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Abstract 9 

The energy transition process calls for striving interventions at global level towards the switch to low-carbon 10 

and green technologies. Such technologies surely impact positively in the direction of reducing the greenhouse 11 

gases emissions; however, their massive deployment brings along intense raw materials exploitation. Some 12 

of these materials have already been classified as critical due to their scarce availability: their crucial 13 

geopolitical role is then becoming more and more relevant, resulting in several attempts of quantifying the 14 

materials impact of energy transition scenarios.  15 

While the majority of the analysed studies adopts purely LCA-based methodologies, this article presents a 16 

novel hybrid approach to assess the impact of transition pathways on raw material extraction, which includes 17 

both LCA-based and energy modelling features. Such approach has been formalized in a modelling framework 18 

named Dynamic Extraction and Recycling Input-Output framework (DYNERIO) and it has been integrated in 19 

the open-source platform for input-output analyses handling, MARIO (Multi-functional Analysis of Regions 20 

through Input-Output), which the authors contributed to develop. DYNERIO is composed by two soft-linked 21 

modules: the first module is an environmentally-extended Multi-Regional Input-Output (MRIO) model, which 22 

allows for economic and environmental shock modelling and impact assessment; the second module consists 23 

of a linear programming optimization energy model, dedicated to the assessment of regional extraction and 24 

recycling of critical materials based on the results of the MRIO model. 25 

Beside the standard environmental and economic impact indicators, such as GDP and CO2 emissions, 26 

DYNERIO returns the yearly operating and disposed capacities for energy technologies required to meet the 27 

production of exogenously defined final energy services, and the consequent raw materials extraction and 28 

recycling. A simplified case study, based on the Exiobase hybrid-units database (version 3.3.18), is then 29 

proposed to demonstrate the framework capabilities. In such case-study, a simplified energy transition strategy  30 

is analysed, by implementing a set of announced policies as a technological perturbation in the MRIO module 31 

and evaluating their implications in terms of raw material dependence. 32 
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1. Introduction 36 

During the past decades, the worldwide scientific community approached more and more the concepts of 37 

sustainable development and transition for a low-carbon future. The widespread growing concern about the 38 

global climate challenge calls for striving interventions, nonetheless, whilst the low-carbon transition would 39 

foster the achievement of environmental goals, it requires large technology investments and deep changes in 40 

behavioural dynamics to be effective. Such efforts have not been put in place with the same emphasis among 41 

the endorser countries [1] and potential criticalities related to energy infrastructure [2] and on economic growth 42 

[3] may be encountered if massive measures are taken to keep faith with the Paris Agreement.  43 

Moreover, together with the climate commitment, many other pledges concur along the pathways to 44 

sustainability, as stated from the UN Agenda 2030 [4], and energy is a cross-cutting topic among them [5]; 45 

therefore, a broader perspective when dealing with modelling the energy transition is required. One of the key 46 

issues on the board when dealing with sustainable energy transition modelling are raw materials. In the last 47 

decades, the consumption of raw materials raised significantly, driven by industrialisation and population 48 

growth [6] and, according to the latest IEA report on the topic [7], the extraction of such materials would most 49 

certainly represent the crucial bottleneck on the path to deep decarbonisation.  50 

Energy transition is a complex process, encompassing not only technologic but also economic and social 51 

dimensions. Low-carbon solutions, such as renewable energy technologies and electric vehicles, are 52 

forecasted to be adopted massively to meet emissions reduction goals. However, their embedded content of 53 

critical materials leaves open discussion on geopolitical and energy security problems in the future [8]. 54 

Assessing critical materials demand within a global scope while massively deploying renewable and green 55 

technologies is therefore crucial to address a comprehensive scenario analysis on energy transition. Energy 56 

scenarios for future sustainability shall be, therefore, projected not only to capture how energy conversion 57 

systems could be designed to achieve selected goals, but also to define which are the implications of such 58 

systems on their supply chains.  59 

To deal with the mentioned challenges, modelling energy transition calls for integrated frameworks [9], 60 

traditional bottom-up technology rich energy modelling frameworks, generally adopted to define least-cost 61 

technically feasible pathways, are linked and interact with a variety of Industrial-Ecology based approaches 62 

[10], correcting feasible pathways and enriching the related narratives. 63 

 64 

1.1. Quantitative critical materials assessment: a review 65 

The results of a literature review on critical materials assessment characterized by a macroscopic global 66 

perspective are here provided. Specifically, the review is based on the research of papers published after year 67 

2010 in peer-reviewed scientific articles listed in the Scopus database, identified based on the following 68 

keywords: “energy transition”, “critical materials” and “scenarios”. At the date of the research, the database 69 

returned 56 article documents, among which the most cited and relevant 35 have been selected and 70 

taxonomized in Table 1 based on the following criteria: research focus, methodology, space and time scopes. 71 
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Regarding the research focus, the vast majority of the analysed studies concentrates on the assessment of 72 

critical raw materials requirements in future scenarios, often considering the impact of recycling and circular 73 

economy practices. The main difference among such studies regards the underlying methodology they adopt 74 

to perform their analyses. A first category of studies make use of data- or ad-hoc indicators-based 75 

methodologies.  Rollat et al. analysed industrial consumption trends to assess the availability of rare earths 76 

elements (REE) in Europe [11]. Månberger and Stenqvist estimated how a 2060-oriented global 77 

decarbonization scenario would impact on the demand of 12 metals by adopting IEA and other literature data 78 

related to power and transport technologies [12]. Similarly, Beylot et al. investigate the requirements of steel, 79 

aluminum, copper and concrete according to scenarios assumption based on climate-related target set by the 80 

