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Abstract: This study provides a scientific assessment of water scarcity in the Beijing-Tianjin-Hebei 
(BTH) city region and investigates its restrictive effects on urban economic development by 
quantifying economic loss caused by water scarcity based on an input–output optimization model. 
The results show that the water scarcity reflected by shadow prices has significant sectoral and 
regional heterogeneities. Southern Hebei faces the most severe water scarcity in the BTH city 
region and the situation is worsening. Water scarcity is shown to have a negative impact on the 
economy of the BTH city region that amounts to CNY 270.02 billion. Hebei has the largest potential 
economic loss caused by water scarcity, especially in southern Hebei, the potential GDP (gross 
domestic product) of which is decreased by 6.2%. This study also points out that the water scarcity 
in the BTH city region is underestimated in terms of actual water prices, and the scarcity of 
agricultural water use is mostly underestimated. The results contribute to a deeper understanding 
of the restrictive impact of water scarcity on regional economic development, and thus provide a 
scientific reference for policymaking in the BTH city region. 

Keywords: water scarcity; shadow price; input–output optimization model; potential economic 
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1. Introduction 

Given the tremendous increase in water demand, also accompanied by population expansion, 
rapid urbanization, as well as economic booms, the issue of water scarcity has intensified and is now 
jeopardizing food security, regional stability, and sustainable development in many areas [1–4]. 
Currently, an estimated 3.6 billion people (almost half of the global population) live in areas that 
may face water scarcity for at least one month each year, and this number may increase to around 
4.8–5.7 billion by 2050 [5]. In this context, a major challenge for governments is to enable the supply 
of water for domestic consumption in urban communities located in semi-arid environments, such 
as California, Brazil, the Middle East, and northern China [6], where the economic impacts of water 
scarcity are increasing [7–8]. China is, thus, a country under great pressure from water shortages, 
with its per capita occupancy of water resources being 2074.5 m3 in 2017 [9], less than a quarter of the 
world average level. The Beijing-Tianjin-Hebei (BTH) city region in northern China faces the most 
severe water shortages [10]. 

An assessment of water scarcity is fundamental for water management, since it allows 
policymakers to become aware of the severity of the problem [11–12]. Amber [13] and 
Pedro-Monzonís [14] provided basic reviews of water scarcity and drought from different 
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perspectives to assess the state of the water recovery system to better manage water resources under 
water scarcity conditions and to help decision makers and stakeholders select the most appropriate 
indicators. Kummu [15] analyzed the temporal development of physical, population-driven water 
scarcity using population data derived from the History Database of the Global Environment 
(HYDE) dataset. Hoekstra [16] assessed freshwater scarcity using the blue footprints of 405 river 
basins over the period of 1996–2005, showing that for 201 basins with 2.67 billion inhabitants there 
was severe water scarcity during at least one month of the year. Gain [17] provided a comprehensive 
dynamic assessment of the water scarcity risks for the Lower Brahmaputra river basin, with the 
results indicating that the risk of water shortage was expected to increase slightly and fluctuate 
significantly with the change of the danger signal. 

Water price is an effective indicator of water scarcity. Theoretically, water price should be 
determined based on both the supply and demand of water resources under perfect market 
conditions, and thus measure the real value of water resources. However, in reality, water price 
usually deviates from its real value, since it is top-down administratively determined, rather than on 
the market [18]. As such, the water shadow price is defined as the marginal contribution of unit 
water resources to social and economic development after the optimized allocation, which makes it a 
scientific and reasonable measure of the real value and scarcity of water resources [19]. The water 
shadow price is typically calculated using linear programming techniques [20–21]. Liu [22] 
calculated the shadow prices of industrial and productive water in nine river basins using input–
output tables for water conservancy in combination with linear programming techniques, pointing 
out that the shadow price was a valuable tool for setting reasonable water prices and establishing a 
water market in China. Input–output models can, thus, fully consider the relationships between the 
various sectors but cannot calculate shadow prices in consecutive years due to data limitations. 

As such, if we want to examine the shadow prices of consecutive years, Data Envelopment 
Analysis (DEA) is a better choice [23]. For example, Shen [24] estimated the shadow price and 
technical efficiency of agricultural water by a stochastic nonparametric envelopment of a data model 
(StoNED), which combined DEA with the Stochastic Frontier Approach (SFA). Wang [25] used the 
Global Non-radial Distance Function (GNDF) to measure the shadow price of industrial water 
during 2004–2012. Recently, the distance production function has become widely used in shadow 
price calculations. Zhang [26] and Wang [27], respectively, derived the shadow prices of China’s 
carbon emissions at provincial levels and industrial levels by using the directional output distance 
function. Tang [28] and Färe [29] used the directional output distance function to calculate the 
shadow price of agricultural sectors in China and the United States. This method allows the 
production modeling of a multi-input and multi-output technology when the prices of some outputs 
or inputs are not available, or alternatively when the prices are available but cost, profit, or revenue 
representations are precluded because of the possibility of violations of the required behavioral 
assumptions of cost minimization or profit maximization [30]. However, existing studies on shadow 
price for production water at the city level and the shadow price of water for the service sector are 
still rare. In addition, it is also hard to calculate the shadow price of water for the three major 
industries (i.e., agriculture, industry, and service sector) in a region simultaneously. 

Given the conflict between limited water endowment and the rising water demand driven by 
socio-economic development, the restrictive impact of water resources has attracted increasing 
attention. Liu [31] analyzed the impact of water resources on regional economic growth based on the 
Cobb-Douglas production function, and found that the loss of economic growth caused by water 
scarcity was mainly due to industrial structure, technological progress, water saving, and scarcity of 
water resources. To measure the constraint effect of water scarcity on economic growth, some 
scholars calculated the “drag effect” of water use on economic growth by embedding water as a 
production resource into the Cobb-Douglas production function. The Cobb-Douglas production 
function, including natural resources and land, constructed by Romer [32] revealed the differences 
between unlimited and limited economic growth due to water scarcity [33–35]. Romer [32] argued 
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that the growth drag caused by resources and land limitations was the difference between the 
growth in a hypothetical case of equilibrium development and that in the case of these limitations.  

Similar analytical thinking is often used in examining the effects of specific policies and actions 
on society and the economy by comparing various scenarios under specific policies and actions with 
baseline scenarios [36]. The computable general equilibrium (CGE) model, combined with scenario 
analysis, is one of the most commonly used methods [8,37–41]. Bruvoll [42] applied a dynamic CGE 
model to measure the environmental constraints of economic growth by comparing the outcomes of 
the feedback model with the baseline model. Qin [40] used a multi-region CGE model to analyze the 
effectiveness of the measures and policies used for mitigating North China’s water scarcity with 
respect to three different groups of scenarios. The findings suggested that a reduction in 
groundwater use would negatively affect economic growth and household incomes. Based on a CGE 
model, Berrittella [36] investigated the role of water scarcity in the context of international trade, and 
the results proved that restrictions in water supply would change the trade patterns of agriculture 
and virtual water. Additionally, Li [43] combined the dynamic CGE model with the bio-economic 
model (BEM) to study the economic impact of a total water use control policy in the Heihe river 
basin, which was proven to have a limited negative impact on regional economic growth. Moreover, 
there are also studies reflecting the idea of equilibrium and investigating the economic impact of 
water resources using systematic methods [44–45]. 

