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When measured in current prices across time, supply and use Tables (SUTs) reflect 

changes in the cost structure of an economy. If technological changes are the focus of an 

inquiry, SUTs should be in constant prices. This is the case of most applications of SUT 

time series. In such cases, researchers apply commodity-specific deflators to SUTs. From 

an economics perspective, deflators are undoubtedly cell-specific since exchanges of a 

commodity occur in different markets and institutional contexts. RAS can be used to 

calculate such cell-specific deflators. But deflating SUTs via RAS also can taint the 

reliability of some known information. In this investigation, we revisit Path-RAS and 

apply it to price deflation. It enables cell-specific deflators while lowering information 

requirements. Additional information about specific industries, products or aggregated 

published figures can be included if available and non-conflicting. We provide an 

empirical application based on ten European Union countries to explore the accuracy of 

the estimations obtained considering different information scenarios. 
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1. Introduction 

1.1. Supply and use tables: the accounting framework 

Supply and use tables (SUT) play a central role in the United Nations’ (2018, 1968) 

system national accounts. They provide the basis for the construction of input-output (IO) 

tables. As a framework, they ensure (i) systematic bookkeeping of aggregated and 

disaggregated macroeconomic data, (ii) consistency between the production of goods and 

services, as well as income accounts, and (iii) coherent gross domestic product (GDP) 

figures, not only within a nation from both production and expenditure perspectives but 

also across nations. 

Since they report linkages from commodities to industries and vice versa, SUTs enable 

links between other economic datasets that report information either by commodity or 

industry. In this vein, SUTs can be used to relate national accounts to jobs and 

occupations, land use, energy consumption, pollution, waste generation, water usage, 

among a wider range of possibilities. They also can be used as foundational information 

in the construction of a social accounting matrices (SAMs). As SAMs, SUTs are 

frequently linked to various dimensions of social life (Round, 2003) as well as flows of 

funds (Tsujimura & Mizoshita, 2003). 

Table 1. Supply and Use table with disaggregated domestic and imported flows1. 

 Products Industries Final demand Sum 

Products  𝐔𝑑 𝐅𝑑 𝐪  

Products  𝐔𝑚 𝐅𝑚 𝐦 

Value added  𝐖  𝐰 

Industries 𝐕 
  

𝐠 

Imports 𝐌 𝐨 

Sum 𝐪′ + 𝐦′ 𝐠′ 𝐟  

Source: Own elaboration. 

A full SUT framework consists of a supply table in basic prices combined with a 

transformation matrix to purchaser’s prices. A SUT also includes a use table measured in 

both basic and purchaser’s prices. Gross value added (GVA) is measured in basic prices 

                                                 

1 Matrices are denoted in upper-case bold font; vectors in lower-case bold font; and scalars are denoted in 

italic font. Vectors are columns by definition. Superscript ′ indicates transposition. A bar above the variable, 

�̅�, denotes constant prices. A circumflex, �̂�, indicates that the vector has been transformed into a square 

diagonal matrix, i.e., one with elements on the main diagonal and zeros elsewhere. A summation vector of 

ones is denoted by 𝐢. 
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to complete the accounting framework. For our purposes, the SUT framework only 

considers the supply and use tables in basic prices. For 𝑘 products and 𝑙 industries a SUT 

can be summarised as in table 1.  

Matrices 𝐔𝑑 = {𝐮𝐢j
𝑑} and 𝐔𝐢𝐣

𝑚 = {𝐮𝐢𝐣
𝑚} represent intermediate consumptions of products 

(i = 1,⋯ , k) by industries (j = 1,⋯ , l) domestically produced (𝑑) and imported (𝑚) 

respectively. Matrices 𝐅𝑑 = {𝐟𝐢𝐣
𝑑} and 𝐅𝑚 = {𝐟𝐢𝐣

𝑚} represent domestically produced and 

imported commodity shipments to final demand. They have dimensions (k × φ) were φ 

represents the number of final demand components. Matrix 𝐖 = {𝐰𝑖𝑗} stands for value 

added and has dimensions (l × ρ) where ρ stands for the number value-added 

components. Matrix 𝐕 = {𝐯𝐢𝐣} represents the supply that each industry provides for each 

commodity and has dimensions (l × k). Matrix 𝐌 = {𝐦𝑖𝑗} stands for the commodity 

flows imported from different origins and has dimensions (k × ο) where ο denotes the 

number of import origins.  

In addition, vectors 𝐪 and 𝐦 denote total supply and total use (domestic and imported) 

by commodity. Vector 𝐠 represents gross output by industry. Vectors 𝐟 and 𝐰 stand for 

the sum of each component of final demand and value-added matrices. Finally, 𝐨 contains 

total imports by origin.  

The following basic accounting equalities must hold for the SUT to be balanced: 

𝐪 = 𝐔𝑑𝐢 + 𝐅𝑑𝐢 = 𝐕′𝐢 = 𝐪

𝐦 = 𝐔𝑚𝐢 + 𝐅𝑚 = 𝐌′𝐢 = 𝐦

𝐠 = 𝐔𝑑′
𝐢 + 𝐔𝑚′𝐢 + 𝐖′𝐢 = 𝐕𝐢 = 𝐠

 ( 1 ) 

Total commodity supply, both domestically produced and imported, must equal total use 

of each commodity. Total inputs by industry must equal total outputs by industry.  

