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Abstract 

Computable General Equilibrium (CGE) models are extensively used in simulating 

important public policies, such as carbon taxes or cap and trade policies. The 

simulation results from these models hinge on the production functions and the 

elasticities of substitution among inputs such as capital, labor and energy, or sub-

tier substitution among different energy types. Many CGE models rely on 

parameters that are derived from other countries, other industries or from earlier 

periods given the difficulty in obtaining them; a common source of parameters is 

the GTAP database which is carefully compiled but only has a small set of 

elasticities. In the empirical studies of China, there are few studies of production 

functions with energy input using firm-level data. We use firm level data, and the 

Ackerberg-Caves-Frazer method to estimate CES production functions by industry 

and find significant heterogeneity in substitution elasticities across different 

industries. We then incorporate these empirically estimated elasticities into the 

CGE model to simulate carbon price policies to reach China’s NDC targets in 2030. 

We compare simulated results using GTAP parameters and our empirically 

estimated coefficients. We find our empirical CGE model project lower base case 

GDP growth and higher total energy use, but with lower coal use and carbon 

emissions. In the carbon tax exercises, we found that empirical parameters would 

cause slightly larger GDP loss and greater energy use and carbon emission 

reductions, compared to GTAP parameters. Finally, we also conduct a sensitivity 

analysis applying empirical parameters in limited sectors to test the model 

sensitivity.  
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1 Introduction  

From the energy shocks in the 1970s to the current concern about the environment, economists 

have devoted great efforts to study the industrial demand for energy in order to design policies to 

conserve energy use and reduce pollution. The debates about whether energy and other inputs are 

substitutes or complements have been on-going for decades, yet there is little consensus about the 

value of elasticities or the most suitable representation in simulation models. This is in part due to 

the lack of micro-level evidence on the elasticities of substitution between energy and other inputs. 

Much of the empirical work to date uses data at the industry or national level and fails to capture 

heterogeneity across firms. However, with the more recent availability of firm-level data and 

introduction of methods to deal with endogeneity issues, there has been a substantial effort at 

estimating firm-level production functions (Olley and Pakes 1996, Levinsohn and Petrin 2003, 

Ackerberg et al. 2015). This more recent literature, however, has focused on capital and labor 

inputs and not devoted much attention to energy inputs.  

Estimating the substitution elasticity of energy is of great importance both in theory and in 

practice. The substitutability of energy is a crucial parameter in energy-economic models, 

especially computable general equilibrium (CGE) models, which are used to analyze policies. The 

simulated effects of policies or external shocks using CGE models hinge on the choices of 

functional forms (Lecca et al. 2011) and elasticities. Okagawa and Ban (2008) estimated 

elasticities using panel data from OECD and concluded that the commonly used parameters in 

CGE models for climate policy analysis tend to overestimate carbon prices by more than 40% 

compared to simulations using their estimated elasticities. Van der Werf (2008) investigated the 

choice of production structure and how it affects the elasticities and factor-specific technical 

change and, in turn, how these have big effects on the analyses of climate policies. Through 

estimating a nested CES production function using the World Input-Output Database, Koesler and 

Schymura (2015) find common practices of using Cobb-Douglas and Leontief production 

functions are not supported by their results. 

The substitutability of energy for other inputs is essential for estimating the costs of energy and 

environmental policies since it reflects the potential of energy savings and costs of abating 

pollutant emissions. It plays a critical role in energy-economic models used to analyze public 

policies such as emission trading schemes, carbon taxes, environmental regulation, and energy- 
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efficiency regulations. There have been great efforts at estimating the substitution elasticities, 

beginning with studies using industry-level data such as Berndt and Wood (1975), Griffin and 

Gregory (1976) among many others (see also the meta-analysis by Koetse et al. 2008 and the 

review of econometric methods for production in Jorgenson 1986).  

A lot of information is lost in aggregating firm data to the industry level and much effort has 

since been put into developing data and methods for firm-level analysis (see review by Oberfield 

and Raval 2014). There are, however, fewer analyses using China data. Notable exceptions are Lu 

and Yu (2015), Berkowitz et al. (2017), Brandt et al. (2017), which employed firm-level data of 

China to estimate markup, substitution elasticity and productivity. Nevertheless, energy is hardly 

ever considered as a separate input in this strand of literature. In this paper we employ firm-level 

data in China to estimate production functions with energy, capital and other inputs and recover 

energy elasticities of substitution.  