The existing studies have deepened our understanding of the impacts of water resources on 
regional economic development, but some gaps should be noted. In most studies applying statistical 
methods to measure the impact of water constraint, the inter-sectoral linkages in the economic 
system are not fully considered. Although the CGE and social accounting matrix (SAM) can 
incorporate inter-sectoral linkage, they are merely applicable to analysis at large scales, such as the 
national or provincial levels, while the input–output model fully embodies the interconnections 
across all sectors in the economic system and it is applicable to city-level analyses. Considering the 
significant discrepancies between the 13 cities of the BTH city region in terms of economic levels and 
water resource endowments, it is necessary to conduct a city-level analysis on how water scarcity 
impacts urban economic growth. 

Therefore, this study aims to address the above literature gaps using a directional output 
distance function and the input–output model. The objectives of this study are: (i) scientifically 
evaluating the scarcity of water for production in the 13 cities in the BTH city region by calculating 
shadow prices; and (ii) evaluating the potential economic loss caused by water scarcity in the cities 
of the BTH city region. The results of this study contribute to a deeper understanding of the water 
scarcity in the BTH city region and its restrictive impact on urban economic growth, and thus 
provide a scientific reference for policymaking in the BTH city region.  

2. Background of BTH  

The BTH city region is composed of 13 cities, including Beijing, Tianjin, and 11 cities in Hebei 
(Figure 1). The region lies at the core of China’s Circum-Bohai-Sea region, which occupied 1.9% of 
China’s territory, had 8.09% of the nation’s population, and produced 9.77% of China’s GDP, as of 
2017 [9]. The past two decades have witnessed rapid economic growth and sustained population 
expansion in the region. During 2000–2017, the total GDP of the BTH city region increased from 
CNY 995.86 billion to 8058.05 billion, for an average annual growth rate of 13.06%. Meanwhile, its 
total population increased from 90.39 million to 112.47 million, with an average annual growth rate 
of 1.4% [9,46]. However, the region is extremely water scarce, with average annual water resources 
amounting to only 18.11 billion m3, that is, 0.63% of the national total water resources. The per capita 
occupancy of water resources in the region is 161.02 m3/capita per year, only 7.76% of the national 
average level, and far lower than the international standard water shortage limit of 1000 m3/capita 
per year [8]. Additionally, the average proportion of agricultural water use is as high as 75%, which 
is not favorable for regional water conservation [47–49]. Worse, the extent of water scarcity in the 
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region is usually underestimated, resulting in large economic loss and waste of water resources. In 
this context, it is necessary to scientifically evaluate the levels of water scarcity in the cities of the 
BTH city region and determine to what extent water scarcity restricts urban economic development. 

There is a distinct heterogeneity amongst the cities in the BTH city region in terms of economic 
level and water resource constraints (Figure 1, Table 1). Beijing is the most economically developed, 
with the highest GDP and income per capita, followed by Tianjin and Hebei. It is worth noting that 
the economic levels and water resources are discrepant, even inside Hebei. Cities (except for 
Baoding) in central Hebei generally have the highest economic levels, while their water resources are 
scarcest. Specifically, the water scarcity in Cangzhou is extreme, with water resources of merely 86.6 
m3 per capita. Except for Shijiazhuang, the other three cities in southern Hebei (i.e., Handan, Xingtai, 
and Hengshui) have both low economic levels and water resources endowments, with GDPs and 
income per capita below the average province level and water resources per capita below 200 m3. 
The water resource constraint in the cities in northern Hebei is lightest, with water resources per 
capita mostly over 500 m3, much higher than any other cities in the BTH city region. Different levels 
of economic development and water resources have led to large differences in water use between 
cities. Due to limited data on sub-industries, we calculate the water use conditions of different 
sectors for 2012, as listed in Table 1. Beijing has the highest per capita residential water use (34.1 
m3/person) and per capita services water use (43.2 m3/person) and the lowest per capita agricultural 
water use (44.9 m3/person) and per capita industrial water use (23.7 m3/person). The per capita 
agricultural water use (82.8 m3/person) in Tianjin is significantly lower than that in the cities of Hebei, 
while the per capita services water use (7.9 m3/person) is higher than that in Hebei. Although the per 
capita water use gap of the various industries is relatively small inside Hebei, the per capita 
agricultural water use (201.7 m3/person) in southern Hebei is higher and the per capita water 
consumption in other sectors is lower. Given the non-negligible city-level differences, it is necessary 
to conduct a city-level analysis on water scarcity and its restrictive impact on urban economic 
growth. 

 
Figure 1. The administrative areas of the BTH city region and its economic and water resources 
conditions. 
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Table 1. The economic and production water use condition in the BTH city region (Year 2016). 

Regions/Cities 

Economic Condition Water Endowment Condition Water Use Condition 

GDP Per Capita 
(CNY/person) 

The Per Capita 
Net Income of 

Rural 
Residents 

(CNY) 

The Per Capita 
Disposable 
Income of 

Urban 
Residents 

(CNY) 

Total Water 
Resources 

(108m3) 

Water 
Resources Per 

Capita 
(m3/person） 

Residential 
Water Use 
Per Capita 

(m3/person) 

Agricultural 
Water Use 
Per Capita 

(m3/person) 

Industrial 
Water Use 
Per Capita 

(m3/person) 

Services 
Water Use 
Per Capita 

(m3/person) 

Beijing - 11813.2 22310.0 57275.0 35.1 161.5 34.1 44.9 23.7 43.2 
Tianjin - 11449.3 20076.0 37110.0 18.9 121.0 25.4 82.8 37.9 7.9 

Northern 
Hebei 

Zhangjiakou 3312.9 9241.0 26069.0 17.8 402.3 22.0 182.4 31.8 2.3 
Chengde 4074.4 8736.0 24856.0 24.0 679.5 30.3 181.1 40.2 7.7 

Qinhuangdao 4359.2 11621.0 30348.0 21.5 694.8 29.6 197.6 51.1 7.6 
Sub-total/average 3693.7 8988.5 25462.5 41.8 540.9 26.8 186.2 39.8 5.5 

Central 
Hebei 

Langfang 5893.8 14286.0 34633.0 7.1 153.9 28.7 150.5 33.5 6.0 
Cangzhou 4723.2 11340.0 28605.0 6.5 86.6 22.3 136.4 27.7 1.8 
Tangshan 8102.1 15023.0 33725.0 22.4 285.6 32.5 207.2 79.0 14.2 
Baoding 2988.5 11612.0 25680.0 24.8 213.2 22.2 214.1 23.3 4.6 

Sub-total/average 5426.9 13065.3 30660.8 60.8 184.8 25.8 184.8 39.7 6.5 

Southern 
Hebei 

Shijiazhuang 5496.7 12345.0 30459.0 32.0 296.7 28.7 224.4 34.6 7.1 
Handan 3540.6 12153.0 26603.0 17.9 188.6 23.4 163.5 32.8 1.7 
Xingtai 2699.5 10006.0 23913.0 25.6 349.7 23.0 193.8 27.4 0.8 

Hengshui 3188.8 10069.0 23787.0 6.5 146.0 19.6 306.1 29.2 2.4 
Sub-total/average 3731.4 11143.3 26190.5 82.0 245.2 24.5 210.7 31.7 3.4 

