
1 

 

Probabilistic, Bayesian updating of IOTs: application to WIOD 

 

 

 

Oleg Lugovoy‡§             Andrey Polbin§       Vladimir Potashnikov§ 

 

Conference paper 
25th International Input-Output Conference 

19-23 June 2017, Atlantic City, New Jersey, USA 

 

Abstract 

The paper summarizes the authors' efforts on developing and application of probabilistic 

method(s) for updating IO tables, preliminary presented and discussed on previous IIOA 

conferences. The core of the methodology is Bayesian framework which combines an information 

from observed data, additional believes (priors), and related uncertainties into posterior joint 

distribution of input-output table (IOT) coefficients. As we show in the paper, the framework can 

be applied to various IOT problems, including updating, disaggregation, evaluation of 

uncertainties in the data, and addressing incomplete/missing observations. The flexibility of the 

methodology is partially based on sampling techniques. We apply modern Monte Carlo Markov 

Chains (MCMC) methods to explore posterior distribution of IOT coefficients. We also compare 

results with mainstream methods of updating IOT to investigate its performance. Various 

indicators of performance and application to various data suggest different results. The overall 

performance of the method is similar or comparable with mainstream techniques. The main 

advantage the proposed methodology is an estimation of full profile of joint probability 

distribution of unknown IOT matrices. The method can be also combined with any other 

techniques through prior information. 
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Introduction 

The paper summarizes recent authors’ efforts on developing and application of Bayesian 

methods of updating IO tables, preliminary presented by the authors on the 22th IIOA, and extends 

the methodology and results in extending the application5 to the The World Input-Output Database 

(WIOD) (Timmer at al., 2015). We also update and extend estimates of IOT tables for Russia, and 

test the methodology on actual IOTs for US, considering it as a higher quality data. 

The paper includes several parts. In the first part we discuss conceptual frameworks for 

updating, disaggregation, and balancing IO tables. In the second part we apply the methodology 

to WIOD data. We treat the last table for each country as unknown and estimate it with the 

Bayesian method using all previously available matrixes for constructing prior distribution. When 

specifying prior distribution we argue that Beta distribution for IO coefficients is more appropriate 

than Normal distribution and fit it for the each coefficient on previously available matrixes. We 

consider two point estimates of “unknown” IO table: posterior mode and posterior mean. To find 

posterior mode we use nonlinear optimization techniques, to explore posterior distribution we use 

modern MCMC methods. Posterior mode robustly outperforms competitive methods, popular in 

the literature, according to different closeness statistics. Posterior mean perform slightly worse 

than posterior mode. We conclude that point estimate of Bayesian method at least is compatible 

with the other methods on real data examples. 

But the main contribution of our method is that it provide probabilistic estimate of IO 

coefficients consistent with all available data constraints. This property is very useful for analyzing 

uncertainty about IO coefficients and results of the models that calibrated to IO tables. After 

comparing point estimates of the Bayesian method of “unknown” IO table with alternative 

methods, we concentrate on the constructing creditable set for IO coefficients. We provide 

arguments that standard symmetric creditable interval for input-output coefficient is inappropriate 

and induce significant bias. We argue for using higher posterior credible set for characterization 

of the uncertainty. We construct credible sets for estimates of IRIOS tables and for the results of 

some simple IO models. We also perform Monte Carlo experiments were we show that posterior 

higher posterior credible set have better coverage properties. 

In the third part of the paper, we upgrade and extend estimates of SUT tables for Russia. 

Russian statistical system is under transition for almost two decades from Soviet type Material 

Product System to the System (MPS) of National Accounts (SNA). The main transitional break in 

methodology took place in 2003-2004 when Russian statistical agency “Rosstat” started reporting 

                                                 
5 In previous version of the paper we applied the methodology to IRIOS tables (van der Linden and Oosterhaven, 

1995). 
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based on the new definition of economic sectors consistent with NACE, and stopped reporting 

using definition of activities inherited from the Soviet statistical system. This methodological 

break splits all industry level statistics into two periods with little consistency between each other. 

As a result, Rosstat stopped updating input-output tables (IOT) in 2003, based on the only 

benchmark survey conducted in 1995. The next survey is scheduled for 2011 with expected 

publication of results in 2015 or later. Official backward estimation is not expected. Therefore 

Russian statistics will miss IOT at least from 2004 to 2010. Also quality of officially updated IOT 

from 1996 to 2003 based on 1995 benchmark is questionable. 

We apply Monte Carlo Markov Chains (MCMC) methods to disaggregate available in 

NACE classification SUTs (2006, 15 products by 15 activities) into larger 69 by 69 format. Since 

the 15x15 SUTs are published by Rosstat as preliminary estimates, they are not fully consistent 

with other available national accounts data, such as output and value added by industries. To take 

into account the data uncertainty, we introduce a measurement error for the aggregated io-

coefficients. As result, we estimate posterior distribution of input-output coefficients for 

aggregated and disaggregated matrices, which are consistent with yearly national accounts 

information. Than we update the estimated 15x15 matrices for 2007-2012 period, using proposed 

sampling methods, and compare results with alternative approaches. Than we compared our 

estimation IO table of 2011 for Russia with issued by Russian statistical agency. Note that IO table 

of 2011 for Russia was issued in SNA 2008, while previous IO table was in SNA1993. 

The paper includes three parts. In the first part, we discuss the conceptual framework of 

application of Bayesian techniques to probabilistic updating of IOTs, disaggregation, addressing 

measurement errors in data, missing observations, various specifications of priors, and computer 

implementation. In the second part, we test the methodology on actual data, World Input Output 

Database (WIOD), and compare its performance with other mainstream techniques of IOT 

updating. For estimation WIOD tables only based years was used, instead of previous paper. 