Table 2. Industry and commodity technology matrices 

Industry technology 

 

Commodity technology 

 
𝐀𝑑 

 
𝐁𝑑 

𝐀𝑚 𝐁𝑚 

𝑪  𝐃  

Source: Own elaboration. 
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To facilitate the reader and following section 2 developments, we explicitly specify the 

industry and commodity structures for both purchases and sales in a SUT and relate them 

to balancing equations (1). Four matrices can be defined. On the one hand, using industry 

technology, we consider matrices 𝐀𝑑 = {𝐚𝐢𝐣
𝑑 = 𝐮𝐢𝐣

𝑑/𝐠𝐣}, 𝐀
𝑚 = {𝐚𝐢𝐣

𝑚 = 𝐮𝐢𝐣
𝑚/𝐠𝐣} and 𝐂 =

{𝐯𝐢𝐣/𝐠𝐣}. On the other hand, regarding commodity technology, we can define matrices 

𝐁𝑑 = {𝐮𝐢𝐣
𝑑/𝐪𝐢}, 𝐁𝑚 = {𝐮𝐢𝐣

𝑚/𝐦𝐢} and 𝐃 = {𝐝𝐢𝐣 = 𝐯𝐢𝐣/𝐪𝐢}. Table 2 illustrates the 

relationship between these matrices and the SUT accounting framework. Substituting 𝐀𝑑, 

𝐀𝑚, 𝐂, 𝐁𝑑, 𝐁𝑚 and 𝐃 in (1) we get: 

𝐪 = 𝐀𝑑𝐠 + 𝐅𝑑𝐢 = 𝐂′𝐠 = 𝐪

𝐦 = 𝐀𝑚𝐠 + 𝐅𝑚𝐢 = 𝐌′𝐢 = 𝐦

𝐠 = 𝐁𝑑′𝐪 + 𝐁𝑚′𝐦 + 𝐖′𝐢 = 𝐃𝐪 = 𝐠

 ( 2 ) 

As in (1), total commodity supply, both domestically produced and imported, must equal 

total use by commodity. Total inputs by industry must equal total industry outputs. In this 

way, SUTs remain balanced. 

1.2. Why should supply and use tables be measured in constant prices? 

According to de Boer and Rodrigues (2020), interest in price deflation can be traced back 

as far as the 18th century. Dutot (1738) was a pioneer in calculating indexes, when he did 

so for several commodities by accounting for price variations as far back as 1515. Since 

then, a vast literature on indexes has emerged that suggests economist consider both price 

and quantity changes (Balk, 2008).  

IO models are no exception. According to Leontief (1951), they were initially conceived 

from both a physical and a monetary perspective. In fact, the first precedent of a IO price 

model (Leontief, 1937) appeared soon after the first IO table was published (Leontief, 

1936). The extant literature identifies three main reasons why IO frameworks should be 

measured also in constant prices. They are discussed in following paragraphs. Please note 

that the motivations listed are neither exhaustive nor mutually exclusive. 

1.2.1. Measuring impacts and structural change 

There has been a bit of a debate about the suitability and utility of using IO frameworks 

in constant prices for measuring structural change. Arto et al. (2015) suggest that some 

trade analysis related with global value chains can yield misleading results if performed 

in constant prices. Dietzenbacher and Termursho (2012) test the extent to which impact 
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analyses differ in current versus constant prices. Using Danish IO tables from years 2001 

to 2007, at a somewhat aggregate level they find that deflated and non-deflated IO tables 

yield quite similar results. They do point, however, that (i) sector-level differences are 

notable and (ii) their test used potentially peculiar data and, thus, should be taken with 

some caution. Moreover, other work on other countries (Tandon & Ahmed, 2016) shows 

substantial differences in impacts over time by industry .  

Within IO economics, structural decomposition analysis (SDA) is arguably one of the 

most widely used family of techniques for measuring structural change and its drivers. 

See Rose & Casler (1996) for a historical overview and Oosterhaven (2021) for more 

recent comments and insights. Nowadays, most empirical SDA analyses use deflated IO 

data (Savona & Ciarli, 2019). Structural change consist of the relocation of economic 

activity across sectors (Herrendorf, Rogerson, & Valentinyi, 2014). If we consider current 

prices only, relative price changes could relocate value while the distribution of the 

volume of output follows a different path. Several studies show that differences can be 

quite substantial if researchers use either current or constant prices. For example, Kander 

(2005) and Henriques & Kander (2010), both of which evaluate the global transition 

towards the service economy, using both possibilities as many others have since then. Fix 

(2019) suggests that, to some extent, the spread of Baumol’s (1967) disease within an 

economy is an illusion once real output changes are considered.  

Data on prices and volumes are increasingly published at higher levels of disaggregation 

in developed countries. But data availability for developing nations and regions remains 

a prime constraint for the compilation of official IO statistics in constant prices (Tandon 

& Ahmed, 2016).  

1.2.2. Linking physical and monetary IO tables 

Since exchanges in an economy involve both a physical and a monetary dimension, two 

parallel IO models can be derived based on physical input-output (PIOT) and a monetary 

input-output (MIOT) tables (Miller & Blair, 2009, pp. 41–53). Economic-environmental 

analysis can be traced further back in IO literature (Leontief, 1970). Pioneering work on 

PIOT models include Isard, Chougill, Kissin, Seyfarth and Tatlock (1972) and Szyrmer 

and Ulanowicz (1987). However, it was not until the decade of 1990 when PIOT models 

started to be compiled in more regular basis (Giljum & Hubacek, 2004). Nowadays much 
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of the information needed for PIOT construction is systematically collected with that for 

economic national accounts (United Nations, 2003).  

Hubacek and Giljum (2003) and Giljum, Hubacek, & Sun (2004) initiated a debate on 

whether PIOT or MIOT should be used. They argued that PIOTs yield different and more 

accurate results since they better capture the physical reality of economic exchanges. In 

a reply, Suh (2004) argued that PIOT results might only tell us that some products are 

less expensive and others more costly per unit of physical measurement. He also pointed 

that PIOTs suffer from operational issues including statistical bias that attaches to sectoral 

aggregation as well as problems that arise from sectoral inconsistencies across tables over 

time. Hoen (2002) makes a similar point in defence of MIOT models in constant prices 

instead of PIOT. For all industries producing physical commodities, a bridge between the 

two models should exist and should not be hard to calculate since value equals mass 

multiplied by price per unit mass (Hoekstra & Van Den Bergh, 2006).  