Regional Total/Average 5606.9 13099.8 31059.6 238.6 257.0 27.1 152.2 34.1 12.7 
Data source : Hebei economic yearbook 2017 [50]; Water resources bulletin of Beijing, Tianjin, and Hebei 2012,2016 [47-49] 
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3. Data and Methodology 

3.1. Data 

The calculation of the shadow price of water resources includes input variables (capital, labor, 
and water use) and an output variable (industrial value added). Considering data availability, the 
analysis period is 2000–2016. Since the shadow prices of water resources in this study are 
categorized into agricultural, industrial, and service sector water shadow prices, the above four 
variables also have to be categorized by the three industries. Furthermore, the labor input is 
represented by the number of employees in each sector and capital data are estimated based on 
existing studies on the capital stock estimation of industries [51–53]. The basic data on the above 
three input variables are derived from the Beijing Statistical Yearbook, Tianjin Statistical Yearbook, 
and Hebei Economic Yearbook for 2001–2017 [54–56]. Water resource inputs are represented by 
direct water withdrawal from each sector, which is estimated based on data from the Beijing Water 
Resources Bulletin, Tianjin Water Resources Bulletin, and Hebei Water Resources Bulletin for 2000–
2016 [48–50]. Descriptive statistics of these variables are shown in Table 2.  

Table 2. Descriptive statistics of input and output variables in calculation of shadow price. 

Sectors Variable Unit Maximum Minimum Mean Standard Deviation 

Agriculture 

Capital Billion CNY 16.48 0.12 3.06 34.36 

Labor 
Ten thousand 

people 
298.21 45.18 131.54 56.90 

Water Billion ton 2.87 0.40 1.32 6.06 
Value 
added 

Billion CNY 29.30 2.66 11.73 65.04 

Industry 

Capital Billion CNY 179.06 2.12 35.41 362.02 

Labor 
Ten thousand 

people 
268.58 16.04 92.32 61.46 

Water Billion ton 1.05 0.07 0.28 1.88 
Value 
added 

Billion CNY 105.17 5.87 32.33 280.24 

Services 

Capital Billion CNY 360.57 2.43 43.56 610.55 

Labor 
Ten thousand 

people 
1045.38 50.35 195.62 190.52 

Water Billion ton 1.01 0.02 0.16 2.08 
Value 
added 

Billion CNY 420.16 7.52 53.62 862.01 

The input–output optimization modeling for the BTH city region is built based on the 2012 
input–output tables of the 13 cities in the BTH city region [56–58]. 

3.2. Methodology  

3.2.1. Calculation of Shadow Price for Production Water 

This paper uses the distance output function to calculate the shadow price of production water. 
The theoretical model of shadow price is based on existing research studies [23,59], and the specific 
process is listed in the appendix A and B. 

Two techniques can be used to estimate the directional distance function: the non-parametric 
and the parametric approaches. The non-parametric one, namely DEA, aims to construct a piecewise 
frontier to encompass all DMUs (Decision Making Units). The parametric approach needs to 
pre-specify a function form and fit the data. This study adopts the commonly used quadratic form to 
represent the model empirically. A parametric specification is adopted considering its advantages of 
differentiability and flexibility, which enables us to easily derive the shadow price.  
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Specifically, the shadow price is usually calculated based on the linear mathematical 
programming method [19–20], but this is only a hypothesis. At present, many scholars have begun 
to break this limitation when solving shadow prices, and began to estimate the shadow price by 
means of translog production function or higher-order function [25–28]. As Färe [59] suggested, the 
quadratic representation over-performs compared to translog parameterizations. Following similar 
studies [25–28], we set the directional distance function to quadratic, with the direction vector of

y wg g( , ) (1, 1)= − . This means that while other inputs remain unchanged, output increases and water 

use decreases can be achieved at the same time. Assuming the number of the cities is k =k( 1,2, ,13)
 

and the number of years is t =t( 1, ,17) , the quadratic directional distance function for city k in 
year t is given as: 

′ ′
= =

= =

− = α + α +β + γ + α + β + γ

+ η + δ +µ

∑ ∑

∑ ∑

t t t t t t t t t t t t
k k k k n nk k k nk nn nk n k k k

n n

t t t t t t
n nk k n nk k k k

n n

D x y w x y w x x x y w

x w x y y w

2 2
2 2

1 1 2 2
1 1
2 2

1 1

1 1( , , ;1, 1) ( ) ( )
2 2

γγγδ

 (1) 

To estimate the parameters in the above model, we use the linear programming algorithm of 
Aigner [60]. 

Algorithm 1  

′ ′

−

− ≥

− ≤

∂ ∂ ∂
≥ ≤ ≥

∂ ∂ ∂
β − γ = − β = γ = µ δ = η
α = α

∑∑ t t t t
k k k k

t k

t t t t
k k k k

t t t
k k k

n n

nn n n

D x y w

s t

D x y w

D x y

D D D
w y x

1 1 2 2

min ( , , ;1, 1)

. .

(1) ( , , ;1, 1) 0

(2) ( , ,0;1, 1) 0

(3) 0, 0, 0

(4) 1, ,
(5)

γγγδ

γγγδ

γγγδ

γγδ γγδ γγδ

 

The objective function is to minimize the sum of the distance deviations from the frontier. 
Restriction (1) ensures that the production set is feasible. Restriction (2) imposes the attribute of 
“null-jointness.” In other words, in the extreme case of water resource consumption being zero, any 
non-negative output is not feasible. Restriction (3) guarantees a convex set. Restrictions (4) and (5) 
impose the translation and symmetry properties, respectively. 

According to Färe [28], the price of output is generally considered as yp =1, so the expression of 

the specific shadow price of water resources in this study is: 

=

=

γ + γ + η +µ
= −

β +β + δ +µ

∑
∑

n nn
w

n nn

w x y
p

y x w

2
1 2 1

2
1 2 1

 (2) 

3.2.2. Estimation of Economic Loss Caused by Water Scarcity  

In this study, the restrictive impact of water scarcity on city economic growth is measured by 
the potential economic loss caused by water scarcity, which can be obtained by comparing the 
optimized GDP based on the input–output optimization model, including and excluding water 
constraints.  

In the input–output optimization model, it is assumed that capital and labor are not constrained, 
which may have a certain impact on the measurement of the impact of water resources on GDP. 
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However, the BTH city region is one of the most economically viable regions in China. Its capital and 
labor are abundant and the water constraint is obvious. Therefore, the effects of water resource 
constraints on the economic constraints measured by the input–output optimization model will not 
be large. In addition, the implementation of the CGE model has higher data requirements, which is 
difficult to obtain for Hebei’s cities. In this case, the input–output optimization model is a better 
choice because it can not only describe the relationships between industries in the region, but also 
estimates the impact of water shocks on the economy. 

The input–output model is developed based on the input–output tables of the 13 cities of the 
BTH city region in 2012. The objective of the optimization model is to maximize the GDP of the 
target city, and the constraints include input–output constraints, constraints of the sectoral output in 
each city, and industrial water constraints. The detailed setting of the objective and constraints are as 
follows. 