In the third part we apply the methodology to build probabilistic IOTs for Russia. We 

compare our estimation for 2011 with IO table issued by Russian statistical agency, but in different 

SNA system. Based on information from national accounts for 70+ industries, and preliminary 

official IOT estimates for 15 main sectors, published by Rosstat for 2006, we are trying to 

reconstruct probabilistic IOTs for 77 sectors, using the Bayesian techniques for disaggregation and 

updating IOTs up to 2014.  

In addition to another IOT updating technique, the main contribution and advantage of 

proposed methodology is a straightforward and practically achievable quantification of 

uncertainties in input-output tables, consistent with directly and indirectly linked with IOTs 
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observed data, and any amount of additional information, which can be expressed by inequality 

constraints for IO coefficients and their linear combinations.  
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1. Conceptual framework 

In this section we discuss an application of Bayesian framework and Monte Carlo Markov 

Chains method for updating, disaggregation, and balancing IOT.  

1.1. Updating IOT with Bayesian methods 

The basic problem of updating an IO matrix or more generally a SAM can be defined as 

finding of an unknown IO matrix with known sums of rows and columns, and known IO matrix 

for a previous year(s). Mathematically speaking, we need to find a matrix A with following 

restrictions: 

, ,

,

, 0i j j i ji

Y AX

a a a



 
 (1) 

where Y, X are known vectors and ja  are known sums of columns. Since there is no unique solution 

with the set of constrains on sum of rows and columns only, a known matrix 
0A  (f.i. from previous 

year) is used as a starting point. The solution is usually reduced to finding such matrix A, which 

minimize some distance function from known matrix 
0A  under a set of constrains (1). 

The problem (1) can be also solved with Bayesian methods, which provide a natural and 

flexible way to incorporate any kind and amount of information either as a prior distribution or 

observable data. Moreover, Bayesian methods provide full density profile on estimated parameters 

with covariates. The information can be very valuable in evaluating quality of the estimates, 

magnitude with which each particular io-cell’s estimate affects all others, the level of uncertainties 

and how they affect results of an analysis based on the estimated tables. 

In Bayesian econometrics some prior information or beliefs about estimated parameter   

could be summarized by prior density function ( )p   according to Bayes theorem: 

( | ) ( )
( | ) ( | ) ( )

( | ) ( )

L Y p
p Y L Y p

L Y p d

 
  

  
 


 (2) 

where ( | )p Y  is the posterior density and ( | )L Y   is the likelihood. 

Bayesian inference is easy since the posterior density contain all the information one may 

need. The researcher could be interested in point estimate, credible set and correlation of 

parameters and construct it from posterior distribution. In Bayesian framework point parameter 

estimate is chosen to minimize expected loss function with expectation taken with respect to the 

posterior distribution. The most common loss function used for Bayesian estimation is the mean 

square error and the corresponding point parameter estimate is simply the mean of the posterior 

distribution. 
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Despite the attractiveness of this method, in the past, Bayesian inference was not so popular 

due to numerical integration needed in equation (2). In some cases when the prior on   is 

conjugate with posterior on   the posterior density can be obtained analytically. But in more 

general setup we know posterior density up to normalizing constant. Recently developed 

computer-intensive sampling methods such as Monte Carlo Markov Chain (MCMC) methods have 

revolutionized the application of Bayesian approach. MCMC methods are iterative sampling 

methods that allow sampling from posterior distribution ( | )p Y . 

Heckelei et al. (2008) shortly discuss IOT update with Bayesian method and give an 

example on artificial data. Authors present a Bayesian alternative to the cross-entropy method for 

deriving solutions to econometric models represented by undetermined system of equation. In the 

context of balancing an IO matrix they formulate posterior distribution in the following way: 

( | ) ( ) ( )p z data I z p z  (3) 

( )z vec A  (4) 

Equation (4) means vectorization of matrix A. In equation (3) ( )p z  is some prior 

distribution, ( | )p z data  is the posterior distribution and ( )I z
 is the indicator function that 

assigns weights of 1 if z satisfies the constraints (1) and 0 otherwise. Authors interpret the indicator 

function as the likelihood function. As estimate of z Heckelei et al. (2008) consider mode of 

posterior distribution which could be found with some optimization routine. And they illustrate 

proposed method balancing small 4x4 matrix with independent normal prior taking 
0A  as prior 

mean. 

However the proposed by Heckelei et al. (2008) method actually reduced to minimization 

yet another distance function from known matrix 
0A . In this paper we concentrate on finding full 

density profile of posterior distribution with MCMC techniques and applying it to real data. 

For convenience we consider equality and inequality constraints of the system of restriction 

(1) separately. Inequality constrains could be simply introduced in prior distribution by assigning 

0 value of density in inadmissible domain. For example one could specify independent truncated 

normal distribution between 0 and 1 for each parameter of the matrix A. On the other hand if we 

have certain beliefs about some parameters we could introduce it as additional linear equality 

constraints. For example it is convenient to assign 0 values for elements of unknown matrix A if 

corresponding elements in the matrix 
0A  are zeros. 

At the next step let us consider linear equality constraints and rewrite it in the following 

form: 

Bz T  (5) 
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where B is the known matrix, T is the known vector and ( )z vec A  is the unknown vector of 

estimated parameters. System (5) represents undetermined linear system of equations. And from 

linear algebra it is known that any solution of linear system (5) could be written in the form: 

(1) (1)z z F    (6) 

where z  is the particular solution of the system (5) and 
(1)F  is the fundamental matrix of solutions 

of homogeneous system 0Bz  . And any vector (1)  solves system (5). The particular solution 

and the fundamental matrix could be obtained by Gaussian elimination algorithm.   

