it exactly or only approximately the same as the social average.

Between the spheres more or less approximating the average there is again a

tendency toward equalization, seeking the ideal average, i.e., an average that

does not really exist, i.e., a tendency to take this ideal as a standard (Marx,

1967, p. 173).

Marx considers that competition is the economic force that produces the tendency of

compositions of capital towards the social average. However, he does not explain the

mechanisms and the process that would produce this result.

Later on, the case of equal compositions of capital became hotly debated when

Samuelson (1962) used this assumption in the construction of his surrogate production

function. In the recent literature on prices of production, Shaikh (2016, p. 386-8) main-

tains that industries’ vertically integrated profit-wage ratios of observed economies tend to

be alike. When comparing the direct and vertically integrated profit-wage ratios, Shaikh

finds that the standard deviation of the latter constitutes one third of the former for

the US economy in 1998. Under the assumption of uniform wage and profit rates, the

tendency towards small deviations in the profit-wage ratios, valuated at market prices,

implies small deviations in the market valuated compositions of capital. However, he

uses this result to argue that relative market prices are mainly determined by relative

unit labor costs and does not consider the behavior of profit-wage ratios to explain the

empirical regularities in standard price movements as an effect of changes in income dis-

tribution. Finally, Mariolis and Tsoulfidis provide aggregated distance measures between

the direct labor vector l and the standard labor proportions qL
1 and conclude that they

are significant, leading them to state that their studied economies “deviate considerably

from the equal value composition of capital case” (2015, p. 10; 2016a, p. 5)

Given the findings in this paper, two important tasks are to be addressed. First, the

construction of economic hypotheses that explain the concentration of the compositions of
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capital and the statistical structure identified in this paper. The technology, represented

in different angles by the eigenvalues, eigenlabors, compositions of capital, and capital-

output ratios, has a structure and must be explained.

Second, the study the implications that this paper has for other branches in the price

of production literature. For instance, the regularities in the close relationship between

market prices, prices of production, and direct prices in actual economies, mentioned in

the introduction of this paper, could be approached from the structure of technology

identified in this paper. Smith, Ricardo, and Marx believed that market prices tend to

(turbulently) gravitate around prices of production. The mobility of capital produced

by the discrepancies in these prices generates a stable distribution of capital among the

different branches, which, combined with the average composition of capital in each sector,

determines the social division of labor.21 However, under this framework, there is no

reason to argue that this social division of labor would be such that would produce prices

of production, and therefore market prices, proportional to total labor time —and yet

these are the results from the empirical literature.22 The tendency of value compositions

of capital to cluster around their average can help explain this behavior.

Another area of study of the implications of our spectral representation and statisti-

cal approach is the wage-profit relation, a branch that has captured the most attention in

the price of production literature since the Cambridge Capital Controversies. The reason

for not considering this variable in this paper is that it involves, as any other composite

commodity or macroeconomic aggregate, another dimension in the social coordination of

capitalism: output proportions, i.e. the quantity side of the price of production model.

Let us consider the wage-profit curve w (r),23 taking as numeráire the gross output

valuated at prices of production px = 1, and the economy-wide capital-output ratio κ (r):

w (r) =
[
v (I− rH)−1 x

]−1
(20)

κ (r) =
pAx

px
=

v (I− rH)−1 Ax

v (I− rH)−1 x
. (21)

As in the case of standard prices, the modern literature working on the spectral decom-

position of the price of production model has concentrated on the structure of the input

matrix and considers that the constraint in having small subdominant eigenvalues ex-

plains the near-linearities found in the empirical estimations of wage-profit curves. The

21See Rubin (2007, ch. 18) and Foley (2011, 2016) for an exposition.
22See the revision of the literature in Mariolis and Tsoulfidis (2016b, ch. 3) and Shaikh (2016, ch. 9).
23By substituting Equation (6) into p in the numeráire and solving for w.
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spectral representation of Equations (20) and (21) is:

w (r) =
1∑n

t=1
v∗t x

∗
t

1−rλt

(22)

κ (r) =
n∑
t=1

δtλt, (23)

where δt =
v∗t x

∗
t

1−rλH,t∑n
t=1

v∗t x
∗
t

1−rλH,t

and
∑n

t=1 δt = 1. The authors working under this approach have

ignored the effects that not only eigenlabors v∗t might have, but also the eigenoutputs x∗t .

Hence, given that x = [I−A]−1 y (where the net output y must be decomposed into the

consumption and investment), composite commodities and macroeconomic variables will

depend not only on the structure of technology but also on the structure of demand.
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Appendices

A Eigenvalues-eigenlabors relationship

The indexation of the t-th eigenlabor v∗t = vqL
t depends on the eigenpair

(
λH,t,q

L
t

)
is as-

sociated with. The rank-plots from Figure 4 showed a strong decay rate in the magnitude

of eigenlabors based on the rank order of the eigenvalues. That is, eigenlabors with the

highest magnitude are associated with the eigenvalues with higher magnitude. However,

based on the scatter-plot of the modulus, real, and imaginary components of the eigen-

values and eigenlabors in Figure 7, we can see that there is no clear relationship between

those variables. However, more work is needed to identify the relationship between them.
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Figure 7: The relationship between the t-th pairs of modulus, real, and imaginary components of the
eigenlabors (v∗t ) and the eigenvalues (λH,t): US economy, 1987-2007. Each series is normalized according
to their yearly maximal value. There seems to be no clear relationship between v∗t and λH,t.
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