The objective is to maximize the urban economic benefit reflected by GDP. In the model setting, 
the relationship between sectoral output and water use is assumed as stable and can be reflected by 
the industrial water use coefficient. Therefore, maximizing urban GDP is achieved through the 
adjustment of the sectoral production scales in each city. The function for maximizing urban GDP is 
as follows: 

= =
∑∑ R R

i i
R i

x v
13 3

1 1
max  (3) 

where R
ix  is the output of sector i in city R and R

iv  the value added rate of sector i in city R, which 
is the amount of added value created from one monetary unit of production. 

1) Input–Output Constraints 

The input–output model is an analytical framework that represents the monetary transactions 
between economic sectors, and therefore, their interdependence on the economic system [61]. Its 
basic mathematical structure consists of n linear equations depicting how the production of an 
economy depends on inter-sectoral relationships and final demand: 

=
= +∑n

i ij ij
x x y

1
, (4) 

where n is the number of economic sectors, ix  is the total output of sector i, ijx  denotes the 

inter-sectoral monetary flows from sector i to sector j, and iy  is the final demand of sector i. This 

equation can be rewritten to include the direct input coefficient ija , which indicates the amount of 

input from sector i required to increase by one monetary unit the output of sector j, as: 

=
= +∑n

i ij j ij
x a x y

1
, (5) 

where 

ij
ij

j

x
a

x
, (6) 

Therefore, for each city, the input–output constraint can be expressed as: 

n
ij j i ij

a x y x
1=

+ ≤∑ , (7) 

2) Constraints of Sectoral Output in Each City 

To avoid dramatic fluctuations in sectoral production, the changes of sectoral outputs of each 
sector are assumed to be confined within a certain range:  
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≤ ≤R R R
i i ix x x , (8) 

where 
i

Rx  and 
i

Rx  are the lower and upper limits of output in sector i in city R, respectively, 

obtained based on the average change rate of the sectoral output in each city from 2007 to 2016 [62]. 

3) Agricultural Water Constraints 

The optimal agricultural water brought about by the industrial changes in each city should not 
exceed the actual agricultural water.  

 R R R R
wa x W1 1 1 1≤ δ ,  (9) 

where R
wa 1  is the agricultural water use coefficient in city R, Rx1  denotes the agricultural output in 

city R, and R
1δ indicates the change coefficient for agricultural water, which is determined by the 

shadow price. The change coefficient is lower in areas with severe water shortage, which means that 
the water constraint is stronger than the actual one. Conversely, the change coefficient is higher in 
areas where water shortage is not serious, but it cannot exceed 1, which means that the upper limit of 
agricultural water is the actual water use. RW1 indicates the actual water use in the agricultural 
sector of city R, the data coming from the Beijing, Tianjin, and Hebei Water Resources Bulletin (2012) 
[47-49]. 

4) Industrial Water Constraints 

The optimal industrial water amount brought about by the industrial changes in each city 
should not exceed the actual industrial water: 

 R R R R
wa x W2 2 2 2≤ δ ,  (10) 

where R
wa 2  is the industrial water use coefficient in city R, Rx2  denotes the industrial output in city 

R, and R
2δ indicates the change coefficient for industrial water, which is determined by the shadow 

price. Similar to the agricultural sector, the change coefficient ranges from 0 to 1, reflecting the 
degree of adjustment of water scarcity to the upper limit of water use. In areas where water scarcity 
is more severe, the change coefficient is lower, and conversely, the change coefficient is higher. RW2

indicates the actual water use in the industrial sector in city R, the data coming from the Beijing, 
Tianjin, and Hebei Water Resources Bulletins (2012) [47-49]. 

5) Service Sectors Water Constraints 

The optimal service sector water amount brought about by the industrial changes in each city 
should not exceed the actual service sectors water: 

R R R R
wa x W δ3 3 3 3≤ , (11) 

where R
wa 3  is the service sectors’ water use coefficient in city R, Rx3  denotes the industrial output in 

city R, and R
3δ indicates the change coefficient for service water, which is determined by the shadow 

price, whose range is from 0 to 1, thus reflecting the degree of adjustment of water scarcity to the 
upper limit of water use. In areas where water scarcity is more severe, the change coefficient is lower, 
and the change coefficient is higher in opposite circumstances. RW3  indicates the actual water use in 
the service sectors of city R, and is determined by deducting “residential water for residents” from 
“domestic water” from the Beijing, Tianjin, and Hebei Water Resources Bulletins (2012) [47-49]. 
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6) Total Water Use Constraints 

The summation of the water consumption of each sector in each city should not exceed the 
actual total production water use of the entire BTH city region. 

i

R

R i
W W

13 3

1 1= =

≤∑∑ , (12) 

where W is the actual total production water use of the BTH city region. 

4. Results 

4.1. Water Scarcity in the BTH City Region Based on an Assessment of Water Shadow Price 

The values of the parameters in the distance function are shown in Table 3, where all the input 
and output variables are normalized by their mean values to avoid convergence [60]. In a first step, 
we test whether our estimation of technical efficiency meets the condition of null-jointness. That is, if

− <D x y( , ,0;1, 1) 0 , then observed (y, 0) are not P(x). For the entire samples of agriculture, industrial, 
and service sectors, the property of null-jointness is met by above 90% of observations (agriculture, 
industrial, and service sectors are 95%, 92%, and 91%, respectively), which shows that the results of 
parameter estimation have good applicability. The shadow prices of production water use are 
obtained for each city from 2000 to 2016 by inputting the parameters into the shadow price 
expressions. 

Table 3. The solutions of the parameters for the distance function. 

Parameters Agriculture Industry Services 
α −0.0680 0.0341 −0.1223 
α1 0.0281 0.0256 0.0000 
α2 0.0000 0.0000 0.2916 
β1 −0.2390 −0.4290 −0.3369 
γ1 0.7610 0.5710 0.6631 
α11 −0.0217 −0.0225 −0.0001 
α12 0.0000 0.0000 0.0004 
α21 0.0000 0.0000 0.0004 
α22 0.0000 0.0000 −0.2091 
β2 −0.0771 0.0081 −0.0972 
γ2 −0.0771 0.0081 −0.0972 
η1 0.0359 0.0692 −0.0001 
η2 0.0000 0.0000 0.1313 
δ1 0.0359 0.0692 −0.0001 
δ2 0.0000 0.0000 0.1313 
μ −0.0771 0.0081 −0.0972 

The shadow prices of production water use in the BTH city region show prominent sectoral 
variations (Figure 2). Generally, the shadow price of agricultural water use is the lowest, with the 
average price ranging from 1.8 CNY/m3 to 3.8 CNY/m3 during 2000–2016. The shadow price of 
industrial water use is significantly higher, from 7.3 CNY/m3 to 13.1 CNY/m3 during 2000–2016. The 
shadow price of service water use is the highest, from 11.6 CNY/m3 to 14.9 CNY/m3 during 2000–
2016. The sectoral variation of shadow prices may be relevant for the following reasons. First, the 
cost to make the water use meet the requested standard varies by sector. It is more expensive to meet 
the high standard of water quality in service sectors, since they are closely related to human health 
and life security, while it is much cheaper for agricultural water use. Second, marginal revenue 
varies by sector. Generally, marginal revenue in service sectors is higher than in industrial sectors, 
with the one in the agricultural sector being the lowest. 
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Figure 2. The average shadow prices of the production water use in the three industries in the BTH 
region (2000–2016). 