Columns of the fundamental matrix (1) (1) (1)

1[ ,.., ]kF f f  represent basis of the Euclidean 

subspace. At the next step we could find the basis of the orthogonal complement of this subspace 

(2) (2) (2)

1[ ,.., ]n kF f f  . Let us consider linear transformation of the original space: 

(1)
1

(1) (2)

(2)
( )F F z z





 
     

 
 (7) 

In the new system of coordinates prior density has the following form: 

(1) (2) (1) (1) (2) (2)( ) det ( )Zp F F p z F F         (8) 

If we specify posterior distribution in the form (3) than posterior distribution will be the 

conditional distribution of random vector (1)  given the zero value of the random vector (2) : 

(1) (2)

(1) (2)

|
( | ) ( | 0)p data p  
     (9) 

If prior distribution is multivariate normal distribution, posterior distribution of vector (1)  

is also multivariate normal and we could compute posterior mean and covariance matrix 

analytically. But it doesn’t guarantee nonnegative values of estimated matrix A. In general setup 

we use truncated prior distribution and know posterior density up to normalizing constant. To 

conduct inference about parameters we approximate posterior distribution (9) applying MCMC 

sampling methods. After generating the sample of vectors (1)  we could move to initial space 

using formula (6) and obtain the sample of vectors z, which represents elements of unknown matrix 

A. 

To obtain sample from posterior distribution for examples in this paper we perform the 

Metropolis sampling algorithm, which is a special case of a broader class of Metropolis-Hasting 

algorithms, and apply a standard single-site updating scheme. As a proposal density for generating 

candidate parameter values we use normal distribution for each parameter of vector (1) . Standard 

deviations of the proposal density are iteratively selected during adaptive phase to guarantee 

acceptance rate for each parameter to be between 35 and 45 percent. 
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1.2. Computer implementation  

As mention above, system (5) represents undetermined linear system of equations, with 

solution 

𝑧 = �̃� + 𝐹(1) ⋅ 𝜉(1) 

where �̃� is the particular solution of the system (5) and 𝐹(1) is the fundamental matrix, 

which consists of a system of linearly independent vectors form a basis in the subspace of solutions 

of (5).  

The choice of the fundamental matrix for optimal MCMC is a nontrivial task. Let us look 

at a simple example. Suppose that the first two rows and first two columns fundamental matrix 

consist of zeros except for the first 2x2 elements, which are equal: 

|
1 −1
1 1

|  

Assume that the density of the a priori distribution of the first two elements is 

(𝑁(0.1, 0.1), 𝑁(0.1, 0.01)). Obviously, with this configuration, you will need much more 

iterations on MCMC algorithm to obtain a qualitative assessment of the posterior distribution than 

in the case reconfigure the fundamental matrix with the first 2x2 elements: 

|
0 −2
2 0

|  

Use of the second embodiment reduces the number of required iterations and thus the time 

to more than a hundred times. If the vector prior distribution is (𝑁(0.1, 0.1), 𝑁(0.1, 0.001)), then 

the more than 10 thousand times.  

Solutions for this simple case is obvious, but in a more complex case, not all may be so 

simple. The problem is that the effect change ξ on the density of the prior distribution is not 

obvious. To solve this problem, we transform the log prior density distribution using (6): 

log 𝑝(𝑧) ~ − ∑
(𝑧𝑗 − 𝜇𝑗)

2

2𝜎𝑗
2

𝑗

+ 𝑐𝑜𝑛𝑠𝑡 = − ∑
(𝑧𝑗

0 + ∑ 𝑓𝑖𝑗 ⋅ 𝜉𝑖𝑖 − 𝜇𝑗)
2

2𝜎𝑗
2

𝑗

+ 𝑐𝑜𝑛𝑠𝑡 

Disclosure using parentheses and grouping can reduce the equation to the form 

log 𝑝(𝑧) ~ 𝜉′ ⋅ 𝐻 ⋅ 𝜉 + 𝑊 ⋅ 𝜉 + 𝑄 + 𝑐𝑜𝑛𝑠𝑡 

where H, W, Q known matrix. In particular, matrix H is equal 

𝐻 = 𝐹(1)′ ⋅ Σ ⋅ 𝐹(1) 

where Σ is diagonal matrix with elements equal −
1

2𝜎2. Then, according to analytic 

geometry, there exists a coordinate system in the subspace 𝜉(1), and the corresponding transition 

matrix D, the matrix H can be reduced to the diagonal form. Arranging suitable ξ(1)0 can cause 

log prior distribution to the form: 
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𝑝(𝛽)~ − ∑
(𝛽𝑗 − 𝜇𝑗

𝛽
)

2

2𝜎𝛽
𝑗
2 + 𝑐𝑜𝑛𝑠𝑡

𝑗

 

where μβ и σβ are known parameter from matrix D, W, Q and β is replace ξ(1) by equation: 

𝜉(1) = 𝐷 ⋅ 𝛽 + 𝜉(1)0 

and the corresponding fundamental matrix in the new coordinate system has the form: 

𝐹(1′) =  𝐹(1) ⋅ 𝐷 

In this form, vector β have a clear interpretation — vector of independent multivariate 

normal distribution. In this case, we clearly understand the a priori distribution of β, and we can 

choose as a proposal density in the normal distribution with zero mean and σ equal to σβ. 