French government by 2050 [13], while Kiemel et al. estimated the future materials bottlenecks to be supplied 81 

for the electrolyzers production in Germany up to 2050 [14] and Sun et al. analysed the risks for future supply 82 

of critical metallic resources useful for the global production of lithium-ion batteries [15]. An interesting work 83 

from Zhou et al. dealt with the issue of rare earths being by-products of other materials while estimating, via 84 

the calculation of suitable indicators, the demand of such materials for the supply of PV technology at global 85 

scale up to 2050 [16].  86 

On the other hand, other articles performs materials requirements forecast analyses with more structured 87 

frameworks and methodologies, improving the replicability of the study but limiting its depth and focus. The 88 

most diffused methodology is surely the dynamic material flow analysis (dMFA), also frequently adopted within 89 

the sample of studies selected in the literature research performed. dMFA is a consolidated industrial ecology 90 

methodology allowing for accounting flows and stocks of available materials along supply chains. Among many 91 

noticeable applications, Elshkaki and Shen assessed the global implications of the use of critical metals in 92 

China with a time horizon at 2050 analyzing seven reference energy scenarios [17]. Similarly, Ren et al. 93 

evaluated the impact of photovoltaic penetration in China, focusing on the metal bottlenecks. Cao et al. 94 

quantitatively forecast the critical materials requirements in scenarios of high penetration of wind power in 95 

Denmark [18]. Deetman et al. performed a similar analysis on a global scale and extended to the whole 96 

electricity sector, showing a strong demand growth of the majority of the metals considered [19].  97 

Moreover, traditional life-cycle-assessment (LCA) approaches is another method included in the boundaries 98 

of the analysed studies. It is the case of Stropnik et al., which assessed the criticality of raw materials for the 99 

production of PEMFC by means of classical LCA approaches, showing the relevant impact of recycling of end-100 

of-life (EoL) technologies [20]. Building upon LCA, Motoori et al. adopted input-output analysis (IOA) to 101 

evaluate the impact of future decarbonization scenarios on the mining sector of Japan [21].  102 

Drawing from the above-mentioned and described papers, different criticalities can be identified. While most 103 

of the studies investigate the effects of the energy transition on the consumption of critical raw materials, the 104 

majority of them mostly focus on few, and sometimes very peculiar, technologies that may be deployed in 105 

specific regions, without tracking multi-regional trade patterns. Moreover, non-negligible macroscopic trends 106 

such as the population growth or the direct effect of national or international policies on the energy sector (i.e. 107 

change in electricity production mix) are often not accounted for, often due to lack of available data or because 108 

of the methodology selection which may not be suitable for tracking such complexities. Providing a flexible tool 109 

to perform this kind of analyses configures as a possible solution to solve these issues. 110 
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In order to capture further studies focusing on proposing structured modelling frameworks to cover the 111 

highlighted features, the borders of the literature research have been extended. Concerning industrial ecology, 112 

one of the main research stream on the topic is the waste input-output (WIO) analysis. Nakamura and Kondo, 113 

starting from the formulation of the very first WIO model [22], were able to formulate the dynamic WIO concept 114 

[23], which integrates the full characterization of material recycling processes from end-of-life (EoL) products 115 

within a traditional input-output table. As a complement of the original WIO model, a work from Lenzen and 116 

Reynolds extended such model from IOTs to supply-and-use tables (SUTs) [24]. Such mentioned frameworks 117 

require an extensive amount of empirical data, which are not always provided by statistical institutions. As one 118 

notable integrated assessment model developed within the EU H2020 program, the MEDEAS model is capable 119 

of providing scenario analysis grounded on a general equilibrium macroeconomic mechanism, integrated with 120 

a module specifically devoted to account for energy and materials consumptions [25]. Moreover, Pauliuk at al. 121 

presented the RECC model, which adopts a dynamic Material Flow Analysis (MFA) to link of the utilisation of 122 

fundamental services for human well-being to climate change effects, by tracking the material efficiency of 123 

such services [26]. In the end, Donati et al. developed another noticeable framework devoted to model circular 124 

economy scenarios named pycirk and based on input-output analysis [27].  125 

1.2. Aim of the work 126 

This paper presents the DYNamic Extraction and Recycling Input-Output (DYNERIO) modelling framework, 127 

useful to assess the economic and environmental impacts of future scenarios in a multi-regional setting, 128 

focusing on critical materials supply chains relevant for the energy transition, and quantifying the related 129 

materials extraction and recycling in future scenarios.  130 

The developed framework may represent a solution to the criticalities highlighted in the literature review and 131 

presents the following features. First, it is Python-based and open-source, hence characterised by high levels 132 

of flexibility and user-friendliness, aiming at reproducibility and transparency of scenario results. Secondly, the 133 

input-output structure of DYNERIO allows for a comprehensive understanding of the global materials 134 

metabolism via the implementation of a variety of scenarios in multiple industries, possibly extending its 135 

application also to non-energy-related ones. Finally, DYNERIO is suitable to couple both forecasting of 136 

materials demand and analysing impact of recycling practices. 137 

To illustrate the novelties and possibilities brought by the proposed framework, a demonstrative case study is 138 

performed: the application is based on real macroeconomic and technical empirical data, and assumptions for 139 

the analysed scenarios are based on the outcomes of World Energy Outlook 2020 by IEA.  140 