Establishing the equivalence between physical and monetary flows requires prices, either 

actual or estimated (Többen, 2017). Despite this straightforward relationship, Weisz and 

Duchin (2006) suggest that PIOT and MIOT tables cannot be translated from one to 

another using a single price for all deliveries of an industry or commodity. Cell-specific 

deflators are needed. Dietzenbacher (2005), however, notes that this is not the only issue 

one faces when linking PIOT and MIOT models. Appropriate waste treatment has also 

found to be fundamental when one links the two model types.  

1.2.3. Institutional requirements 

SUTs compiled in both current and constant prices ensure that both volume and price 

information contained in an SNA are coherent and consistent. The calculation of price 

and volume changes for the transactions of commodities is ideally supported through the 

use of SUT frameworks (Mahajan et al., 2018). In addition to statistical criteria, some 

policy decisions necessarily require perspectives in constant prices too. For example, the 

Stability and Growth Pact (SGP) suggests using volume growth rates, which require 

national accounts in constant prices (Eurostat, 2008). In any case, it should be clear by 

now that transparent and systematic approaches are needed during policy, and this means 

one should place figures in constant prices.  
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1.3.Alternatives for SUT deflation 

1.3.1. Double deflation 

Initially conceived to estimate real GDP (United Nations, 1973), the double-deflation 

method (DD) is still highly recommended for obtaining IO data in constant prices (Li & 

Kuroko, 2016). DD is based on the idea that it is difficult, if not impossible, to obtain 

price indices for the different GVA components (Ahmad, 1999). Some economic 

measures like gross output and imports often are published officially in both volume and 

monetary terms. Given the SUT framework in table 1, let 𝛑𝐪, 𝛑𝐦 and 𝛑𝐠 be the deflators 

associated with vectors 𝐪, 𝐦 and 𝐠, respectively. Elements of vectors 𝛑𝐪 and 𝛑𝐦 are 

defined as 1/pi where pi denotes the ratio of current (domestic and imports) price and the 

base year price for commodity i. Analogously, each element of 𝛑𝐠 is defined as 1/pj 

where pj denotes the ratio of current price and the base year price for industry j.  

Table 3. Supply and Use table in constant prices using double deflation. 

 Products Industries Final demand Sum 

Products  �̅�𝑑 = �̂�𝐪𝐔𝑑 �̅�𝑑 = �̂�𝐪𝐅𝑑 �̅�  

Products  �̅�𝑚 = �̂�𝐦𝐔𝑚 �̅�𝐦 = �̂�𝐦𝐅𝑚 �̅� 

Value added  �̅� = 𝐖�̂�𝐰  𝐰 

Industries �̅� = �̂�𝐠𝐕�̂�𝐪 
  

�̅� = �̂�𝐠𝐠 

Imports �̅� = 𝐌�̂�𝐦 �̅� 

Sum �̅�′ + �̅�′ �̅�′ = 𝐠�̂�𝐠 𝐟 ̅  

Source: Own elaboration. 

If coherent deflators can be derived from price information, matrices �̅� and �̅̅̅� remain 

balanced. Through balancing equations in (1), total GVA in constant prices by industry 

can be derived as a residual: 

𝐖′𝐢 = �̅� − �̅�𝑑′
𝐢 − �̅�𝑚′

𝐢 ( 3 ) 

To obtain a full GVA matrix �̅̅̅̅�, a vector of implicit GVA deflators 𝛑𝐰 can be calculated. 

Each element of 𝛑𝐰 is the difference between an industry’s deflated gross output and its 

deflated intermediated consumption divided by that industry´s GVA in current prices: 

𝛑𝐰 = (�̅� − �̅�•𝐣
𝑑 − �̅�•𝐣

𝑚)(𝐖′𝐢̂ )
−𝟏

 ( 4 ) 

DD is theoretically sound and preferred to single-deflation methods since it yields a 

balanced SUT and thus balanced real GDP figures from both income and spending 

perspectives (Oulton, Rincon-Aznar, Samek, & Srinivasan, 2018). But it does have some 
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pitfalls. First, DD implicitly assumes that an industry or commodity category is linked to 

a single commodity that corresponds to the price index applied. The reality, however, is 

that any given element of a SUT presents a composite commodity that embodies a 

commodity mix unique to that specific industry and/or commodity transaction that is 

represented by the element. Thus, DD necessarily induces some degree of aggregation 

bias (Dietzenbacher & Hoen, 1999). DD also assumes that all exchanges of an industry 

or commodity have the same price dynamics; this neglects the fact that different market 

and institutional contexts undoubtedly affect the price changes of the composite 

commodity differently (Folloni & Miglierina, 1994). GVA estimates are particularly 

sensitive to the manner in which they are deflated, due to measurement errors inherent in 

�̅�, �̅� and �̅� (Wolff, 1994). Moreover, from (3) and (4) one can readily see that DD can 

induce a sign flip in an industry if its deflated intermediate consumption exceeds its 

deflated gross output. In such cases as this, ad hoc adjustments are required.  

1.3.2. Biproportional techniques 

Dietzenbacher and Hoen (1998) suggest that deflating via RAS ultimately applies cell-

specific deflators. They focus on the intermediate transaction matrix given a set of 

industry output, final demand and import vectors in constant prices. Despite their solid 

theoretical foundation and their promising empirical results, the scarcity of price indices 

has tended to prevent the use of RAS-based deflation approaches. The remaining of this 

subsection explores subsequent RAS extensions and applications to SUT framework. 

Within IO analysis, basic RAS is a popular technique, if not the most popular, for matrix 

updating and balancing (Lahr & de Mesnard, 2004). Extensions to it include 

considerations for negative values (Günlük-Şenesen & Bates, 1988; Junius & 

Oosterhaven, 2003), for multiple subset and block-wise constraints (Gilchrist & St. Louis, 

1999; Valderas Jaramillo & Rueda-Cantuche, 2021) and for data with different 

reliabilities (Dalgaard & Gysting, 2004; Lahr, 2001; Lenzen, Gallego, & Wood, 2009).  