In this approach, there is a clear geometrical interpretation. Isolines prior distribution are 

n2 — dimensional ellipsoid, centered at μ, and semiaxes proportional σ. The set of points satisfying 

the constraints in the form of equations are the hyperplane of dimension (n2 – p), where p — the 

number of linearly independent constraints. Projections of isolines on the hyperplane will be 

ellipsoids, with dimension equal to the dimension of the hyperplane, with center μβ and semiaxes 

proportional σβ. Basis vectors, column matrix 𝐹(1′), parallel to the axes of the ellipsoids. 

In this formulation the prior distribution, it is possible directly sample matrix, and check 

the final matrix in inequality constraints. Advantage of this method MCMC, compare with 

previous one is the outstanding performance of the resulting Markov chains, and disadvantage of 

this method is increasing share dropped matrices, and consequently time, together with the 

increasing dimension estimated matrix. As a result of this estimation econometrician can publish 

vector μ, σ, and the matrix D, from which the user can generate an arbitrarily large number of 

matrices required for its purposes. 

Prior knowledge of the distribution density of β allows us to calculate the covariance matrix 

of the variables z, excluding inequality constraints. By definition covariance is: 

𝑐𝑜𝑣𝑖𝑗 = ∫ ∫ (𝑧𝑖 − 𝜇𝑖)(𝑧𝑗 − 𝜇𝑗)𝑑𝑧𝑖𝑑𝑧𝑗  

by use equation 

 

𝑧 = �̃� + 𝐹(1′) ⋅ 𝛽 

with distribution β equal: 

𝛽 ~ 𝑁(𝜇𝛽 , 𝜎𝛽) 

then covariance is equal 
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𝑐𝑜𝑣𝑖𝑗 = ∫ ∫ (∑ 𝑓𝑖𝑘 ⋅ 𝛽𝑘

𝑘

− 𝑧�̃� ) (∑ 𝑓𝑗𝑘 ⋅ 𝛽𝑘

𝑘

− 𝑧�̃� ) 𝑑𝑧𝑖𝑑𝑧𝑗 

Considering that, the covariance of two random independent variables is zero, then 

𝑐𝑜𝑣𝑖𝑗 = ∫ ∑ 𝑓𝑖𝑘 ⋅ 𝑓𝑗𝑘 ⋅ 𝛽𝑘

𝑘

𝑑𝑧𝑘 = ∑ fikfjkσk
2

k

 

or in the matrix form 

COV = 𝐹(1′)
′

⋅ Σβ ⋅ 𝐹(1′) 

where sigma diagonal matrix with coefficients equal −
1

2𝜎𝛽2. As shown by experiments on 

real data R2 regression coefficients between the covariance obtained from the equation above, and 

covariance obtained from MCMC over .97, with a constant equal zero and interception in the range 

0.9 — 1.1. In figure 8 shown comparison MCMC chains. Some срфшты in the base version of the 

algorithm, on the right hand, do not converge. Further increasing the number of iterations by 

several orders not improve the situation. 

Figure 9 shows the distribution coefficients of the covariance between cells IO tables in 

1998-2003, in the format OKONH, and 2004-2006 in the format of NACE. As can be seen most 

of the points located on the bisector and the regression coefficient, constructed between the 

coefficients close to unity, with the constant zero. R2 for a regression of more than 0.975. 

1.3. Bayesian disaggregation of IO tables 

The described above method of updating IO tables can be generalized and used for other 

purposes, including disaggregation. Let’s consider the inverse problem to the disaggregation – the 

aggregation of an IO matrix A  of N industries into 
*A  of dimension n, where N > n. Therefore 

matrix 
*A  consist of rows and columns which are sums of rows and columns of matrix A . Let’s 

matrix S with dimension n N  is responsible for the transformation. For example, if two first 

industries of A  should be aggregated into one industry of 
*A , than the first row of S will have 

units in the first two elements, and zeros in others. In more general case: 

𝑆 = {
𝑆𝑖,𝑗 = 1, 𝑖 ∈ 𝑠𝑒𝑐𝑡𝑜𝑟 𝑗

𝑆𝑖,𝑗 = 0, 𝑖 ∉ 𝑠𝑒𝑐𝑡𝑜𝑟 𝑗
         (10) 

Therefore, aggregation problem can be written: 

* 'A SAS    (11) 

To come back to disaggregation one should find elements of unknown matrix A , consistent 

with (*). The equation () can be rewritten: 

     *kron S,S *vec vecA A   (12) 
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where  kron   denotes Kronecker product of the matrices, vec( )  denotes a matrix’ vectorization. 

Let’s also assume that intermediate demand for an industry output does not exceed an output of 

the industry: 

∑ 𝑎𝑖,𝑗 ∗ 𝑥𝑗 ≤ 𝑥𝑖𝑗          (13) 

The constrain can be presented similarly to (5): 

𝐷 ∗ 𝑧 ≤ 𝑋          (14) 

where 𝑋 is the final output.  

 

1.4. Measurement errors in observed data 

National accounts usually have several cycles of publication. First estimates are made on 

partially available data and usually considered as preliminary. As new data comes, the estimates 

are updating. Therefore the information for the same economic indicators published in various 

years may differ. 

We faced the problem working on the disaggregation exercise on the real data. The 

aggregated version of “Use” matrix for 2006 was published earlier than the disaggregated 

production information for the same year. The data on output, value added, and intermediate 

consumption from the matrix is not consistent with the same but more detailed statistics. It is likely 

the information on production was updated, but the Use table was not. 

To address the problem we introduce measurement errors to the observed data. We assume 

that the aggregated matrix, which was published earlier, is measured with an normally distributed 

error: 

        *kron S,S *vec -vec ~ 0,A A N             (15) 

where  

— diagonal matrix with elements proportional to the square of  *vec A . Later we assume that 

standard deviation of the measurement error for each cell is equal to 10% of the value of the cell. 