The paper is structured as follows: section 2 provides a presentation of the mathematical structure of the 141 

proposed framework. The case-study, describing the setting of the scenarios along with the related 142 

assumptions, is presented in section 3, while section 4 discusses the results obtained describing the 143 

advantages and limitations of the presented framework. 144 

  145 
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2. Methods and models 146 

The DYNERIO framework is composed of two soft-linked modules, each devoted to specific tasks, as 147 

illustrated by Figure 1. Specifically, the Module 1 consists in a Multi-Regional Input-Output (MRIO) table when 148 

the basic principles of Leontief models are applied using consequential (shock) analyses: beside its underlying 149 

empirical dataset, in this module exogenously defined scenarios are implemented, based on future population 150 

trends, living standards and prospective technology changes (e.g. changes in regional energy mix), hence 151 

deriving regional and sectoral impact indicators (value added generation, energy use, emissions, etc.) and the 152 

related goods and services production yields, including the amount of energy carriers and services (e.g. 153 

transport service, electricity, heat, etc.).  154 

Module 2 consists in a system of algebraic difference equations modelling the regional operation of supply 155 

chains of critical materials and the ones devoted to the production of the related energy systems. Such module 156 

receives information about the total capacity of technologies requested to be manufactured by each region, 157 

and determines, based on technical data related to the supply chains of critical materials and the related energy 158 

technologies, endogenously returns quantities of critical materials extracted, recycled and traded among 159 

regions in the analysed scenario. 160 

The two core modules are linked via a bridge calculation core dedicated to calculate the technology installed 161 

capacity in the analysed time horizon to be fed to Module 2, starting from results in terms of energy services 162 

production which come as output of Module 1. Such bridge algorithm is shaped as an energy system linear 163 

programming optimization model. 164 

The type of exogenous data to be delivered to the two Modules depends on the scope and level of detail 165 

requested by the scenarios under investigation, while energy transition scenarios are exogenously provided in 166 

the form of region- and sector-specific pathways for technology changes. For example, investigating the 167 

amount of neodymium requested for delivering wind energy in future scenarios calls for the disaggregation of 168 

wind power technology in the Module 1, while Module 2 requires an average technical characterization of wind 169 

power technology in terms of performance, energy availability, neodymium content per unit of installed capacity 170 

and recycling rates, the geographical localization of neodymium extraction and recycling activities and 171 

production/operation/disposal of the wind power technology. 172 

In the following, the basic mathematical structure of the two modules is described, together with the basic 173 

assumptions and the characteristic modelling underlying features. A small-scale simplified conceptual model 174 

is provided in a spreadsheet as supplementary electronic material. 175 

The next Figure depicts in the end a schematic representation of the DYNERIO framework highlighting the 176 

information exchange between its core and modules. 177 
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 178 

Figure 1. Schematic representation of the DYNERIO framework 179 

2.1. Multi-Regional Input-Output module 180 

The Module 1 is built upon empirical meso-economic datasets representing highly disaggregated national 181 

economic and environmental accounts, identifying flows of goods and services across industries in national 182 

and international economies. The basic mathematical structure reflects the classic Leontief representation of 183 

a multi-regional cluster of economies, here defined based on a symmetric input-output tables [28], resulting in 184 

a system of equations formulated by means of vectorial exogenous and endogenous variables listed in Table 185 

1.  186 

The model is defined by intermediate, final and exogenous transactions matrices (the latter distinguished as 187 

economic factors of production and environmental extensions), resembling data related to a baseline year 188 

(subscript 𝑦𝑦 = 0 in Table 1). Such tables are derived based on available multi-regional or global input-output 189 

databases, either defined based on monetary or hybrid units: examples of widely adopted global databases 190 

are Exiobase, WIOD or Eora, revised by Owen in [29] and less recently by Wiedmann et al. in [30]. Selection 191 

of the appropriate dataset depends on the scenario analysis to be performed, and the related regional and 192 

sectoral coverages.  193 

 194 

Table 1. Exogenous and endogenous parameters of the MRIO module. Notice that time step 𝑦𝑦 = 0 refers to 195 

the baseline year (i.e. available data from national accounts), while 𝑦𝑦 > 0 refers to years defined by scenarios’ 196 

projection and 𝑦𝑦 refers to all modelling years. 197 

Category Symbol Size Description 

Indices 

𝑟𝑟  Regions 
𝑛𝑛  Sectors per region 
𝑘𝑘  Factors of production (capital, labour compensation, taxes, …) 
𝑐𝑐  Final consumption categories (households demand, investments, …)  
𝑒𝑒  Exogenous transactions categories (energy use, emissions, …) 
𝑦𝑦  Time steps for the scenarios (years) 

Exogenous 
variables 

𝐙𝐙𝑦𝑦=0  𝑟𝑟𝑟𝑟 × 𝑟𝑟𝑛𝑛  Intersectoral transactions matrix (baseline year) 
𝐕𝐕𝑦𝑦=0  𝑘𝑘 × 𝑟𝑟𝑟𝑟  Factors of production matrix (baseline year) 
𝐄𝐄𝑦𝑦=0   𝑒𝑒 × 𝑟𝑟𝑟𝑟  Environmental transactions matrix (baseline year) 

MODELLING 
FRAMEWORK

EXOGENOUS 
PARAMETERS

• Input-Output dataset
• Change in final consumption
• Change in power mixes
• Fuel to power switch