Note that several other approaches exist that can deal with problems to which RAS is 

typically applied (Jackson & Murray, 2004). Some have been used to balance SUTs 

(Nicolardi, 2013; Rampa, 2008). Temursho, Webb and Yamano (2011), however, suggest 

that GRAS (Günlük-Şenesen & Bates, 1988; Junius & Oosterhaven, 2003) presents the 
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best balance between accuracy and speed/simplicity. Thus, in what remains of this paper, 

we consider GRAS to be the status quo of the state of the art in matrix balancing.2  

To implement GRAS,3 we split a benchmark matrix 𝐙(0) into two matrices 𝐙(0)
+  and 𝐙(0)

− . 

On the one hand, matrix 𝐙(0)
+  contains only the positive elements of 𝐙(0). On the other, 

matrix 𝐙(0)
−  contains the absolute values of all negative elements. Therefore, we have 

𝐙(0) = 𝐙(0)
+ − 𝐙(0)

− . Vectors 𝛍 and 𝛖 are the row and column sum targets for the balanced 

matrix 𝐙∗. GRAS derivation arrives at a second-order equation. For rows and columns 

with positive and negative elements, the definition of coefficients ri and sj considers the 

positive root of the second-order equations. For the cases where no positive or negative 

elements are in a row or column, scalars are defined as in standard RAS (Temursho, 

Miller, & Bouwmeester, 2013). The algorithm runs iteratively until the conditions: 

|[�̂�𝐙+𝐬 − (�̂�)−1𝐙−(�̂�)−1]𝐢 − 𝛍| < 𝜀

|[�̂�𝐙+�̂� − (�̂�)−1𝐙−(�̂�)−1]′𝐢 − 𝛖| < 𝜀
 ( 5 ) 

are fulfilled for a sufficiently small value of 𝜀—a pre-determined level of tolerated error. 

While originally developed for balancing and updating symmetric IO tables, GRAS and 

other biproportional techniques can also be applied to SUTs (Serpell, 2018). Pioneer 

works in this regard was presented by Timmer (2005) in the context of the EUKLEMS 

project. The biggest obstacle for GRAS implementation for SUT updating is that data on 

commodity vectors, 𝐪 and 𝐦, are rarely available.  

To overcome this issue, a first alternative appeared when Beutel´s (2002, pp. 114–118) 

algorithm was adapted by Eurostat for their SUT framework (SUT-Euro). SUT-Euro 

endogenously generates industry output and commodity supply/use vectors considering 

GVA variations over time. However, SUT-Euro has some limitations that hinder its 

application to SUT deflation. First, SUT-Euro can only be applied to square matrices. 

This is a notable drawback since SUTs are often arranged in rectangular formats to show 

secondary production in greater detail (Temursho, 2021). Second, SUT-Euro makes 

decisive use of GVA data requiring at least 𝐖′𝐢 to be known. While this is reasonable in 

                                                 

2 For the sake of simplicity, we do not consider subsequent GRAS extensions (Lenzen et al., 2009; Lenzen, 

Moran, Geschke, & Kanemoto, 2014; among others). 
3 We standardize notation across all sections of this paper. As a result, we do not follow notation in 

preceding GRAS literature. 
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terms of current price updating, it unfortunately also is deflated GVA data that are least 

likely to be available. 

SUT-RAS proposed by Temursho and Timmer (2011) solves some SUT-Euro limitations. 

It uses SUT balancing equations (1) to endogenously derive targets for 𝐪 and 𝐦 given 

industry output target and GVA by industry data. Further, it can be applied to rectangular 

matrices and manages negative values just like GRAS. SUT-RAS also can apparently 

adopt additional information as long as constraints do not conflict (Valderas Jaramillo, 

Rueda Cantuche, Olmedo, & Beutel, 2019). In fact, SUT-RAS and GRAS are apparently 

equivalent as long as 𝐪 and 𝐦 are exogenously set (Temursho, 2021). As in the case of 

SUT-Euro, SUT-RAS data requirements are reasonable when updating via current prices. 

But data on industry output (either in current or constant prices) are often not available 

for many countries and most regions. Like SUT-Euro, SUT-RAS also requires a deflated 

GVA vector when SUT deflation is the goal. 

1.3.3. The aim of this paper: an alternative for tracing the path between SUTs in 

current and constant prices. 

The “H-Approach” is recommended for SUTs compilation both in current and constant 

prices (Mahajan et al., 2018). The workflow of this approach is depicted in figure 1. This 

approach to compilation can be done either sequentially or simultaneously. Sequentially, 

the SUTs are balanced in current prices and then price deflated. For simplicity, this is the 

approach used in the present paper. This paper centres on the middle part of the H-

Approach scheme, where SUTs in basic prices are converted from current to constant 

prices (in volume terms).  

Our aim in this paper is to point out an alternative way for tracing the path between the 

two legs of the H depicted in figure 1. According to the improvement opportunities 

spotted in literature, via this methodological proposal, we seek to: 

a) Obtain cell-specific deflators, as opposed to the one-price-fits-all market approach 

implicit in double deflation. 

b) Reduce information requirements to enable SUT deflation where data are scarce 

and, yet permit the application of additional information if available and 

nonconflicting. 

c) Transparently handle possible incoherencies that can arise during the deflation 

process in order to avoid ad hoc solutions. 
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To such ends, we revisit Path-RAS (Pereira López, Carrascal Incera & Fernández 

Fernández, 2013) as an alternative to SUT-Euro.  

Figure 1. Schematic overview of the H-Approach for SUT compilation. 

 

Source: Mahajan et al. (2018, p. 30). 