Therefore for the density function of posterior distribution will be: 

( | ) ( ) ( ) ( | )p a data p a L data I a data          (16) 

where 

( )p a — prior distribution density function, 

( )L data — likelihood function for the specified in (15) measurement error, 

( | )I a data — an indicator function which shows that all the io-coefficients satisfy the set of 

constrains. 
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1.5. Computer implementation 

The MCMC sampling methodology is computationally intensive. Moreover, quality of 

results directly depends on number and length of chains. Initially developed algorithm with all the 

sequence of required operations of multiplications, summation, and comparison took 20 minutes 

to sample just one matrix. The time is not appropriate for large-scale calculations. For instance, to 

sample 15 million matrices (an experimentally found suggested minimum size of sample), the 

algorithm would require 5000 years. However, this straightforward algorithm has a lot of potential 

for time-efficiency.  

First, the matrices are quite sparse. Standard procedures can be applied to improve the time 

performance. As result, number of elementary operation for 4761 elements decreased from 20 

million to 370, with improved time to 0.1 seconds per matrix. 

Second, the 370 operations can be paralleled. After reformulating the problem for standard 

graphical processor supporting CUDA technology, the time was improved to 0.006 seconds per 

one matrix. See table 1 for more details. 

 

Table1. Time-performance of various sampling algorithms. 

№ Algorithm Software 

Time of one 

matrix (69x69) 

sampling 

Number of elementary 

operation of 

summation and 

multiplication 

Comparison 

operations 

1 MCMC R > 20 min  (4761-N)2+693>2e7 4830 

2 Optimized MCMC R ~ 0.1 sec 70+N < 364 70+N < 364 

3 Optimized MCMC CUDA ~ 0.006 sec 70+N < 364 70+N < 364 

Note: N is a number of linearly independent constrains. 

 

2. Experimental updating of WIOD tables 

Here we apply the proposed methodology to the WIOD (Timmer at al., 2015). For 

estimation WIOD tables only based years was used, instead of previous paper (see Appendex A). 

In the Bayesian framework we take previous based IO tables as a prior information, assuming 

initial independent truncated normal distributions for each IO coefficient. Standard deviations of 

prior distribution are estimated for each coefficient on the all based previously available tables. To 

compute posterior mean of coefficients we apply Markov chain Monte Carlo (MCMC) method 

with two chains and sampled length of 5,000,000 simulations. To compute posterior mode of 

coefficients we use nonlinear programming techniques. 
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The estimates include 24 experiments from WIOD database (the list of countries is 

presented in Appendix A). The accuracy of the Bayesian techniques is comparable with other 

methodologies, and outperforms most of them by major number of considered indicators. 

However, the best accuracy for the WIOD application keeps RAS method. It should be noted that 

WIOD tables were balanced by RAS-based methods (see Timmer at al., 2015) which might be the 

reason of highest RAS performance vs. other techniques (see table 1, more detailed results are in 

appendix ). 

One of the advantage of the Bayesian methodology is in its flexibility through using prior 

information. RAS estimates can be used as prior info as well. Table 2 presents comparative 

statistics between RAS and the Bayesian estimates, when results of RAS method are used to as 

prior for Bayesian estimation. The main difference here is that Bayesian mode will be equal to 

RAS estimation because it is fully consistent with the new data. Therefore, the first row is the table 

is empty. 

 
Table 2– Estimation WIOD for based years, IO value previous as prior, compare with RAS. 

 Statistic RMSE MAE MAPE WAPE SWAD Psi RSQ AED 

MODE is 
better RAS 13% 4% 0% 4% 8% 4% 13% 0% 

MEAN is 
better RAS 4% 0% 4% 0% 4% 0% 8% 0% 

 
Table 4– Estimation WIOD for based years, RAS as prior, compare with RAS. 

 Statistic RMSE MAE MAPE WAPE SWAD Psi RSQ AED 

MODE is 
better than 
RAS 

— — — — — — — — 

MEAN is 
better than 
RAS 33% 8% 0% 8% 29% 8% 33% 4% 

 

As mentioned above, the main advantage and goal of the methodology however is in estimation 

of full profile distribution of unknown tables. Figure 1 presents an example – a part of an estimated 

IOT for Australia, and estimated distribution for each cell. The estimates of each cells are highly 

correlated because of linear relations between cells. 
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Figure 1. Estimation WIOD for Australia 2008, IO value 2004 as prior. 

 

WIOD tables are highly processed, build on data from various sources, countries, and 

balanced with RAS-based methods. It should be cleared that the tables incorporate some 

uncertainties due multiple steps of data adjustment and balancing. Ideally the Bayesian 

methodology should be used on every step to accumulate uncertainties in the data and estimate 

confidence intervals for each cell, and full profile of the joint distribution. However, the application 

presented in the paper can be a second-best methodology to evaluate uncertainties in the tables, 

and/or update the tables for later years. As discussed in the conceptual framework part of the paper, 

updates are possible even when information of sum of rows and tables are not available or 

measured with errors. This will affect confidence intervals of (some of) the estimated cells, but 

fuzzy information will have lower impact on the prior tables. 
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With the goal to test the methodology for (relatively) less processed data (certainly IOTs 

are always a highly processed data because of the nature of their compilation), we apply the 

methodology to US IOTs, considering them as “less-processed data”. The summary statistics of 

the estimates for 2002-2013 years, based on previous 5 years, are presented in the Appendix C. 

The overall performance of the Bayesian method is also comparable with others (see 

Appendix B).  