Macroscopic scenario
assumptions

• Localization of extraction 
and recycling

• Specific content embedded 
in energy technologies

• Recycling rates

Critical 
materials data

OUTPUT
• Materials extraction by region
• Technology and materials recycling
• Materials demand by region

• Factors of production
• Emissions
• Goods and services production

Energy 
production

Module 2. 
Dynamic Extraction and 

Recycling module

Module 1. 
Multi-regional 

Input-Output module

Bridge 
calculation 

core Capacity 
stocks

• Investment and O&M costs
• Min and max load factors
• Weibull disposal parameters

Technological 
parameters
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𝐱𝐱𝑦𝑦=0  𝑟𝑟𝑟𝑟 × 1  Total production vector (baseline year) 
𝐘𝐘𝑦𝑦  𝑟𝑟𝑟𝑟 × 𝑟𝑟𝑟𝑟  Final demand matrix (all years) 
𝐳𝐳𝑦𝑦   𝑟𝑟𝑟𝑟 × 𝑟𝑟𝑛𝑛  Intersectoral technical coefficients matrix (all years) 
𝐯𝐯𝑦𝑦  𝑘𝑘 × 𝑟𝑟𝑟𝑟  Factors of production coefficients matrix (all years) 
𝐞𝐞𝑦𝑦   𝑒𝑒 × 𝑟𝑟𝑟𝑟  Environmental transactions coeff. matrix (all years) 
𝐈𝐈  𝑟𝑟𝑟𝑟 × 𝑟𝑟𝑛𝑛  Identity matrix 

Endogenous 
variables 

𝐱𝐱𝑦𝑦>0 𝑟𝑟𝑟𝑟 × 1  Total production vector (scenarios’ projection) 
𝐙𝐙𝑦𝑦>0  𝑟𝑟𝑟𝑟 × 𝑟𝑟𝑛𝑛  Multi-regional transaction matrix (scenarios’ projection) 
𝐕𝐕𝑦𝑦>0  𝑘𝑘 × 𝑟𝑟𝑟𝑟  Factors of production coefficients matrix (scenarios’ projection) 
𝐄𝐄𝑦𝑦>0   𝑒𝑒 × 𝑟𝑟𝑟𝑟  Environmental transactions matrix (scenarios’ projection) 

 198 

Technologies already included in the intermediate transaction matrix may need to be further disaggregated to 199 

adequately represent the transition scenario and to allow the assessment of technology-specific requirements 200 

of critical materials: for example, if the assessment of rare hearts for magnet productions used in wind turbines 201 

is required, technologies included in regional power sectors need to be highly disaggregated. The same holds 202 

for other technologies, such as transport, heating and fuel production. Moreover, since input-output datasets 203 

collects data related to transactions of marketed products (also named commodity flows), the selected 204 

database may need to be elaborated by the user to disaggregate specific technologies or to endogenize them 205 

into the transactions tables. For example, mobility of households based on light duty passenger vehicles is not 206 

registered as a service in the IOT, that only accounts for consumption of fuel and the investment in vehicle 207 

acquisition as final demand items. Therefore, the standard database should be elaborated to embed vehicles 208 

powertrains (traditional internal combustion engines as well as and innovative one like electric powertrains) 209 

within the IOT as new technologies.  210 

Once the IOT dataset related to the baseline year has been properly elaborated to reflect the needed 211 

technology disaggregation, total production in the baseline year is derived based on equation (1), where 𝐢𝐢 is 212 

the summation vector of appropriate dimensions.  213 

 0 :y = = +x Z i Y i  (1) 214 

Coefficients tables for the baseline year are derived: intersectoral technical coefficients (2), factors of 215 

production coefficients (3), intermediate and final environmental transactions (4). Notice that final 216 

environmental transactions are derived as function of final consumption of domestically produced and imported 217 

commodities for every region (e.g. air emissions from final fuels consumption are originated both by 218 

domestically produced and imported fuels). 219 

 
1ˆ0 :y −= =z Z x  (2) 220 

 
1ˆ0 :y −= =v V x  (3) 221 

 
1ˆ0 :y −= =e E x  (4) 222 
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Such coefficients tables are then modified based on exogenous scenario data to represent future shifts in 223 

technology, trades, and change in final consumption yields and habits for the generic year 𝑦𝑦 > 0 based on 224 

equation (5). 225 

 ( ) ( ) ( )1
, , , , , , , , ,

y y y−
= + ∆z v e Y z v e Y z v e Y  (5) 226 

Finally, the models’ endogenous parameters can be derived: total production vector (6), intersectoral 227 

transactions (7), factors of production (8), and intermediate and final environmental transactions (9) and (10). 228 

Notice that final environmental transactions are derived based on scalar multiplication of the related 229 

coefficients and the final domestic and imported demand of products. 230 

 ( ) 1
0 :y

−
> = −x I z Yi  (6) 231 

 ˆ0 :y > =Z z x  (7) 232 

 ˆ0 :y > =V v x  (8) 233 

 ˆ0 :y > =E e x  (9) 234 

Regarding scenarios projections, few important remarks are in order. First, since the proposed IO model is not 235 

a dynamic model as descripted by Miller and Blair [28], adequate assumptions are required to deal with 236 

investments by region, the impact of which may not be negligible [31]. One solution may be to define and to 237 

project sectoral investments by region based on reliable scenario assumptions. Another approach may 238 

consists in embedding investments and fixed capital consumption (respectively collected within final demand 239 

and factor inputs matrices) in the intermediate transaction tables, relying on approaches descripted by Lenzen 240 

et al. [32], [33]. 241 

Secondly, due to the fact that technology shifts are exogenously assumed by the model, a non-productive 242 

technology coefficients matrix may be returned by equation (6): system productivity must be therefore checked 243 

in every time step. Among the variety of available approaches, Duchin and Levine recently proposed an 244 

approach based on linear programming technique which can be also applied for hybrid units databases [34]. 245 