To illustrate the value of providing more empirical estimates of the elasticities, we compare 

them to those used by many simulation models – the GTAP database. We put our estimated 

elasticities into our multi-sector economic growth model of China to simulate the effect of a carbon 

price. We then compare the results to those derived from the original version of the model that 

uses GTAP elasticities. We find our empirical CGE model project lower GDP growth and higher 

energy projections, however with lower coal use and carbon emissions. In the counterfactual 

carbon tax exercises, we found compared to the GTAP parameter case simulations, our empirical 

case would cause slightly larger GDP loss and greater energy use and carbon emission reductions. 

Finally, we also conduct a sensitivity analysis on only switching a few sectors, especially energy 

sectors. 

Our estimates of the parameters of Constant Elasticity of Substitution (CES) functions for each 

of 33 industries would be useful for other modelers looking for such information for countries 

similar to China’s level of development.  

2 Identification issues in estimating production functions 

There are multiple econometric and measurement issues that should be taken into account in 

the estimation of production functions using firm data. The most common identification problem 

is simultaneity bias. Ackerberg et al. (2015) has an excellent discussion of this and we summarize 
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it here. Consider a Cobb-Douglas production function for firm i  at time t , where y
it

 is the log of 

output: 

   (1) 

w
it

 is the total factor productivity (TFP), which is unobservable for the econometrician but known 

to the firm when it decides capital and labor inputs.  represents the unanticipated productivity 

shock. 

Capital input k
it
 is regarded as a predetermined input, and labor l

it
 is a flexible input that is 

determined after firms observe its TFP. Therefore, l
it
 is directly correlated with the unobserved 

w
it

. This correlation induces the classical omitted variable bias to conventional estimation 

methods such as ordinary least squares. Moreover, this simultaneity bias could also exist for the 

predetermined input. Since k
it
is determined by the firm's decisions in the past periods, and are 

correlated with the disturbance in the past, the simultaneity problem still applies if the disturbance 

w
it

 is serially correlated. 

The control function method, first proposed by Olley and Pakes (1996), is now the dominant 

approach to deal with this endogenous problem. The idea is that one can invert optimal input 

decisions to get this unobserved TFP term. Olley and Pakes used investment as a monotonic and 

invertible function of w
it

. Investment, however, is not always a good proxy variable because 

investment data can be lumpy in practice, i.e. firms are likely to make zero or tiny investments in 

most periods. Therefore, Levinsohn and Petrin (2003) suggest using the demand function for 

intermediate input m
it
 to invert out the unobserved productivity. Later on, Ackerberg et al. (2015) 

notice that it is impossible to identify b
L
 in the first stage of control function method and suggest 

to estimate b
L
 and b

K
 together in the second stage. 

Specifically, Ackerberg et al. (2015) assume the demand function for intermediate input is 

given by: 

 m
it

= f
t
(k
it
,l
it
,w

it
)   (2) 
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Under the assumption that the demand function is monotonically increasing in w
it

, 

productivity can be inverted as w
it

= f
t

-1(k
it
,l
it
,m

it
) . Substituting this control function into the 

production function we have: 

   (3) 

where f
t

-1 is treated nonparametrically and since the first two terms are not identified they are 

subsumed into F
t
(×) , which is approximated by a high-order polynomial function. 

In the first stage Ackerberg et al. (2015) obtain the estimated output F̂
it

 and . A key 

assumption of this approach is that w
it

 follows a first-order Markov process: 

 w
it

= g(w
it-1

)+x
it
  (4) 

For any value of b
K

 and b
L
, combining (1) and (4), we can write  as: 

   (5) 

Ackerberg et al. (2015) exploit the following moment conditions in the second stage to estimate 

b
K

 and b
L
: 

 E(z
it
(b)z

it
) = 0  (6) 

where z
it

 is the set of instruments that includes a constant, k
it
, l
it-1

 and F
it-1

. 

Nevertheless, as noted by Gandhi et al. (2017), this method of proxying productivity using 

material inputs in the control function can only be applied to value-added production functions. 