 

3. Disaggregation of 15 to 69 industries (OKVED) for Russia for 
2006 

Here we apply the developed MCMC procedure to disaggregate symmetric 15x15 Use 

table in the OKVED classification into 69x69 matrix, using data for output and intermediate 

consumption for the 69 industries. We had to add measurement error to the observed 15x15 matrix. 

The data on 69 industries was published in the later years and is not fully consistent with the 15x15 

matrix. The parameters of the experiment with the main results are summarized in the Table . 

As follows from the table, the quality of the estimates is notable lower. Some MCMC 

chains are experiencing convergence problem which shows Geweke statistics and high 

autocorrelation of the chains even with very large interval between saved samples (thin = 5000). 

Around 10% of the autocorrelation coefficients are higher than 0.43. Geweke statistics also reports 

success in convergence for around 87% of all cells, and more than 99.6% of cells have at least one 

converged MCMC chain. 

The reason of the lower quality of estimates might be caused by the introduced 

measurement error to the each cell of the aggregated matrix to fit the data of larger dimension. The 

error increases possible ranges for each cell, as well as correlation between them, and may affect 

the convergence. It is likely that longer sampling and/or taking into account potential 

autocorrelation between the sampling values will improve convergence of MCMC chains, increase 

quality of the estimates. The problem will be addressed on the further steps of the research. 

The resulting samples for the disaggregated cells were aggregated and their distributions 

are compared with priors on the Figure 1 in the appendix. As follows from the picture, posterior 

distributions (green and red lines on the figure) often displaced from initial priors, which are 

normally distributed mean value of observed 15x15 Use table for 2006, and standard deviation 

equal to 10% of the cell values. The main reason of displacement of the posterior distribution is 

likely the inconsistency of the newly observed disaggregated data and the initial aggregated table. 

The inconsistency results in the matrix rebalancing, which we observe as displacement of the 

posterior distribution from their priors. 
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It should be noted, that the estimates might be also improved if other data is taken into 

account. For example, certain estimate of intermediate demand can be recovered based on import, 

export, public spending and final consumption. Also more meaningful prior information can be 

assigned to some industries or cells in the matrix, based on the economic knowledge of the sectors. 

 

4. Updating of “Use” table (OKVED) from 2006 to 2012 

In this section we update the Use-2006 table to each following year up to 2012. The 

methodology is similar to the applied above disaggregation. The base year table is the observed 

Use2006 matrix, which is the same for the all years, presumably measured with errors. Similarly 

we use output and intermediate consumption data for 69 industries to update the table and 

disaggregate it for particular year. 

As and earlier, there are two levels of priors in the model – for disaggregation and 

measurement errors. Uniform distribution (uninformative) priors were assigned for the 

disaggregation. Normal distribution priors were assigned to the measurement errors for each cell, 

with mean values equal to the base year matrix, and standard deviations equal to 10% of the cells 

value. 

For sampling we applied Random Walk Metropolis Hasting algorithm, optimized for the 

particular task and parallelized for calculation on CUDA-enabled graphical processors. For each 

year we run two Markov chains with length of 15 million iterations, burning first 2/3 of the 

iterations and saving every 5000th observation. The overall process for one year took around 40 

hours on a pretty standard computer with i7-2600K Intel processor and NVIDIA-560 graphical 

card. The resulting 69x69 matrices are too large for publishing (available on request). In the 

appendix we present aggregated version of the tables for 2007-2012 in comparison with prior 

information for each cell. 

The results are pretty similar to the disaggregated 2006 table, with shift of some estimated 

parameters in comparison to the prior information. As and earlier, we assume that the main reason 

of the shifts caused by preliminary character of the published aggregated IO table for 2006. The 

later data disaggregated data is not consistent with the table, but the later was not updated by 

Rosstat. Also, changes in production structure could induce changes in the USE table as well. We 

will continue the detailed analysis of the estimated tables on industries level on the further step of 

research. 

IO table of 2011 for Russia was issued by Russian statistical agency, but in different SNA 

system. In figure 2 shown compare between share of value added for different sector. The main 

changing sector K-O. 
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Figure 2. Share Value-Added in different SNA of 2011 for Russia. 

 

In figure 3 shown comparison error estimation and changing io-cells. Note that column 

sums is fixed by estimation condition. So, sum of error for RAS and Bayes is equal. The more 

change is io-cells, the more estimate errors. 
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Figure 3. Compare error estimation and changing io-cells. 

5. Concluding remarks 

The presented methodology proposes sampling methods for updating, disaggregating, and 

balancing IOTs, and more largely national accounts. The main benefits of the methods is in natural 

incorporation of uncertainties into estimation process, flexibility in accommodation any kinds of 

data and information into estimation process, and full density profile for each of unknown 

parameters instead of point estimates. 

In the paper we apply the proposed methodology to WIOD tables for 34 countries, US IOT 

for 8 recent years (based of 5 preceding years), and to sample Russian IOT, the most uncertain 

because of unavailable official statistics since 2003.  

The overall performance of the methodology is comparable with other mainstream 

techniques. The precision of the estimates is normally higher than many other methods, as 

indicates the set of indicators. However, for real data application RAS method demonstrates 
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usually better quality of estimates, which we interpret as broad application of RAS method and its 

derivatives for compilation of IOTs starting on national statistics data, to further IOTs processing 

and balancing. This findings doesn’t devaluate advantages of the Bayesian methodology, because 

of evaluation of uncertainties in the IOT coefficients. Moreover, the proposed methodology can 

be easily compared with any other preserved by a researched techniques using their estimates as a 

prior, and evaluating uncertainties using Bayesian methods. 