 246 

2.2. Bridge calculation core 247 

As mentioned at the beginning of the section, the soft link between the two modules is performed via a 248 

bridge calculation core algorithm defined by an optimization linear programming energy model.  249 

 250 

Table 2. Exogenous and endogenous parameters of the bridge calculation algorithm.  251 

Category Symbol Size Description 

Indices 
𝑟𝑟  Regions 
𝑡𝑡  Technologies  
𝑦𝑦  Time steps for the scenarios (years) 

 𝐲𝐲   Time steps vector defining by a sequence of all the time steps 
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Exogenous 
variables 

𝐱𝐱𝑟𝑟𝑡𝑡  𝑟𝑟𝑟𝑟 × 𝑟𝑟𝑟𝑟  Total production vectors of selected technologies (one for each year) 
𝐜𝐜𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟 × 1 Specific operation costs per unit of production 
𝐜𝐜𝑖𝑖𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟 × 1 Specific investment costs per unit of capacity 
𝑑𝑑  Discount rate 
β 𝑡𝑡 × 1 Weibull shape factor defined by technology 
𝑙𝑙 𝑡𝑡 × 1 Technical lifetime defined by technology 
𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡 × 1 Residual technical lifetime at year 0, defined by technology 
𝐊𝐊𝑜𝑜𝑜𝑜𝑜𝑜,𝑦𝑦=0 𝑟𝑟𝑟𝑟 × 𝑦𝑦 Operative capacity in the first time step 
𝐀𝐀𝑚𝑚𝑚𝑚𝑚𝑚 𝑡𝑡 × 1 Minimum technologies availability 
𝐀𝐀𝑚𝑚𝑚𝑚𝑚𝑚 𝑡𝑡 × 1 Maximum technologies availability 

Endogenous 
variables 

𝐂𝐂𝐂𝐂  𝑟𝑟𝑟𝑟 × 𝑦𝑦  Total discounted costs 
𝐂𝐂  𝑟𝑟𝑟𝑟 × 𝑦𝑦  Total undiscounted costs 
𝐂𝐂𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟 × 𝑦𝑦 Operation costs 
𝐂𝐂𝑖𝑖𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟 × 𝑦𝑦 Investment costs 
𝐊𝐊𝑜𝑜𝑜𝑜𝑜𝑜,𝑦𝑦>0 𝑟𝑟𝑟𝑟 × 𝑦𝑦 Operative capacity after the first time step 
𝐊𝐊𝑛𝑛𝑛𝑛𝑛𝑛 𝑟𝑟𝑟𝑟 × 𝑦𝑦 New installed capacity 
𝐊𝐊𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑟𝑟𝑟𝑟 × 𝑦𝑦 Total disposed capacity 
𝐊𝐊𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑦𝑦=0) 𝑟𝑟𝑟𝑟 × 𝑦𝑦 Disposed capacity out of the operative capacity installed at year 0 
𝐊𝐊𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑦𝑦>0) 𝑟𝑟𝑟𝑟 × 𝑦𝑦 Disposed capacity out of the operative capacity installed after year 0 
𝐀𝐀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑟𝑟𝑟 × 1 Actual technologies availability 

 252 

The objective function of the model is the minimization of the net present cost of investment and operation of 253 

the new and already existing technology capacity required to fulfil the energy service production (10). 254 

 Obj Function: Min Z = 1,rt y,1i Cd i  (10) 255 

In this function 𝐂𝐂𝐂𝐂 indicates the total discounted costs, determined by the regional discount rate 𝑑𝑑, defined in 256 

equation (11), 257 

 
( ) 11 d −=
+ y

CCD  (11) 258 

where 𝐂𝐂 is given by the sum of investment and operative costs required for the installation, operation and 259 

maintenance of the new and operating capacities in each region and for each technology (12). 260 

 inv op+C = C C  (12) 261 

As said, the investment cost is related to the new capacity to be installed 𝐊𝐊𝑛𝑛𝑛𝑛𝑛𝑛, while the operative cost is 262 

linked to the operating capacity 𝐊𝐊𝑜𝑜𝑜𝑜𝑜𝑜, as defined by equations (13) and (14), where also the specific investment 263 

(𝐜𝐜𝑖𝑖𝑛𝑛𝑣𝑣) and operation costs (𝐜𝐜𝑜𝑜𝑜𝑜) , expressed per unit of technology capacity and technology output (𝐱𝐱𝑟𝑟𝑡𝑡)  264 

respectively, are introduced.  265 

 , , ,inv rt new rt inv rtC = K c  (13) 266 

 , ,ˆop rt rt op rt
TC = x c  (14) 267 

New and operating capacities are strictly interconnected since, for each year, the capacity balance equation 268 

(15) needs to be respected. In particular, the operating capacity of each year is given by the one of the year 269 