In essence, we propose to derive targets endogenously for 𝐠, 𝐨, 𝐪, 𝐦 and 𝐟, given a 

starting point with limited information. We achieve this iteratively using commodity and 

industry structures. While, like SUT-Euro and SUT-RAS, this approach requires GVA 

data, Path-RAS can be suitably transformed for SUT deflation. In this vein, we introduce 

major modifications in the original Path-RAS algorithm. This is the prime contribution 

of this paper. As such, we detail it in section 2. Still, it essentially remains a modification 

of Path-RAS (Pereira López, Carrascal Incera & Fernández Fernández, 2013; Pereira 

López & Rueda Cantuche, 2013).  

2. Our methodological proposal: the modified Path-RAS 

2.1. Minimum information requirements 

Our method operates equivalently to GRAS. A benchmark matrix 𝐙(0) is modified to 

obtain a new matrix 𝐙∗ using targets up-to-date margins 𝛍 and 𝛎. Different from GRAS, 

row and column targets are endogenously calculated during each iteration. They are 

however, some a minimum set of information is needed to start the balancing process:  
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 𝐪••
∗ = Overall supply and use by products. 

 𝐠••
∗ = Overall input and output by industries. 

 𝐟••
∗ = Overall final demand. 

 𝐦••
∗ = Overall imports. 

 𝐰••
∗ = 𝐟••

∗ − 𝐦••
∗ = Overall gross value added. 

2.2. Workflow 

2.2.1. Step 0: defining a starting point 

Let iterations 𝑛 = 0, 1, ⋯ , 𝑁 be indicated by subscript (𝑛) associated with matrices and 

vectors. Superscripts 𝐴, 𝐶, 𝐵, 𝐷 in vectors refer to the structures or paths followed by the 

algorithm to estimate new target vectors after every iteration4. 

The process initiates with the obtention of output by industry 𝐠(1)
(0)

, final demand 

components 𝐟(1)
(0)

 and total imports by origin 𝐦(1)
(0)

 estimates that will be considered as the 

starting point. To do so, we define a diagonal matrix �̂�(1)
(0)

 with dimensions (l + φ + ο) ×

(l + φ + ο). This matrix contains deflators defined as ratios between the given pieces of 

information in constant prices and their counterparts in matrix 𝐙(0). As an example, for 

the minimum information scenario5: 

𝛑(1)
(0)

= [

𝐠••
∗

𝐟••
∗

𝐦••
∗
] diag [

∑𝐠(0)

∑𝐟(0)

∑𝐨(0)

]

−1

 ( 6 ) 

Deflators can be specific for some industries, products, final demand components, import 

origins or calculated according to aggregated information. The starting point of the 

balancing process is defined as: 

[
 
 
 
 �̅�(1)

(0)

𝐟(̅1)
(0)

�̅�(1)
(0)

]
 
 
 
 

= �̂�(1)
(0)

[

𝐠(0)

𝐟(0)

𝐨(0)

] ( 7 ) 

                                                 

4 Superscript 0 indicates the starting point.  
5 We use diag as equivalent to our prior use of a circumflex. We apply it to composite vectors for notational 

clarity.  
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2.2.2. Step 1. Path AC 

2.2.2.1. Industry balancing 

The first step balances industries using the starting-point targets in equation (7). For the 

supply matrix, row targets 𝛍(1)
(0)

 are: 

𝛍(1)
(0)

= [
�̅�(1)

(0)

�̅�(1)
(0)

] ( 8 ) 

For the use matrix, column targets 𝛖(1)
(0)

 are: 

𝛖(1)
(0)

= [
�̅�(1)

(0)

𝐟̅ (1)
(0)

] ( 9 ) 

By industry balancing, we mean that matrices 𝐕 and 𝐌 are row-scaled. Conversely, 

matrices 𝐔𝑑, 𝐔𝑚 and 𝐖 are column-scaled. Formally: 

[
𝐕(1)

𝐌(1)
] = �̂� [

𝐕(0)
+

𝐌(0)
+ ] + (�̂�)−1 [

𝐕(0)
−

𝐌(0)
− ]

[

𝐔(1)
𝑑

𝐔(1)
𝑚

𝐖(1)

] = [

[𝐔(0)
𝑑 ]+

[𝐔(0)
𝑚 ]+

𝐖(0)
+

] 𝐬 + [

[𝐔(0)
𝑑 ]−

[𝐔(0)
𝑚 ]−

𝐖(0)
−

] (𝐬)−1

 ( 10 ) 

Coefficients vectors 𝐫 and 𝐬 are calculated using the GRAS algorithm.  

2.2.2.2.Commodity and value-added component targets 

To conclude step 1, the algorithm endogenously calculates the targets 𝐪, 𝐦 and 𝐰. 

Substituting �̅�(1)
(0)

 in (2) we get: 

𝐪(2)
(𝐴)

= 𝐀(1)
𝑑 �̅�(1)

(0)
+ 𝐅(1)

𝑑 𝐢 = 𝐔(1)
𝑑 𝐢 + 𝐅(1)

𝑑 𝐢

𝐦(2)
(𝐴)

= 𝐀(1)
𝑚 �̅�(1)

(0)
+ 𝐅(1)

𝑚 𝐢 = 𝐔(1)
𝑚 𝐢 + 𝐅(1)

𝑚 𝐢

𝐪(2)
(𝐶)

= 𝐂(1)
′ �̅�(1)

(0)
= 𝐕(1)

′ 𝐢

𝐦(2)
(𝐶)

= 𝐌(1)
′ 𝐢

 ( 11 ) 
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We also obtain estimates for total components of value added 𝐰(2)
(𝐴)

: 

𝐰(2)
(𝐴)

= 𝐖(1)𝐢 ( 12 ) 

Since �̅�(1)
(0)

 has been substituted in different structural equations, it is most likely that 

𝐪(2)
(𝐴)

≠ 𝐪(2)
(𝐶)

 and 𝐦(2)
(𝐴)

≠ 𝐦(2)
(𝐶)

. Target vectors for 𝐪 and 𝐦 are derived as convex 

combination between vectors obtained through paths 𝐴 and 𝐶. Formally: 

𝐪(2)
(𝐴𝐶)

= 𝛼𝐪(2)
(𝐴)

+ (1 − 𝛼)𝐪(2)
(𝐶)

𝐦(2)
(𝐴𝐶)

= 𝛼𝐦(2)
(𝐴)

+ (1 − 𝛼)𝐦(2)
(𝐶)

with 0 ≤ 𝛼 ≤ 1

 ( 13 ) 

Values for 𝛼 can be interpretated as the degree of reliability assigned to the information 

contained in the 𝐀𝑑, 𝐀𝑚 and C matrices. 