There are significant spatial differences in the shadow prices of production water in the BTH 
city region in 2016 (Figure 3). The cities in southern Hebei (i.e., Shijiazhuang, Handan, Xingtai, and 
Hengshui) have higher shadow prices of production water, with the shadow prices of water use in 
agriculture, industrial sectors, and service sectors exceeding the average level in the entire BTH city 
region. The shadow price of agricultural water use in Beijing is 2.8 CNY/m3, the lowest in the region, 
whereas those of agricultural water use in the cities of southern Hebei are all above 4.0 CNY/m3, 
higher than all the other cities in the region. The cities in northern Hebei have the lowest shadow 
prices of industrial water use, especially Qinhuangdao, where the shadow price of industrial water 
use is 9.8 CNY/m3, 38% lower than the highest ones in Shijiazhuang and Xingtai in southern Hebei. 
The shadow prices of service water use in most cities in northern Hebei, Beijing, and Tianjin are 
lower than that in southern Hebei. The exception is Tangshan, whose shadow price of service water 
use is 16.5 CNY/m3. 

 
Figure 3. Shadow prices of production water use in the cities of the BTH city region (2016). 
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The trends of the changes in shadow prices for production water use of the three industries 
during 2000–2016 are investigated. For agricultural water use, all cities except Beijing show steady 
upward trends in their shadow prices. The shadow price of agricultural water use in Beijing stopped 
its ascending trend and started declining from 2014 (Figure 4). The shadow price of industrial water 
use fluctuated but showed an overall increasing trend, with Cangzhou increasing fastest, followed 
by cities in southern Hebei (Figure 5). As for the shadow price of service water use, Beijing and 
Tianjin show declining trends, while all cities in Hebei show increases at different degrees, with the 
southern region rising fastest (Figure 6). 

The results for the shadow prices of production water use in the BTH city region indicate that: 
(1) water scarcity is the most severe in southern Hebei in the BTH city region; (2) water became 
increasingly scarce in most sectors and most cities in the BTH city region during 2000–2016, 
especially in southern Hebei; and (3) the water scarcity in Beijing has been improved to some extent 
in the agriculture and service sectors in recent years, although there is still a long way to go to solve 
its water shortage. 

 
Figure 4. The shadow price of agricultural water use in the BTH city region (2000–2016). 
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Figure 5. The shadow price of industrial water use in the BTH city region (2000–2016). 

 
Figure 6. The shadow price of services water use in the BTH city region (2000–2016). 

4.2. Potential Economic Loss of Water Scarcity in the BTH City Region 

As previously mentioned, the difference between the optimized GDP from the optimization 
model including and excluding water resource constraints is considered to be the potential economic 
loss caused by water scarcity. The results of the comparison between the optimized GDP from the 
optimization model, with and without water constraints, are shown in Table 4. For the entire BTH 
city region, the potential economic loss resulting from the water constraint is CNY 270.02 billion. In 
other words, water scarcity has a negative impact of CNY 270.02 billion on the economy of the BTH 
city region. The restrictive impact of water scarcity on the economy shows significant regional 
variations. The GDPs of two municipalities, Beijing and Tianjin, are decreased by water scarcity by 
4.95% and 2.59%, respectively. The restrictive impacts of water scarcity on economic growth in 
Hebei are much larger than those in Beijing and Tianjin, with the potential GDP decreased by 5.53%. 
The potential GDP in southern Hebei will decrease by 6.2% due to water scarcity, with Handan 
showing the highest potential GDP decline of 6.8%. Central and northern Hebei register economic 
losses in potential GDP of 5.67% and 3.1% due to water scarcity, with Baoding and Chengde having 
the highest potential GDP declines of 6.64% and 4.56%, respectively. The difference in economic 
losses caused by water scarcity between cities can be partially explained by the industrial structure. 
The proportions of agricultural added value to regional GDP in Beijing and Tianjin are rather low, 
with both around 1%, while in each city in Hebei they are around 10%. The large-scale agricultural 
production in Hebei will inevitably lead to a surge in water demand, and thus reduce water use in 
industry and services and increase economic loss. 

Table 4. Comparison of optimized GDPs, with and without water constraints (billion CNY). 

Cities/Regions Optimal GDP with Water 
Constraints 

Optimal GDP without Water 
Constraints 

Potential Decline in 
Optimal GDP (%) 

Beijing 1795.38 1884.33 4.95% 
Tianjin 1288.83 1322.24 2.59% 
Hebei 2668.59 2816.26 5.53% 

Northern 
Hebei 

Zhangjiakou 122.32 126.45 3.38% 
Chengde 117.26 122.61 4.56% 

Qinhuangdao 113.12 114.57 1.28% 
Sub-total 352.70 363.63 3.10% 
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Central 
Hebei 

Langfang 175.32 182.13 3.88% 
Cangzhou 280.20 295.54 5.47% 
Tangshan 584.40 618.65 5.86% 
Baoding 271.00 288.98 6.64% 
Sub-total 1310.92 1385.30 5.67% 

Southern 
Hebei 

Shijiazhuang 448.11 475.96 6.21% 
Handan 304.21 324.90 6.80% 
Xingtai 152.35 160.98 5.67% 

Hengshui 100.30 105.47 5.16% 
Sub-total 1004.97 1067.32 6.20% 

Regional total 5752.80 6022.82 4.69% 

At the sectoral level, the potential economic losses caused by water scarcity in the industrial and 
service sectors are far higher than in agriculture (Table 5), which is due to agriculture’s 
characteristics of low added value and high water use. Specific to sub-regions and cities, the 
potential economic losses of the three major industries in Hebei are higher than those in Beijing and 
Tianjin. It is worth mentioning that the potential economic losses caused by water scarcity are also 
heterogeneous inside Hebei. The potential economic losses of agriculture in central and southern 
Hebei are greater than that of the northern Hebei. Handan shows the largest economic loss of 
agriculture, followed by Tangshan, Baoding, Shijiazhuang, and Changzhou. Southern Hebei has the 
largest potential industrial loss, followed by central and northern Hebei. The city with the largest 
industrial loss is Shijiazhuang. Additionally, the potential industrial loss of Tangshan, Baoding, and 
Handan are also obvious. Central Hebei has the greatest potential economic loss of the service sector, 
followed by its southern and northern regions. Tangshan registers the largest economic loss in the 
service sector, and the potential economic losses in Changzhou, Baoding, Shijiazhuang, and Handan 
are also conspicuous.  

Table 5. The comparison of added value of each industry, with and without water resource 
constraints (billion CNY). 