10 

before at the net of the capacity disposed at its end of life plus the capacity which is newly installed to 270 

counterbalance such disposal and fulfil the future energy needs. 271 

 
, 0

, 0 , 1 , ,

exogenous parameter ( 0)ope y

ope y ope y new y disp y

y=

> −

= =
 = + +

K
K K K K

 (14) 272 

The total disposed capacity 𝐊𝐊𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 calculation (15) is performed in two steps: (i) first it is requested to calculate 273 

the yearly capacity disposal of the operating capacity present since the first year (𝐊𝐊𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑦𝑦=0)), which is assumed 274 

to have a residual lifetime of 𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟; (ii) the second term calculates the disposal of the capacity which is installed 275 

in the future years (𝐊𝐊𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑦𝑦>0)).  276 

 ,( 0) ,( 0)disp disp y disp y= >+K = K K  (15) 277 

These latter two terms are both calculated as the sum of the yearly disposed capacities following a Weibull 278 

distribution function based on the technical lifetime of each technology 𝑙𝑙 and having a technology-specific 279 

shape factor β, as described by equation (16). 280 

 

, 0

, , , ,

,( 0) , 0

,( 0)

,( 0)

1

0  ( 0)

1  ( 0)

l
res y

t

y

l

t

r t y r t y

y l

disp y ope y

disp y

y

disp y new

e

y

e y

β

β

=+ 
−  
 

= =

>

 
− 
 

>

  
  = ⋅ −  
  
 = =


 
 = − >
   

K K

K

K K

 (16) 281 

An additional constraint to be considered in the model, as the energy service production is taken exogenously 282 

from the MRIO module, is given by the technical range of operation which each technology should respect, 283 

given by the minimum and maximum availabilities (𝐀𝐀𝑚𝑚𝑚𝑚𝑚𝑚, 𝐀𝐀𝑚𝑚𝑎𝑎𝑥𝑥) 284 

 
, ,min , maxr t r tr t≤ ≤A A A  (17) 285 

2.3. Dynamic Extraction and Recycling module 286 

Starting from known values of newly installed and disposed technology capacities obtained by the bridge 287 

calculation core, the Dynamic Extraction and Recycling (dynER) module is finally in charge of assessing the 288 

amount of materials requested and extracted in each region at the net of the recycling availability. 289 

 290 

Table 3. Exogenous and endogenous parameters of the Dynamic Extraction and Recycling module  291 

Category Symbol Size Description 

Indices 

𝑟𝑟  Regions 
𝑝𝑝  Regions manufacturing technologies 
𝑡𝑡  Technologies  
𝑚𝑚  Materials 
𝑦𝑦  Time steps for the scenarios (years) 



11 

Exogenous 
variables 

𝐌𝐌𝑐𝑐  𝑡𝑡 × 𝑚𝑚  Material content by technology and region 
𝐊𝐊𝑛𝑛𝑛𝑛𝑛𝑛  𝑟𝑟𝑟𝑟 × 𝑦𝑦 New installed capacity 
𝐊𝐊𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑟𝑟𝑟𝑟 × 𝑦𝑦 Total disposed capacity 
𝐓𝐓𝐒𝐒  𝑟𝑟𝑡𝑡 × 𝑝𝑝  Technologies manufacturing shares, by region 
𝐌𝐌𝑅𝑅,𝑅𝑅  𝑟𝑟 × 𝑚𝑚  Material recycling rates, by region 
𝐓𝐓𝑅𝑅,𝑅𝑅  𝑟𝑟𝑡𝑡 × 1  Technologies recycling rates, by region 
𝐌𝐌𝐸𝐸  𝑟𝑟 × 𝑚𝑚  Material extraction shares, by region 

 𝐓𝐓𝐏𝐏 𝑟𝑟𝑟𝑟 × 𝑦𝑦 Technology production by region 

Endogenous 
variables 

𝐃𝐃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑟𝑟𝑟𝑟 × 𝑦𝑦  Gross materials demand, by region 
𝐓𝐓𝐑𝐑 𝑟𝑟𝑟𝑟 × 𝑦𝑦 Technology capacity recycled by region 
𝐌𝐌𝐑𝐑 𝑟𝑟𝑟𝑟 × 𝑦𝑦  Recycled materials, by region 
𝐃𝐃𝒏𝒏𝒏𝒏𝒏𝒏 𝑟𝑟𝑟𝑟 × 𝑦𝑦  Net materials demand, by region 
𝐃𝐃𝑛𝑛𝑛𝑛𝑛𝑛,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑚𝑚 × 𝑦𝑦  Net materials demand, global  
𝐄𝐄𝐄𝐄 𝑟𝑟𝑟𝑟 × 𝑦𝑦  Demand extraction, by region 

 292 

By providing the manufacturing shares of each technology by each region (𝐓𝐓𝐒𝐒), the dynER module allows to 293 

calculate the actual production of technology requested to each region 𝐓𝐓𝐏𝐏, by multiplying the capacity to be 294 

installed in each region  by 𝐓𝐓𝐒𝐒 (18): 295 

 ( ), , , , , , ,r t y r t y r t p ynew
p

⋅∑P ST = K T  (18) 296 

From 𝐓𝐓𝐏𝐏, as a straight consequence, it is possible to derive the total material required by the manufacturing 297 

technologies (𝐃𝐃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔):, by knowing information about the material content of each technology (𝐌𝐌𝑐𝑐): 298 

 gross = ⋅P CD T M  (19) 299 

Such gross demand of materials needs to be reduced by the amount of materials which are going to be 300 

recycled (which depends on the recycling rate of each technology in each region (𝐓𝐓𝑅𝑅𝑅𝑅), as described by 301 

equation (20)), leading to the net materials demand of each region 𝐃𝐃𝑛𝑛𝑛𝑛𝑛𝑛  (21). 302 