Vectors 𝐪(2)
(𝐴𝐶)

 and 𝐦(2)
(𝐴𝐶)

  might need to be corrected to ensure balances defined in 

equation (1). If additional information is available, this correction can require the 

introduction of a subset of constraints to be applied to the target vectors during the next 

iteration. Following the example given in step 0, new deflators can be calculated: 

𝛑(2𝛖)
(𝐴𝐶)

=
𝐪••

∗ + 𝐦••
∗

∑𝐪(2)
(𝐴𝐶)

+ ∑𝐦(2)
(𝐴𝐶)

𝛑(2𝛍)
(𝐴𝐶)

= [

𝐪••
∗

𝐦••
∗

𝐰••
∗
] diag

[
 
 
 
 ∑𝐪(𝟐)

(𝐴𝐶)

∑𝐦(2)
(𝐴𝐶)

∑𝐰(2)
(𝐴)

]
 
 
 
 
−1

 ( 14 ) 

Finally, targets for iteration 𝑛 = 2 are derived. For the supply table, column targets 𝛖(2)
(𝐴𝐶)

: 

𝛖(2)
(𝐴𝐶)

= [�̅�(2)
(𝐴𝐶)

+ �̅�(2)
(𝐴𝐶)

] = �̂�(2𝛖)
(𝐴𝐶)

[𝐪(2)
(𝐴𝐶)

+ 𝐦(2)
(𝐴𝐶)

] ( 15 ) 

For the use table, row targets 𝛍(2)
(𝐴𝐶)

: 

𝛍(2)
(𝐴𝐶)

=

[
 
 
 
 �̅�(2)

(𝐴𝐶)

�̅�(2)
(𝐴𝐶)

�̅�(2)
(𝐴)

]
 
 
 
 

= �̂�(2𝛍)
(𝐴𝐶)

[
 
 
 
 𝐪(2)

(𝐴𝐶)

𝐦(2)
(𝐴𝐶)

𝐰(2)
(𝐴)

]
 
 
 
 

 ( 16 ) 
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These vectors combine information contained in the 𝐀𝑑, 𝐀𝑚 and C matrices. They also 

ensure balance in the SUT framework. In addition, subset constraints can be included. 

2.2.3. Step 2. Path BD 

2.2.3.1. Commodity balancing 

By commodity balancing we mean that matrices 𝐕 and 𝐌 are column-scaled. Conversely, 

matrices 𝐔𝑑, 𝐔𝑚 and 𝐖 are row-scaled. Formally: 

[
𝐕(2)

𝐌(2)
] = [

𝐕(1)
+

𝐌(1)
+ ] 𝐬 + [

𝐕(1)
−

𝐌(1)
− ] (�̂�)−1

[

𝐔(2)
𝑑

𝐔(2)
𝑚

𝐖(2)

] = �̂� [

[𝐔(1)
𝑑 ]+

[𝐔(1)
𝑚 ]+

𝐖(1)
+

] + (�̂�)−1 [

[𝐔(1)
𝑑 ]−

[𝐔(1)
𝑚 ]−

𝐖(1)
−

]

 ( 17 ) 

Coefficients vectors 𝐫 and 𝐬 are calculated using the GRAS algorithm.   

2.2.3.2. Industry, final demand component, and imports by origin targets 

To conclude step 2, targets for 𝐠, 𝐟 and 𝐨 are calculated endogenously. Substituting �̅�(2)
(𝐴𝐶)

  

and �̅�(2)
(𝐴𝐶)

 in (2) we get: 

𝐠(3)
(𝐵)

= 𝐁(2)
𝑑 ′�̅�(2)

(𝐴𝐶)
+ 𝐁(2)

𝑚 ′�̅�(2)
(𝐴𝐶)

+ 𝐖(2)
′ 𝐢

𝐠(3)
(𝐷)

= 𝐃(2)�̅�(2)
(𝐴𝐶)

 ( 18 ) 

We also obtain estimates for total final demand components and total imports by origin: 

𝐟(3)
(𝐵)

= 𝐅𝑑
(2)
′

𝐢 + 𝐅𝑚
(2)
′ 𝐢

𝐨(3)
(𝐷)

= 𝐌(2)𝐢
 ( 19 ) 

Since �̅�(2)
(𝐴𝐶)

  and �̅�(2)
(𝐴𝐶)

 have been substituted in different structural equations, it is most 

likely that 𝐠(3)
(𝐵)

≠ 𝐠(3)
(𝐷)

. Target vector for 𝐠 is derived as convex combination between 

vectors obtained through paths 𝐵 and 𝐷. Formally: 

𝐠(3)
(𝐵𝐷)

= 𝛽𝐠(3)
(𝐵)

+ (1 − 𝛽)𝐠(3)
(𝐷)

with 0 ≤ 𝛽 ≤ 1
 ( 20 ) 
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where 𝛽 can be interpretated the degree of reliability assigned to the information 

contained to the information in the 𝐁𝑑, 𝐁𝑚 and 𝐃 matrices. 