The experimental updating, balancing and disaggregation of Russian IO table and updating 

US IOTs demonstrates a feasibility of application of sampling techniques for the large-scale 

problems with acceptable results. With developed algorithms, sampling of 15 million matrices of 

the 69x69 dimension can be performed in 40 hours on a modern consumer-class computer. Even 

with the achieved speed of calculation the methodology can be appropriately used. However, it is 

clear that the limit of performance is not reached yet. Further improvements of algorithms and 

involvement of professional computer clusters might improve the performance in hundreds and 

thousands of times. 

The estimated WIOD tables will be provided for public with publication of the paper. 
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Appendix A. Comparison of Bayesian method performance with 
others for WIOD tables updating 

In the experiment we updated IOTs for 24 various countries from WIOD database based 

only in based years. We used two previous based years as prior. Two previous based years was 

used as prior information for initial matrix and for estimation of standard deviation prior for each 

IOT cells. Based years for WIOD in table 1. The Bayesian estimation then have been compared 

with other methods, including cross entropy (CE), least squares (LS), non-linear least squares 

(NLS), weighted least squares (WLS), and RAS. Since for Bayesian method we obtain distribution 

instead of point estimate, we use two point-measures for comparison with other methods: mode 

(MODE) and mean (MEAN) values for each cell. MODE can be also calculated using non-linear 

programming techniques after specification of likelihood function. This approach has been used 

in this experiment; MEAN was estimated on the sample of matrices. 

List of countries in the experiment: 

Australia, Austria, Belgium, Bulgaria, Brazil, Canada, China, Germany, Czech Republic, 

Denmark, Spain, Estonia, Finland, France, United Kingdom, Greece, Hungary, Indonesia, India, 

Ireland, Italy, Japan, Korea, Lithuania, Luxembourg, Netherlands, Poland, Portugal, Romania, 

Russia, Slovak Republic, Slovenia, Taiwan, United States. 
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Table 1. Basic IO years used for WIOD construction (Kuznetsov at al., 2016). 
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Australia  +       + +    +    

Brazil + +    +     +       

Bulgaria +     +    +        

UK    +      +    +    

Hungry      +     +     +  

Germany      +     +      + 

India    +     +     +    

Indonesia +     +     +       

Ireland +     +     +       

Spain +     +     +       

Italy +     +     +       

China   +     +     +     

Korea +     +     +   +    

Luxembu
rg 

     +     +     +  

Netherla
nd 

     +     +     +  

USA   +     +     +     

Czechia +     +     +     +  

Sweden +     +     +       

Japan +     +     +      + 
 

 

 
Table 2. Comparison of Bayesian MEAN vs others as % of cases when Bayesian method has higher or equal 

precision according to various statistics. Experiment with RAS used as a prior matrix. 

 CE LS NLS WLS RAS 

RMSE 67% 79% 75% 88% 33% 
MAE 71% 92% 71% 100% 8% 
MAPE 29% 100% 29% 100% 0% 
WAPE 71% 92% 71% 100% 8% 

SWAD 67% 83% 63% 96% 29% 
Psi 71% 92% 71% 100% 8% 
RSQ 75% 79% 75% 88% 33% 
AED 71% 92% 71% 96% 4% 
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Table 3. Comparison of Bayesian MODE vs others as % of cases when Bayesian method has higher or equal 

precision according to various statistics. Experiment with RAS used as a prior matrix. 

 CE LS NLS WLS RAS 

RMSE 83% 100% 88% 100% - 

MAE 100% 100% 100% 100% - 

MAPE 96% 100% 96% 100% - 

WAPE 100% 100% 100% 100% - 

SWAD 88% 100% 92% 100% - 

Psi 96% 100% 96% 100% - 

RSQ 88% 100% 88% 100% - 

AED 96% 96% 100% 96% - 
Note: Missing values for RAS method means that Bayesian mode estimate is equal to RAS, i.e. 

the comparison is not applicable. 

 
Table 4. Comparison of Bayesian MEAN vs others as % of cases when Bayesian method has higher or equal 

precision according to various statistics. Experiment where for previous based year matrix used as a prior. 

 CE LS NLS WLS RAS 

RMSE 21% 54% 21% 79% 13% 
MAE 4% 75% 8% 100% 4% 
MAPE 0% 100% 0% 100% 0% 
WAPE 4% 75% 8% 100% 4% 
SWAD 13% 63% 13% 79% 8% 
Psi 8% 58% 8% 96% 4% 
RSQ 21% 58% 21% 88% 13% 
AED 4% 71% 4% 96% 0% 

 
Table 5. Comparison of Bayesian MODE vs others as % of cases when Bayesian method has higher or equal 

precision according to various statistics. Experiment where for previous based year matrix used as a prior. 

 CE LS NLS WLS RAS 

RMSE 13% 46% 17% 75% 4% 
MAE 0% 75% 0% 100% 0% 
MAPE 13% 100% 13% 100% 4% 
WAPE 0% 75% 0% 100% 0% 
SWAD 8% 63% 8% 79% 4% 
Psi 4% 63% 4% 100% 0% 
RSQ 21% 58% 21% 83% 8% 
AED 0% 88% 0% 96% 0% 
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Appendix B. Statistics for comparison of varios updating techniques. 