Cities/Regions 

Agriculture Industry Services 

Water 
Constraint 

Without 
Water 

Constraint 

Water 
Constraint 

Without 
Water 

Constraint 

Water 
Constraint 

Without 
Water 

Constraint 
Beijing 14.5 15.8 337.1 350.2 1443.8 1518.3 
Tianjin 16.6 17.7 612.3 620.2 659.9 684.4 
Heibei 312.8 327.0 1268.5 1319.0 1087.3 1170.3 

Northern 
Hebei 

Zhangjiakou 19.5 20.1 44.2 45.3 58.6 61.0 
Chengde 17.6 18.3 55.4 57.7 44.3 46.6 

Qinhuangdao 14.4 14.6 37.6 38.3 61.0 61.7 
Sub-total 51.5 53.0 137.2 141.4 163.9 169.3 

Central 
Hebei 

Langfang 19.0 19.9 82.5 84.4 73.8 77.8 
Cangzhou 30.9 32.4 133.8 137.6 115.5 125.5 
Tangshan 51.1 53.1 324.4 333.4 208.9 232.1 
Baoding 36.7 38.6 125.9 133.9 108.3 116.5 
Sub-total 137.7 144.1 666.7 689.3 506.6 551.9 

Southern 
Hebei 

Shijiazhuang 43.3 45.0 199.4 209.7 205.4 221.2 
Handan 39.0 42.1 141.6 148.8 123.6 134.0 
Xingtai 23.2 24.1 76.2 79.7 53.0 57.1 

Hengshui 18.1 18.7 47.4 50.2 34.8 36.6 
Sub-total 123.5 129.9 464.6 488.4 416.8 449.0 

Regional total 343.9 360.4 2217.9 2289.4 3191.1 3373.0 

Interestingly, while southern Hebei and Beijing have comparable per capita water availability, 
the economic impacts are different. This could be due to industrial structure and supply chain 
constraints. In 2012, Beijing's services with low water consumption and high added value were 
dominant (76.48%), while in the cities of southern Hebei, industry (around 50%) and agriculture 
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(around 10%), which have higher consumption and lower added value, are predominant. Therefore, 
Beijing’s water resources pose a higher constraint on the economy than in southern Hebei, with the 
result that Beijing’s potential economic losses (CNY 88.9 billion) are greater than in southern Hebei 
(CNY 62.4 billion). This coincides with Nechifor’s research, in that greater GDP impacts are obtained 
with increased constraints on the water availability of non-agricultural sectors [7]. In addition, the 
degree of inter-industry linkages in Beijing is higher than that in the cities of southern Hebei, which 
increases the transfer of water restrictions between industries and the overall effect. However, from 
a relative perspective, southern Hebei has a lower economic level and smaller economic volume, 
meaning that the potential economic loss percentage caused by water resources is higher than in 
Beijing. 

5. Discussion 

5.1. Trends of Shadow Prices of Production Water in BTH Cities 

The calculation results indicate that the shadow prices of production water in Hebei 
continuously increase over the research period, which shows that the scarcity of production water in 
Hebei intensified. Meanwhile, there are significant disparities in water scarcity amongst the different 
parts of Hebei, being more severe in southern than in northern Hebei. Compared with the cities in 
Hebei, the increases in the scarcity of production water in Beijing and Tianjin are milder, while the 
water scarcity in their service sectors even declined. 

The reasons for the regional discrepancies in water scarcity may be attributed to the following 
factors. First, Beijing and Tianjin have better access to more advanced technologies for water saving 
and more stringent environmental regulations. Although technology development has also 
improved the water use efficiency in Hebei, it is not sufficient to offset its huge water demand due to 
rapid industrialization and urbanization, let alone for the cities in southern Hebei (i.e., Hengshui 
and Xingtai), where water-saving measures have not been fully implemented and the relevant 
regulations are rather loose. Second, the water prices in Beijing and Tianjin are higher than in Hebei, 
which contains the expansion of its water demand to some extent. In 2016, the actual prices of 
industrial water in Beijing and Tianjin were 9.92 CNY/m3 and 7.85 CNY/m3 respectively, while the 
average industrial water price in Hebei was 5.06 CNY/m3. The difference in water pricing for the 
service sector is greater, especially for special industries (the industries that use water as raw 
material for production, mainly including bathing, car washing, etc.). Beijing’s water price for 
special industries is 161.68 CNY/m3, higher than Hebei’s, where the average price is 21.5 CNY/m3. 
Moreover, the regional discrepancy in water endowment is also relevant to the regional differences 
in water scarcity.  

In addition, cross-sectoral water re-allocation is not considered in the optimization settings in 
this paper, mainly because one of the main focuses of this paper is to use the shadow price of water 
to indicate the current scarcity of water resources, rather than the factors affecting shadow prices. Of 
course, cross-sectoral water re-allocation will affect the value of shadow prices. According to the 
nature of the shadow price, if a certain degree of cross-sector water redistribution is allowed, just as 
in Nechifor’s research [7], the shadow price of the sector with reduced water resources will increase 
(in this paper, the agricultural sector), while the shadow price of the sector with increased water 
resources will decrease (the industrial and service sectors). The extent of shadow price changes is 
determined by the production process and the scarcity of water resources in each sector.  

As the shadow price of water has been studied for a long time, our results can be compared 
with those of extant studies. Compared with Liu’s research [21], the shadow price of water is 
marginally higher, which may be due to the differences between calculation models and survey time. 
Further, compared with Shen [23] and Wang’s research [24], the shadow price of agricultural water 
in Tianjin is lower, and that of industrial water in Tianjin and Hebei is higher in this paper, which 
may be mainly due to the differences in the production function form and sample data level. 
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5.2. Water Scarcity is Underestimated in the BTH City Region 

Water shadow prices theoretically reflect the real value and degree of water scarcity without 
administrative influences. Here, the ratio of shadow prices to actual prices (STA) is used to measure 
the deviation between actual and shadow price. STAs higher than 1 refer to the shadow price 
exceeding the actual price, meaning water scarcity is underestimated. The higher the STAs are than 1, 
the higher the degree of underestimation.  

The STAs of the industrial sector in the BTH city region are all above 1 and reveal an uptrend 
during 2007–2016, which indicates an increasing degree of underestimation. The STAs of industrial 
water use in the cities of southern Hebei are generally higher than in other sub-regions or cities. 
Compared with cities in Hebei, The STAs of the industry sectors in Beijing and Tianjin are lower 
(Table 6). The STAs of service sectors in the BTH city region have been generally stable during 2007–
2016, indicating the degree of underestimation of water scarcity remained at a stable level in each 
city. The STAs of service sectors in Beijing and Tianjin are in general not higher than 2, being lower 
than those in the cities of Hebei. The STAs in southern Hebei are still the highest, some even 
exceeding 3 (Table 7). 

It is worth nothing that a pricing mechanism for agricultural water has not been fully 
implemented in the BTH city region yet. The current agricultural water pricing is determined based 
on non-volumetric charges, such as fees paid for electricity consumption. The current agricultural 
water price in the BTH city region is around 0.3–0.4 CNY/m3, merely 10% of the shadow price. This 
means the scarcity of water for agriculture is mostly underestimated by current agricultural water 
price. 

Recently, the BTH city region has recognized the seriousness of its water shortage problem, 
implementing strict water price adjustment and issuing their “Opinions on the most stringent water 
resources management system” in 2016, according to the “Notice of the General Office of the State 
Council on Implementing the Most Strict Water Resources Management System Assessment 
Measures.” Each city also regards water use and water intensity as strict hard-test indicators of the 
“National Economic and Social Development Plan.” These measures will certainly encourage water 
users to increase their awareness of water conservation, improve water efficiency, and minimize the 
economic losses caused by water resources. 