 ,disp R R= ⋅RT K M  (20) 303 

 net gross RD = D - T  (21) 304 

By summing 𝐃𝐃𝑛𝑛𝑛𝑛𝑛𝑛 region by region, the global demand of each material can be derived as 𝐃𝐃𝑛𝑛𝑛𝑛𝑛𝑛,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, which is 305 
multiplied by the materials extraction share matrix 𝐌𝐌𝐸𝐸  to calculate the actual material extracted in each region  306 
𝐄𝐄𝐄𝐄 (22): 307 

 ,net global
T
EEx = D  M  (22) 308 

 309 

  310 
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3. Case study description 311 

A simplified case study was developed as a demonstrative example. The whole set of input data assumed, the 312 

high-resolution charts, along with a conceptual Excel file is available on the Github repository dedicated to this 313 

paper [35], serving as a reproduceable first-try structured application of the approach. Furthermore, the core 314 

DYNERIO code is integrated within the MARIO framework for more advanced applications. 315 

For this case study, a simplified energy transition pathway as been modelled based on the following 316 

assumptions. Starting by the hybrid version of the Exiobase database [36], the world has been aggregated in 317 

two regions, namely the OECD countries (which are represented, in terms of policies implemented by 318 

European Union) and the Rest of the World (RoW). Economic activities have been aggregated in 4 macro-319 

activities: goods and services, fossil fuels and products, electricity by non-renewables, electricity by 320 

renewables. The supply-use database has been transformed into a product-by-product input-output tables by 321 

adopting the methodology reported by the Eurostat manual on supply-use input-output tables [37].  322 

The energy transition pathway in driven by three main phenomena: 323 

• Change in final demand: each region’s final demand is expected to increase according to increase of 324 

living standards and population growth. This information are elaborated based on World Bank and UN 325 

population division datasets. 326 

• Change in power production mix: based on IEA World Energy Outlook 2021 Sustainable Development 327 

scenario [38], OECD and RoW will change their production mix of electricity shifting towards a large 328 

renewable penetration. Assuming a linear increase of such penetration an yearly switch of 25.6% and 329 

23.2% from non-renewables to renewables has been applied in power mixes of OECD and RoW 330 

respectively. 331 

• Fuels to power switch: a progressive switch from fossil fuels adoption towards electricity consumption 332 

has been modelled in all sectors: respectively 10% of fossil fuels and related products per year are 333 

modelled to be replaced by electricity consumption in OECD, while 8% in RoW. Since consuming a 334 

different fuel implies consuming energy with a different efficiency, a factor of 1.8 (OECD) and 1.5 335 

(RoW) have been considered when shifting from fossil to electricity-based technologies.  336 

The starting table has been assumed to represent a conceptual representation of year 2020, and has been 337 

replicated in the MRIO module other nine times in order to model the transition pathway up to 2070 with a time 338 

step of 5 years. 339 

As discussed in the previous section, further exogenous parameters are necessary to the other modules. 340 

Electricity by non-renewables technologies have been assumed to operate within a range of 30% and 90% of 341 

their nominal capacity, while the Electricity by renewables technologies are assumed to operate at a constant 342 

30% load factor in both regions (𝐀𝐀𝑚𝑚𝑚𝑚𝑚𝑚, 𝐀𝐀𝑚𝑚𝑎𝑎𝑥𝑥). For the former, a 30 years lifetime was assumed, while 20 years 343 

were considered for the latter. The already existing operating capacity is assumed to be in the middle of its 344 

technical lifetime (𝑙𝑙𝑟𝑟𝑒𝑒𝑠𝑠). Regarding specific costs of installation and operation, the main assumptions are 345 

reported in the following table. 346 

  347 

 348 
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Table 4. Specific investment and operation costs by technology 349 
  

 Electricity by non-renewables Electricity by renewables 
Specific operation costs 𝐜𝐜𝑜𝑜𝑜𝑜 M€/TWh 0.1 0 
Specific investment costs 𝐜𝐜𝑖𝑖𝑛𝑛𝑣𝑣 M€/GW 600 1500 

 350 

Regarding the dynER module, the first information requested is the share of manufacturing of technologies by 351 

each region (𝐓𝐓𝐒𝐒): given the Chinese monopoly in the production of renewables technology, the production of 352 

such technologies has been assumed to be totally located in RoW apart from OECD covering 10% of its 353 

domestic needs. About fossil-fired electricity production plants, each region has been assumed to supply 70% 354 

of its domestic demand and to import 30% from abroad. For both technologies, a 50% recycling rate has been 355 

assumed without making regional distinctions.  356 

Two selected materials necessary for wind turbines and PV panels production, has been selected for the 357 

analysis: (i) silicon (Si) is a fundamental resource in the supply chain of PV panels which contains around 35 358 

tonnes per GW installed according to the reference and the PV technology [7]; (ii) neodymium (Nd) is instead 359 

crucial for permanent magnets production, vastly adopted in wind turbines, which are estimated to contain on 360 

average 30 tonnes per GW of neodymium. Null consumption of such materials is assumed for non-renewables 361 

technologies. While neodymium recycling rate has been approximated at 5% and 2.5% in OECD and RoW 362 

respectively [39], silicon’s one was assumed as 10% [40]. The two minerals were estimated to be extracted 363 

for 5% in OECD and 95% in RoW.  364 
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4. Results 365 