Name Formula Description 

𝑹𝑴𝑺𝑬 √
1

𝑛2
∑(𝑥𝑖𝑗

𝑡𝑟𝑢𝑒 − 𝑥𝑖𝑗)
2

𝑖𝑗

 Root mean square error 

𝑴𝑨𝑬 
1

𝑛2
∑|𝑥𝑖𝑗

𝑡𝑟𝑢𝑒 − 𝑥𝑖𝑗|

𝑖𝑗

 Mean absolute error 

𝑴𝑨𝑷𝑬 
1

𝑛2
∑

|𝑥𝑖𝑗
𝑡𝑟𝑢𝑒 − 𝑥𝑖𝑗|

|𝑥𝑖𝑗
𝑡𝑟𝑢𝑒|

𝑖𝑗

⋅ 100 Mean absolute percentage error 

𝑾𝑨𝑷𝑬 ∑ (
|𝑥𝑖𝑗

𝑡𝑟𝑢𝑒| 

∑ 𝑥𝑘𝑙
𝑡𝑟𝑢𝑒

𝑘𝑙

) 

𝑖𝑗

⋅
|𝑥𝑖𝑗 − 𝑥𝑖𝑗

𝑡𝑟𝑢𝑒|

|𝑥𝑖𝑗
𝑡𝑟𝑢𝑒|

⋅ 100 
Weighted absolute percentage error, which weights each percentage deviation of 

𝑥𝑖𝑗  from 𝑥𝑖𝑗
𝑡𝑟𝑢𝑒 by the relative size of the corresponding true element in the 

overall sum of the actual elements. 

𝑺𝑾𝑨𝑫 
∑ |𝑥𝑖𝑗

𝑡𝑟𝑢𝑒| ⋅ |𝑥𝑖𝑗 − 𝑥𝑖𝑗
𝑡𝑟𝑢𝑒|𝑖𝑗

∑ (𝑥𝑖𝑗
𝑡𝑟𝑢𝑒)

2
𝑘𝑙

 
Standardized weighted absolute difference, which is effectively similar to WAPE 

with the difference being that absolute deviations are weighted by the size of the 
true transactions. 

𝚿 

1

∑ 𝑥𝑘𝑙
𝑡𝑟𝑢𝑒

𝑘𝑙

⋅ ∑ [|𝑥𝑖𝑗
𝑡𝑟𝑢𝑒| ⋅ |ln (

𝑥𝑖𝑗
𝑡𝑟𝑢𝑒

𝑠𝑖𝑗
)| + |𝑥𝑖𝑗|

𝑖𝑗

⋅ |ln (
𝑥𝑖𝑗

𝑠𝑖𝑗
)|], 

𝑤ℎ𝑒𝑟𝑒 𝑠𝑖𝑗 =
|𝑥𝑖𝑗| + |𝑥𝑖𝑗

𝑡𝑟𝑢𝑒|

2
 

Ψ is shows a linear relation between its value and the level of error. 

𝑹𝑺𝑸 𝑐𝑜𝑟 (𝑥𝑖𝑗
𝑡𝑟𝑢𝑒 , 𝑥𝑖𝑗)

2
 

(or coefficient of determination) – the square of the correlation coefficient 
between the elements of the actual and predicted matrices ( 𝑥𝑖𝑗 and 𝑥𝑖𝑗

𝑡𝑟𝑢𝑒), when 

at least one of them is different from zero. 

𝑨𝑬𝑫 ∑|𝑥𝑖𝑗
𝑡𝑟𝑢𝑒 ⋅ log 𝑥𝑖𝑗

𝑡𝑟𝑢𝑒 − 𝑥𝑖𝑗 ⋅ log 𝑥𝑖𝑗|

𝑖𝑗

 Average entropy distance 
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Appendix C. Updating USA data tables 

Estimates in the Industry Economic Accounts of the Bureau of Economic Analysis (BEA) are generally 
available at three levels of detail: sector (15 industry groups), summary (71 industry groups), and detail 
(389 industry groups).  For most data products, estimates at the detail level are available only for estimate 
year 2007 (due to the availability of detailed data from the 2007 Economic Census); however, estimates 
of gross output at the detail level are also available annually.  This table shows the relationship between 
these three levels of detail as well as how each level relates to the 2007 North American Industry 
Classification System (NAICS) code structure. 
 
These statistics were prepared by the Industry Economic Accounts (IEAs) Directorate, Bureau of 
Economic Analysis (BEA), U.S. Department of Commerce. The statistics in these spreadsheets are not 
copyrighted. 
 
Table 6– Estimation IO for USA from 2005 to 2013, IO previous year as prior, CI analysis, comparison with 

RAS. 

 Statistic RMSE MAE MAPE WAPE SWAD Psi RSQ AED 

MOD is better 
than RAS 8% 8% 0% 8% 17% 8% 8% 0% 

MEAN is 
better than 
RAS 17% 8% 0% 8% 17% 8% 17% 0% 

 

 
Table 8 – Estimation IO for USA from 2005 to 2013, RAS estimation as prior, comparison with RAS. 

 Statistic RMSE MAE MAPE WAPE SWAD Psi RSQ AED 

MOD is better 
than RAS 

— — — — — — — — 

MEAN is 
better than 
RAS 50% 42% 0% 42% 50% 42% 50% 25% 
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Figure 4. Estimation IO for USA for 2013, IO 2012 year as prior, first 7x7 sectors. 
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Appendix D. Estimation of Russian IOT for 2006-2012, selected 
output. 

 
Table 1. Parameters and results of  MCMC for 2006 year. 

Parameter Value 

Number of iterations 4e6 

Thin (step between saved observations) 5000 

Burn (number of first dropped iterations) 1e5 

success Geweke, % 87.8% 

max ACF 0.996 

 

 
Figure 1. Kernel for aggregate matrix 15x15 from estimation for 69x69 for 2006. 
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Figure 6. Prior and posterior distributions (thread 1 & 2) for estimated 15x15 Use table for 2011. 
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Figure 7. Prior distributions and MCMC chains (thread 1 & 2) for estimated 15x15 Use table for 2006. 

 