Vectors 𝐠(3)
(𝐵𝐷)

  might need to be rectified to ensure balances defined in equation (1). If 

additional information is available, this rectification can be used to introduce subset 

constraints for next iteration. Following the example given in step 0, new deflators can 

be calculated: 

𝛑(3𝛍)
(𝐵𝐷)

= [
𝐠••

∗

𝐦••
∗ ] diag [

∑𝐠(3)
(𝐵𝐷)

∑𝐨(3)
(𝐷)

]

−1

𝛑(3𝛖)
(𝐵𝐷)

= [
𝐠••

∗

𝐟••
∗ ] diag [

∑𝐠(3)
(𝐵𝐷)

∑𝐟(3)
(𝐵)

]

−1  ( 21 ) 

Subsequently, targets for iteration 𝑛 = 3 are derived. For the supply table, we define row 

targets 𝛍(3)
(𝐵𝐷)

 as: 

𝛍(3)
(𝐵𝐷)

= [
�̅�(3)

(𝐵𝐷)

�̅�(3)
(𝐷)

] = 𝛑(3𝛍)
(𝐵𝐷)

[
𝐠(3)

(𝐵𝐷)

𝐨(3)
(𝐷)

] ( 22 ) 

For the use table, column targets 𝐯(3)
(𝐵𝐷)

 are defined as: 

𝐯(3)
(𝐵𝐷)

= [
�̅�(3)

(𝐵𝐷)

𝐟̅(3)
(𝐵)

] = 𝛑(3𝛖)
(𝐵𝐷)

[
𝐠(3)

(𝐵𝐷)

𝐟(3)
(𝐵)

] ( 23 ) 

These vectors combine information contained in the 𝐁𝑑, 𝐁𝑚 and D matrices. They also 

ensure balance in the SUT framework. In addition, subset constraints can be included. 

2.2.4. The iterative process 

In each iteration, let 𝐳𝐢• and 𝐳•𝐣 stand for the SUT row and column sum vectors. In 

addition, let vectors 𝛍(𝑛) and 𝛖(𝑛) be defined as: 

𝛍(𝑛) = [
𝛍(𝑛)

(𝐴𝐶)

𝛍(𝑛)
(𝐵𝐷)

]

𝛖(𝑛) = [
𝛖(𝑛)

(𝐴𝐶)

𝛖(𝑛)
(𝐵𝐷)

]

 ( 24 ) 
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To achieve a unique solution, steps 1 and 2 are repeated iteratively until 𝑛 = 𝑁 when: 

max|𝛍(𝑁) − 𝐳𝐢•| < ε

max|𝛖(𝑁) − 𝐳•𝐣| < ε
 ( 25 ) 

is fulfilled for a sufficiently small 𝜀. 

3. Empirical application 

3.1. Methods and data 

The main challenge faced when empirical testing deflation alternatives is the absence of 

“real” IO data measured in constant prices. In this paper, we circumvent this difficulty by 

using survey-based data in current prices. Our rationale for this choice follows. If a 

balancing method can accurately update a matrix 𝐙(0) to obtain matrix 𝐙∗ given a set of 

marginal totals, we can expect the result to be as accurate as if this same information is 

given in constant prices. In other words, we assume if a method is good for updating, it 

will be good for deflating. We understand this is a strong assumption. But then no true 

full set of IO data in current prices are ever available since a complete census of 

establishments is never cost-effective (Lahr, 1993), not even in the case of national 

statistical agencies.6 In any case, we understand that that our findings are imperfect from 

this perspective, but it is the best that one can do, given the resources at hand. Thus, our 

findings in this section should be absorbed with appropriate caution. 

Our dataset includes 2010 and 2015 SUTs for ten European Union (EU) countries.7 

Supply 𝐕, and use 𝐔𝑑 , 𝐔𝑚 matrices account for k = 65 for both products and industries. 

Import matrices 𝐌 has ο = 2 import origins: imports from EU member states and imports 

from non-member of the EU. Final demand matrices 𝐅𝑑, 𝐅𝑚 have φ = 7 components: (i) 

household consumption, (ii) collective consumption, (iii) government spending, (iv) gross 

fixed capital formation and (v) inventory variations, (vi) export to EU member states and 

(vii) exports to non-member of the EU. Matrices 𝐖 have ρ = 3 different rows: (a) 

                                                 

6 Governments interpolate information for firms that do not reply and also answers to some questions that 

establishments fail to supply. Published government data are far from perfect, despite our hopes and beliefs.  
7 All data used in this paper was retrieved from: https://ec.europa.eu/eurostat/web/esa-supply-use-input-

tables/data/database  

https://ec.europa.eu/eurostat/web/esa-supply-use-input-tables/data/database
https://ec.europa.eu/eurostat/web/esa-supply-use-input-tables/data/database
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compensation of employees, (b) gross operating surplus and (c) other net taxes on 

production. To simplify how results are reported, let: 

𝐔 = [𝐔
𝑑

𝐔𝑚]

𝐅 = [𝐅
𝑑

𝐅𝑚]
 ( 26 ) 

SUTs are in basic prices and organised following the scheme depicted in table 1. We use 

years 2010 and 2015 since those are years in which EU member countries must report 

symmetric IO tables alongside SUTs (Eurostat, 2014). This opens the door to further 

research beyond SUTs such as, for example, impact analysis or multiplier analysis. 

Countries and their corresponding codes are listed in table 4.  

Table 4. EU member country codes  

Code Country 

AT Austria 

BE Belgium 

DK Denmark 

EL Greece 

ES Spain 

HR Croatia 

HU Hungary 

NL Netherlands 

PT Portugal 

RO Romania 

Source: own elaboration 

To measure the accuracy of our estimates, we use the weighted average percentage error 

(WAPE) (Mínguez, Oosterhaven, & Escobedo-Cardeñoso, 2009). This measure is 

defined as follows. Let 𝐗∗ = {𝐱𝐢𝐣
∗ } be a subset of target matrix 𝐙∗ (e.g., 𝐗∗ = 𝐕∗). Let t 

stand for a specific deflation alternative (e.g., double deflation). WAPE is calculated as: 

ω(t) = ∑∑(
|xij

∗ |

∑ ∑ xij
∗

ji
)

|xij
(t)

− xij
∗ |

|xij
∗ |

× 100

n

j=1

m

i=1

 ( 27 ) 

To facilitate comparisons between methodologies across countries, we consider the initial 

distance ω(0) defined as the WAPE between 𝐙(0) and 𝐙∗ matrices. The accuracy gains of 

a deflation alternative t with respect to the initial distance is defined as: 
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Δt =
ω(0) − ω(t)

ω(0)
× 100 ( 28 ) 

Hence, the closer we get to 100%, the better the result will be.  