Table 6. The ratio of shadow prices to actual prices (STA) of industrial sectors in the BTH city region 
(2007–2016). 

Regions Cities 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 
Beijing 1.8 1.8 1.8 1.6 1.6 1.6 1.9 1.5 1.2 1.2 
Tianjin 0.9 1.0 1.5 1.5 1.1 1.6 1.7 1.7 1.9 1.6 

Northern Hebei 

Zhangjiakou 1.8 1.8 1.9 2.0 2.0 2.1 2.2 2.2 2.6 2.6 
Chengde 1.3 1.3 1.4 1.4 1.5 1.5 1.8 2.0 2.1 2.3 

Qinhuangdao 2.3 2.2 2.3 1.2 1.2 1.2 1.4 1.3 1.5 1.6 
Average 1.7 1.7 1.8 1.5 1.5 1.6 1.7 1.8 2.0 2.1 

Central Hebei 

Langfang 1.6 1.7 2.0 1.9 1.8 1.8 2.0 2.1 2.4 2.3 
Cangzhou 1.1 1.2 1.3 1.1 1.1 1.3 1.6 1.8 2.3 2.0 
Tangshan 2.1 2.2 2.2 1.6 1.5 1.7 2.0 2.1 2.1 2.2 
Baoding 3.5 2.3 2.1 2.0 2.1 2.3 2.8 2.7 2.9 3.3 
Average 1.8 1.8 1.9 1.6 1.6 1.7 2.0 2.1 2.4 2.4 

Southern Hebei 

Shijiazhuang 2.5 2.4 2.6 2.8 2.5 2.9 2.9 3.1 3.3 3.6 
Handan 1.7 1.8 2.0 2.0 2.0 2.6 2.8 3.0 3.1 3.4 
Xingtai 3.3 3.4 3.7 2.0 2.0 2.1 2.2 2.4 2.4 2.7 

Hengshui 4.3 3.1 3.3 3.3 3.4 3.4 3.9 4.0 4.3 4.3 
Average 2.7 2.6 2.8 2.4 2.4 2.7 2.9 3.0 3.2 3.4 

Regional average 1.9 1.9 2.0 1.8 1.7 1.9 2.1 2.2 2.3 2.3 

Note: The water price data of industrial sectors in the BTH city region is collected from the website of 
http://price.h2o-china.com/ [63]. 

http://price.h2o-china.com/
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Table 7. The ratio of shadow prices to actual prices (STA) of service sectors in the BTH city region 
(2007–2016). 

Regions Cities 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 
Beijing 1.9 1.8 2.0 1.7 1.7 1.7 1.6 1.0 0.9 0.9 
Tianjin 2.1 1.9 2.1 1.8 1.7 1.6 1.7 1.8 2.0 1.8 

Northern Hebei 

Zhangjiakou 2.5 2.2 2.2 2.2 2.5 2.5 2.6 2.7 2.9 2.7 
Chengde 2.1 2.2 1.9 1.9 1.9 1.9 2.0 2.0 2.2 2.0 

Qinhuangdao 2.3 2.3 2.4 2.0 1.9 2.1 2.3 2.3 2.3 2.2 
Average 2.3 2.2 2.1 2.0 2.0 2.1 2.3 2.3 2.4 2.3 

Central Hebei 

Langfang 1.7 1.8 1.7 1.7 1.8 1.8 1.8 1.6 1.6 1.7 
Cangzhou 1.3 1.2 1.3 1.6 1.8 1.9 1.8 1.9 1.9 1.9 
Tangshan 2.5 2.3 2.4 2.2 2.2 2.2 2.5 2.4 2.5 2.8 
Baoding 3.3 1.4 3.1 3.1 3.2 3.3 3.4 3.1 3.5 3.3 
Average 2.1 1.6 2.0 2.1 2.1 2.2 2.2 2.1 2.2 2.3 

Southern Hebei 

Shijiazhuang 3.3 2.8 2.8 3.0 2.5 2.7 2.7 2.7 2.8 3.0 
Handan 1.7 1.7 2.2 3.0 2.5 3.0 3.2 3.3 3.4 3.5 
Xingtai 2.3 2.4 2.5 2.3 2.2 2.6 2.9 2.6 2.4 2.4 

Hengshui 2.1 1.5 1.8 1.8 2.1 2.2 2.2 1.8 2.0 1.9 
Average 2.3 2.0 2.3 2.4 2.3 2.6 2.7 2.5 2.6 2.6 

Regional average 2.2 1.9 2.1 2.1 2.1 2.2 2.3 2.1 2.1 2.1 

Note: The water price data of service sectors in the BTH city region is collected from the website of 
http://price.h2o-china.com/ [63]. 

5.3. Agricultural Water Saving in Hebei is Key to Solving Water Scarcity in the BTH City Region 

The results of this study indicate that water scarcity has a significant restrictive impact on the 
urban economic growth of the BTH city region, with Hebei bearing the largest economic loss due to 
this water scarcity. Hebei is one of the most important grain production bases in China, supporting 
the entire nation with large amounts of grain and vegetables, with high water consumption and low 
added value every year; the majority of production water use is attributed to agricultural water use, 
the proportion of which in total production water was 78.3% in 2017 [64]. For example, southern 
Hebei is the main area for growing winter wheat, the irrigation for which has been proven to be 
closely related to the overexploitation of groundwater [65]. Therefore, agricultural water saving in 
Hebei is key to solving the problem of water scarcity in the entire BTH city region.  

Currently, most cities of Hebei still adopt traditional and backward irrigation methods. The 
utilization efficiency of irrigation water is very low, and the waste of water resources is very serious. 
The utilization rate of water-saving projects is not high. Although the irrigation area of water-saving 
projects is increasing year by year, the management and maintenance of water-saving equipment in 
rural areas are not in place due to technical management, with many water-saving projects being 
idle and the utilization rate not high. 

Facing an aggravating water crisis, the best way for Hebei to reduce agricultural water use and 
the associated potential economic loss is to further improve irrigation water use efficiency. Further, 
improved agronomic measures, such as soil water management, irrigation system innovation, and 
water-saving technology applications, can effectively increase irrigation water use efficiency, and 
thus ensure agricultural production using less water.  

Moreover, the results indicate that the pricing mechanism for agricultural water in Hebei fails 
to reflect the degree of water scarcity, causing the scarcity of agricultural water use in Hebei to be 
substantially underestimated. Low water prices will, thus, lead to wasting water resources, 
increasing water scarcity, and ultimately affecting economic development. To enhance Hebei’s 
transformation of water management from a traditionally extensive pattern to an intensive one, a 
rational pricing mechanism for agricultural water use that properly reflects water scarcity is 
urgently needed. The agricultural water price should not only be increased but also differentiated 
based on crop types (i.e., food or cash crops). It is noteworthy that repricing agricultural water use 

http://price.h2o-china.com/


  

18 
 

can increase agricultural input costs, where the trade-off between the water conservation effects and 
the increasing costs needs to be considered and an appropriate balance sought. 