When it comes to a gross-output production function, there is no exogenous variation in the proxy 

variables because intermediate input is an endogenous variable (determined by capital, labor and 

productivity) and does not admit any source of variation from outside the production function. 

Besides this simultaneity problem, omitted price bias is another common problem. Most 

datasets have only data for values of firm output and inputs, there is no information on real 

quantities or input prices and thus industry-level price indices are usually used to deflate output 

and input expenditures. However, since input choices are correlated with firm-level price variation, 

this omitted price will result in omitted variable bias. 
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To illustrate this, let y
it

 denote the logarithm of actual output quantity, and r
it

 be the output 

index derived by deflating output value by the industry average price itp : 

   (7) 

where p
it
 represents the logarithm of firm-level output price and p

it
 represents the logarithm of 

industry-level price deflators. 

If input choices are allowed to be correlated with the unobserved differences between firm-

level prices and industry-level prices, i.e. E((l
it
(p

it
- p

it
)) ¹ 0  or E((k

it
(p

it
- p

it
)) ¹ 0 , omitted-

variable bias will be introduced into the estimates of input coefficients. 

More specifically, following the standard supply and demand framework, output prices and 

output quantities are negatively correlated while input and output quantities are positively 

correlated. Therefore, the estimated coefficients on inputs suffer a downward bias. Furthermore, 

suppose efficient producers pass through some cost savings to consumers by charging lower output 

prices, then the firm-level price is lower than industry-level price. This results in under-estimation 

of outputs, hence under-estimation of TFP. 

Besides unobservable output prices, the omitted price bias could also appear due to input prices, 

especially for capital and materials, whose quantities are usually unavailable. Consider a gross 

output production function, where itm  denotes the true quantity of intermediate inputs,   is the 

quantity derived from using industry average deflators and K

itp  and M

itp  are the input prices: 

   (8) 

If a firm is able to obtain lower prices for a given input, then using industry-level deflators will 

under-estimate the firm's input use. Moreover, the correlation between input prices and input 

quantities could also bias the production function estimation as long as the industry-level input 

price indices fail to capture all variations of firm-level input prices. For the discussion below, we 

write the output function more generally as: 

   (9) 
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where ( ; )itf x   is the output function with inputs 
itx  derived from average deflators and B(×)  

captures the unobserved effects of firm-specific prices. 

De Loecker et al. (2016) argue that the quality of output and inputs are related to output and 

input prices, and that the quality of output is related the firm’s market share and export status. 

Therefore, the unobserved input price p
it
 is a function of market share ms

it
 and export status ex

it
, 

i.e. p
it

= p ms
it
,ex

it( )1. Substituting this function into the unobserved price control function B(×)  

yields: 

   (10) 

where  to ensure that both the input price term p(×)  itself and its interactions with 

input expenditures  enter the price control function B(×) . d  represents the additional parameter 

vector to be estimated in the control function. 

3 Energy production function estimation 

3.1 Production model and estimation strategy 

We consider a production function with six factors – capital, labor, electricity, coal, oil and non-

energy intermediate inputs, denoted by K, L, ELC, CL, OIL and M. Gross output of firm i at time 

t is thus  ( , , , , , )it it Lt it it it itQ K K ELC CL LQ MOI= . We assume that this may be represented by a set 

of nested constant elasticity of substitution (CES) functions where the top tier gives output as a 

function of a value-added-energy aggregate and non-energy intermediates, ( , )it it itQ VEQ M= . The 

CES functions for the value-added-energy (VE) bundle and subaggregates for value-added (VA) 

and energy (E) are written as: 

 VE
it

= W
it

a
VAi
VA

it

r
VE + (1-a

VAi
)E

it

r
VEé

ë
ù
û

1

r
VE   (11) 

 VA
it

= a
Ki
K
it

r
VA + (1-a

Ki
)L

it

r
VAé

ë
ù
û

1

r
VA   (12) 

 
1 De Loecker et al. (2016) further use output price, location and product dummies as additional controls. We omit 

them here for brevity. 
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 E
it

= a
ELC
ELC

it

r
E +a

Coal
Coal

it

r
E +a

Oil
Oil

it

r
Eé

ë
ù
û

1

r
E   (13) 

In eq. (11) it  is the total factor productivity term. There are no TFP terms in the sub-aggregates 

(12) and (13); itVA  and E
it
 are variables constructed from the components, they not independently 

measured values. itQ  is the index of output and itVE  is derived by subtracting the non-energy input 

measure from itQ . In the above form the elasticity of substitution between value-added and energy 

is 1/ (1 )VE VE = − . 