3.2.Deflation alternatives: two Path-RAS settings, double deflation and GRAS 

We evaluate our methodological proposal for two different information settings. The first 

(Path-RAS-1) makes use of the minimum information requirements as stated in section 

2.1. For the second setting (Path-RAS-2), we assume output by industry and total imports 

by origin to be fully known. In both cases we arbitrarily set 𝛼 = 𝛽 = 0.5.  

Table 5. Information used for each deflation alternative. 

 𝐠∗ 𝐨∗ 𝐪∗ 𝐦∗ 𝐟∗ 𝐰∗ 

Path-RAS-1  Sum Sum Sum Sum Sum Sum 

Path-RAS-2 Vector Vector Sum Sum Sum Sum 

DD Vector Vector Vector Vector Sum Sum 

GRAS Vector Vector Vector Vector Vector Vector 

 

Source: own elaboration. 

To contrast Path-RAS performance, we applied DD to our dataset following the 

developments of section 1.3.1. In addition, we approximately reproduce the “column-

row-column” deflation practice reported by Eurostat (2008, pp. 247–250). To do so, we 

use GRAS. This situation (deflation using standard GRAS) is hardly reproducible from 

the user´s point of view, especially for countries/regions with less available data. 

Nevertheless, by using GRAS we simulate a reference point and observe how close we 

can get when making use of less information. 

Table 5 summarises the information sets used by each deflation alternative. All target 

information is from 2015 SUTs. On the one hand, label “Sum” is used when only the 

overall sum of a vector is known. On the other hand, label “Vector” means that all 

elements of that vector are considered.  

3.3. Empirical outcomes 

Figures 2 and 3 illustrate the results. Two clarifying comments must be made before we 

start discussing the findings. First, double deflation yields by definition the same results 
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as GRAS for the 𝐌 and 𝐕 matrices. This is because a set of consistent targets is imposed 

for all products, industries and for total imports by origin (see section 1.3.1). Second. in 

the case of Romania, the supply matrix 𝐕 is a diagonal matrix with no secondary 

production. Therefore, all alternatives that consider exogenously given 𝐠∗ targets (Path-

Ras-2, DD and GRAS) precisely generate the 2015 matrix.  

Figure 2. Accuracy gains for each deflation alternative. Matrices 𝐕, 𝐌, 𝐔 and 𝐅. 

 

Source: own elaboration 

On the one hand, Path-RAS-1 yields, as expected, the poorest performance for matrices 

𝐕,𝐌,𝐔 and 𝐅. Using only the minimum information requirements, this alternative ensures 

that estimated tables respect the limited set of targets. But, in some cases, the overall error 

is greater after balancing than before. On the other hand, Path-RAS-2 generally performed 

as well as DD and GRAS. Thus, our results suggest, despite fewer information 

requirements, that Path-RAS is as accurate as alternatives that are more data-demanding. 

Path-RAS-2 seems to perform better for 𝐕 and 𝐔 matrices. This is in line with 

Dietzenbacher and Hoen’s (1998) findings that intermediate transactions with cell-

specific deflation would be substantially superior. Overall results are likely to improve as 

additional information constrains matrices 𝐌 and 𝐅. Note that volume data on final 

demand and imports tend to be more widely available than are data for intermediate 

demand or intermediate inputs.  
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Figure 3. Accuracy gains for each deflation alternative. Value-added matrix (𝐖). 

 

Source: own elaboration 

GVA estimates deserve a separate comment. For seven out of ten countries that we 

analysed, Path-RAS-1 outperformed DD in estimating GVA. Indeed, Path-RAS-2 yielded 

better results in all cases; accuracy gains are in line with those via GRAS. This result is 

highlighted since prior algorithms require GVA to be established exogenously. While the 

exogenous specification of GVA is reasonable when updating matrices in current prices, 

it is nigh unto impossible for matrix price deflation. Thus, our modification of Path-RAS 

appears to be a truly viable innovation in this regard.  

4. Conclusions 

In this paper, we develop an alternative way to estimate supply and use tables (SUT) in 

constant prices. Our proposal modifies the Path-RAS approach for SUT updating. It 

requires less information than do known predecessor approaches. Most importantly, we 

reduce needs for gross value added (GVA) prices. The approach yields cell-specific 

deflators, capturing IO price dynamics more realistically. Moreover, our approach does 

not introduce ad hoc adjustments, providing constraints are nonconflicting. 

Even though Path-RAS demands comparatively modest amounts of data, it yields 

promising results. Admittedly, when available information is minimal, Path-RAS 

performs no better than its “competition.” But it appears to outshine double deflation 

when it comes to estimating GVA. Moreover, when industry output is constrained, Path-

RAS performs as well as GRAS, which requires GVA to be exogenously defined. This 

suggests out modification to Path-RAS yields results that are sufficiently accurate despite 
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using less information. Estimates for 𝐕 and 𝐔 appear to be relatively more accurate. This 

could be confirming the appropriateness of cell-specific deflators to measure intermediate 

transactions in constant prices.  

The prime limitation of our work is the empirical test. Thus, our approach needs further 

empirical assessments. A broader coverage of countries could reduce biases associated 

with the use of peculiar data. We also hope to extend our analysis by deriving IO tables 

from the deflated SUTs. We, thus, should be able to analyse how different deflation 

methods relate to such standard work as, for example, impact analysis or multiplier 

analysis. A possible extension of the research presented here could be the inclusion of 

techniques that systematically handle conflicting information. Finally, we hope future 

research will identify optimal reliability values (𝛼, 𝛽) associated with the industry and 

commodity technology matrices.  
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