In addition to reducing agricultural water use, there are other ways to alleviate water shortages 
in the BTH city region. As such, the government and the market must cooperate. On one hand, water 
resources are distributed through government administrative means to ensure the integrity and 
healthy operation of the industrial system; on the other hand, the establishment of a water rights 
market allows water resources to be redistributed according to their economic contributions, 
maximizing the value of water resources while ensuring a national base. Coastal cities (Tianjin, 
Cangzhou, Tangshan, Qinhuangdao) can use seawater desalination technology to expand the 
utilization of seawater resources and enable the abstraction of drinking water from the mouths of 
great rivers, which would be led by a pipeline below the water level and would follow the route of 
the seacoast [6]; the South-to-North Water Transfer Project can also provide water from the Yangtze 
River to alleviate water shortages in the study area. 

6. Conclusions 

This study measures the water scarcity of the 13 cities in the BTH city region and the restrictive 
impacts of water scarcity on urban economic growth based on an optimization analysis. The main 
findings are: 

(1) Water scarcity in the BTH city region, reflected by the water shadow price, shows significant 
sectoral and regional heterogeneities. At the sectoral level, the shadow price of agricultural water 
use is the lowest, while that of service water use is the highest. At the regional level, southern Hebei 
faces the most severe water scarcity in the BTH city region. Moreover, water is becoming 
increasingly scarce in most sectors and cities in the BTH city region, especially in southern Hebei, the 
region with the most severe water scarcity. While water scarcity in Beijing has improved to some 
extent in the agriculture and service sectors in recent years, there is still a long way to go in solving 
this problem. 

(2) The shadow price of production water is much higher than its actual price in the BTH city 
region, indicating that the scarcity of water use in the region is significantly underestimated. The 
scarcity of industrial and service water in southern Hebei is mostly underestimated. Further, the 
scarcity of agriculture water use in the BTH city region is mostly underestimated, since the current 
agricultural water pricing is determined based on non-volumetric changes, and it is merely 10% of 
the shadow price. 

(3) Water scarcity has a negative impact and total economic loss of CNY 270.02 billion for the 
BTH city region. The economic loss caused by water scarcity in Hebei is largest, especially in 
southern Hebei, whose potential GDP decreased by 6.2%. At the sectoral level, the potential 
economic losses caused by water scarcity in the industrial and service sectors are far higher than in 
agriculture. Moreover, the potential economic losses of the three major industries in Hebei are 
higher than those in Beijing and Tianjin.  

However, this study only provides a preliminary analysis of the potential economic loss 
associated with water scarcity. To deepen the understanding, a quantitative analysis of the 
mechanism of how water scarcity impacts urban development is needed, which would be conducive 
to more effective and pertinent evidence for policy making. 
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Appendix A 

Water resources are considered as the cost of output, since they are consumed in the production 
process. The set of production possibilities is considered as { }+= − − ∈ −P x y x w x R( ) ( , , ) : , where y 
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refers to the output level of the region, denoted by industrial value added; x refers to the input of 
other elements except for water resources, such as labor force and capital; and w is the water use. 

In our application, the vector of outputs contains one desired output (y). The vector of inputs 
can be divided into two types: non-water inputs, including capital (x1) and labor (x2), and water 
inputs (w). The production technology is under the standard assumptions of being compact and 
freely disposable in terms of inputs, which means finite amounts of inputs can only produce finite 
amounts of outputs, and if ′ ≥x x , then ′ ⊇P x P x( ) ( ) . 

The production technology is under the following three additional assumptions: (1) closed set 
and convex set; (2) weak disposability between input and output—if ∈y x P x( , ) ( ) and ≤ θ ≤0 1 , then
θ θ ∈y w P x( , ) ( ) ; and (3) strong disposability of input and output, respectively—if ′ ≥x x , then

′ ∈P x P x( ) ( ) , while if ′ ≤y y , then ′ ∈y w P x( , ) ( ) . This implies that output can be freely adjusted under 
the same investment scale.  

Accordingly, the general directional output distance function is defined as follows: 

{ }
β

= β +β ∈ = β +β −β ∈t t t t t t t
y wz

D y x w g y w g P x y g w g P x0 ,
( , , ; ) sup[ : ( , ) ( )] max : ( , ( ))



, (A1) 

where g denotes the direction vector and Sup denotes the upper infimum, the possible 
production boundary, and is a variable which means that the increase in output is accompanied by a 
reduction in water consumption to achieve the maximum feasible amount of the total output 
efficiency frontier. The relationship among the three variables is shown in Figure A1 [66]. Production 
is efficient only when t ty w( , ) is on the output frontier and the directivity distance function equals 0. 
Otherwise, the larger the directivity distance function (the movement distance) is, the lower 
productivity is. 

β
(yt, wt)

w

y

Pt(x)g´=(yt, -wt)

 
Figure A1. Diagram of directional distance function. 

Appendix B 

The shadow price of water can be derived from the relationship between the directional output 
distance function and the profit function. Setting yp as the price of output, wp as the price of water 

resources, and xp as the price of other inputs, the profit function can be defined as: 

{ }π = − − ∈y w x y w xy w x
p p p p y p w p x y w P x

, ,
( , , ) max : ( , ) ( ) , (B1) 

Because the production unit is at the production frontier, 0 0≥y wD y x w g g( , , , , )


. In other 

words, ∈y w P x( , ) ( )  and 0 0≥y wD y x w g g( , , , , )


 are equivalent. Therefore, the profit function can 

be converted into: 
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{ }0 0π = − − ≥y w x y w x y wy w x
p p p p y p w p x D y x w g g

, ,
( , , ) max : ( , , , , )



, (B2) 

For the output vector, if ∈y x P x( , ) ( ) , then the movement distance in the = −y wg g g( , )  

direction is as follows: 

{ }0 0+β −β = + − ∈y w y wy g w g y D y x w g g w D y x w g g P x( , ) ( , , , ) , ( , , , ) ( )


, (B2) 

The above formula shows that if the output vector ∈y w P x( , ) ( )  is feasible, the output along 
the direction vector is also feasible after eliminating technology inefficiencies. Therefore, the profit 
function can be converted into: 

0 0π = − − + +y w x y w x y y w wp p p p y p w p x p D y x w g g p D y x w g g( , , ) ( ) ( , , , ) ( , , , )


, (B3) 

This means that maximum profit can be obtained by increasing output along the direction 
vector of the original profit, − −y w xp y p w p x( ) , reducing water resource input and eliminating 

technological inefficiency. The following results can be obtained: 

0

 π − − − =  
+  

y w x y w x

y y w w

p p p p y p w p x
D y x w g

p g p g
( , , ) ( )

( , , , ) min


, (B4) 

By taking the first partial derivative of the above equation, the shadow price of the output, 
water resource, and other inputs can be obtained: 

0
−∂

=
∂ +

y

y y w w

pD y x w g
y p g p g

( , , ; )


, (B5) 

0∂
=

∂ +
w

y w w

D y x w g p
w pg p g

( , , ; )


, (B6) 

0∂
=

∂ +
x

y y w w

D y x w g p
x p g p g

( , , ; )


, (B7) 

Clearly, the shadow price of the output is negative, while the shadow prices of water and other 
inputs are positive. Shadow price is the price at which profit can be maximized on the production 
frontier. The relative shadow price of water resources and other input factors can be obtained 
through sorting: 

0

0

∂ ∂
= −

∂ ∂
w y

D y x w g w
p p

D y x w g y
( , , ; )

[ ]
( , , ; )





, (B8) 
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