The modelling framework can provide a suite of results, and this section aims at giving a compact and 366 

comprehensive overview of them. As it was stated previously, the case study has to be intended as a 367 

demonstrative example, without claiming of providing realistic results.  368 

The results dashboard (which can be visualized extensively in the DYNERIO_concept excel file in the Github 369 

repository at [35]) shows an extensive suite of heterogeneous outputs determined by the multifaceted nature 370 

of the integrated framework. From the MRIO module, it is possible to derive the raising trend in electricity 371 

generation which can be compared with fossil fuels production decrease due to the scenario assumptions 372 

provided (Figure 2). 373 

 374 

Figure 2. Electricity and fossil fuels production in OECD and RoW. Time horizon is the 2020-2070 period 375 

 Another interesting macro result, fundamental when dealing with energy transition pathways analysis, CO2 376 

emissions, both in absolute values and in terms of emission intensity per unit of GDP can be derived as shown 377 

in Figure 3. 378 

 379 

Figure 3. CO2 emissions: absolute and per unit of GDP. Time horizon is the 2020-2070 period 380 
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 The bridge calculation core instead, as mentioned in the methodological section, is in charge of computing 381 

the new and disposed capacity by year, which can be expressed in terms of non renewables and renewables 382 

plants in our simplified approach. Figure 4 shows such trend by highlighting in the negative side of the vertical 383 

axis the disposed capacity while the newly installed capacity on the positive side.  384 

 385 

Figure 4. New and disposed capacity by year from 2020 to 2070 in OECD (left) and RoW (right). The 386 

negative side of the vertical axis shows the disposed capacity while the newly installed capacity is located on 387 

the positive side. Note the scales for the two regions are different. 388 

Coming to the dynER module, it is possible to notice that depending on the attitude towards materials recycling 389 

and the localization of materials extraction, the results may differ a lot between the two regions, as shown in 390 

Figure 5 and Figure 6. 391 

Figure 5 shows the total amount of materials embedded in the demand of renewables technology 392 

manufacturing sectors (in light blue) and the recycled amount of materials recovered from the end of life of 393 

such technologies (in dark blue). It is evident that, at least in the very short term, due to the small portion of 394 

capacity stock shared by the renewable energy power plants nowadays, the effect of recycling is negligible: 395 

while in RoW recycling is not appreciable even in 2070 due to the very low recycling rates and the very high 396 

demand of materials coming from domestic and foreign needs, in OECD the net demand is diverging 397 

significantly from the gross demand only after 2050. This implies that unless striving innovation disrupts in the 398 

recycling processes of such materials, recycling itself may not be a viable solution to decrease materials 399 

demand by mid-century. 400 

Figure 6 instead focuses on the amount of materials extracted in each region: due to the strong unbalance in 401 

this parameter towards the RoW due to the physical location of the actually exploitable mineral resources, the 402 

large majority of the materials is expected to be extracted in this latter region. 403 
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 404 

Figure 5. Materials demand and recycling driven by technology manufacturing purposed by region. 405 

 406 

 407 

Figure 6. Materials extraction by region and year 408 
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5. Discussion and conclusions 410 

The work provides a presentation of a novel framework for critical material analysis based on input-output 411 

analysis. The presented framework is in compliance with all the current state of the art modelling features and 412 

properties which have been highlighted in the literature review. It both allows to assess and quantify the 413 

demand of critical materials according to a given scenario and, at the same time, it provides insights on the 414 

impact of circular economy practices put in place to mitigate the intensity of material extraction processes 415 

envisaged by the implemented scenarios.  416 

The framework results also to be very flexible and versatile to the users’ needs, allowing for the implementation 417 

of a variety of energy- and non-energy-related macroscopic scenarios and trends, which is a typical 418 

characteristics of input-output models given the vast sectoral scope that characterises the underlying datasets. 419 

Furthermore, the impact of the implemented scenarios on the materials extraction and recycling can be 420 

investigated in a detailed and customisable manner, starting from the selection of the desired relevant 421 

technologies, which may be extended also to the non-energy-related ones (such as electronics, manufacturing 422 

processes…), and the selection of the materials embedded in such technologies.  423 

The suite of results that can be obtained is complete of both macroeconomic and environmental indicators, 424 

which may be extended by the user during the set-up phase of the input-output database, providing the desired 425 

satellite accounts in terms of emissions, energy use, employment rate, water and land consumption, according 426 

to the available data embedded in the MRIO database adopted. The results are also complete with a sensitivity 427 

analysis module, which allows for comprehensive scenarios comparisons. 428 

The framework presents also some evident limitations. In the first place, the definition of the scenarios is fully 429 

exogenous and the whole procedure of performing the impact evaluation is deeply data intensive. The analyst 430 

needs therefore to provide accurate data starting from the MRIO database, and moving to the load factors, the 431 

material intensity data of the technologies, the regional localization of the extraction practices and the recycling 432 

rates. In case of high inaccuracy of the input data, the results will not be reliable.  433 

The second major limitation is related to the first one and can be addressed to the purely simulation nature of 434 

the model. The technological pathways must be provided exogenously and no objectives or targets to be 435 

matched can be set. The complexities of switching the framework into an optimisation model are not negligible 436 

both from the conceptual and from the practical points of view, since there are not many consolidated examples 437 

of optimization input-output models. However the authors are going in this direction for a further development 438 

of this work. 439 

  440 
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