 

Given the discussion in Section 2 of bias from unobserved productivity and omitted firm-level 

prices, we utilize the control function method in Ackerberg et al. (2015) to estimate the CES 

production function with non-energy intermediate input as our proxy variable . In this paper we do 

not estimate the top tier function for gross output but only the nests in eqs. (11)-(13). First, we 

rewrite the value-added-energy production function as: 

   (14) 

where   represents all the parameters in (11)-(13), w
it

 is the TFP term and is an i.i.d. error 

term. 

To proxy productivity w
it

, we assume that the non-energy intermediate input M
it

 is 

determined by: 

 M
it

= h
t
(K

it
,L
it
,ELC

it
,CL

it
,OIL

it
,w

it
,ex

it
,ms

it
)  (15) 

where ex
it
 is the ratio of firm-level export to total sales, ms

it
 is the market share of firm i  in its 4-

digit industry. This follows the setup in De Loecker and Warzynski (2012) described above in eq. 

(10), with energy inputs as additional control variables. 

Given the assumption that intermediate input is monotonically increasing in productivity, w
it

 

can be inverted as: 

 w
it

= h
t

-1(K
it
,L
it
,M

it
,ELC

it
,CL

it
,OIL

it
,ex

it
,ms

it
)  (16) 
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Employment and energy inputs are recorded in physical quantities in our dataset, while outputs 

and capital inputs are only available in monetary values. We assume that effective labor input may 

be proxied by employment. We do not have firm-level prices and the nominal variables are deflated 

by provincial industry-level price indices. As discussed in Section 2 (eq. 7), the variations between 

firm-level prices and aggregated price indices can induce omitted variable bias and to control for 

the unobserved variations, we modify the production function as: 

   (17) 

where B(×)  is a control function denoting the omitted firm-specific prices, 

 is the vector of calculated quantities (compared to the true 

unobserved quantities X
it

). 

We follow the approach of De Loecker et al. (2016) by using market shares and export shares 

to proxy the unobserved prices as in eq. (10) above. The control function  is thus written 

as: 

   (18) 

where  and   is an additional set of parameters to be estimated for the control 

function. 

The production function (17) can thus be represented as: 

   (19) 

We use a two-step procedure to estimate the function. In the first stage, we utilize a flexible 

polynomial function to approximate VE
it
: 

   (20) 

where F
t
(×) is a second-order polynomial function. 

Based on the estimates in the first stage, for any values of β and γ, we can compute productivity 

with the fitted values ˆ
it  from (20): 

   (21) 
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In the second stage, in order to recover the coefficients in the production function, we assume 

the law of motion for productivity follows a first-order Markov process: 

 w
it

= g(w
it-1

)+x
it
   

where x
it
 is an idiosyncratic shock. 

Therefore, given b  and g  we can non-parametrically regress w
it

on w
it-1

to obtain the 

idiosyncratic shock x
it
(b,g ) as explained in eq. (6) above. 

To obtain the estimates of the production function (b ,g ) ,  we can finally apply the moment 

conditions: 

 E(x
it
(b,g )Z

it
) = 0   (22) 

where Z
it
 is a set of instruments including current capital, lagged labor, energy and non-energy 

intermediate inputs, and their higher order and interaction terms, as well as lagged market shares 

and export shares, and their interactions, with the appropriately lagged inputs. 

3.2 Data 

We use firm survey data from the China State Administration of Taxation (SAT), Ministry of 

Finance, to estimate the production functions and elasticities of substitution between inputs. This 

dataset includes 1,824,400 firms with 4,946,500 observations from 2007 to 2015. More 

specifically, there are 220,000 firms in 2007, increasing to 699,900 firms in 2015. The original 

sample distribution is summarized in Table 1. 

Since neither intermediate input nor value-added is available in the SAT dataset, we construct 

firm-level intermediate input by aggregating the purchasing costs of inputs (excluding fixed assets), 

administrative expenses, operating expenses, selling expenses and financial expenses. Nominal 

value-added is then calculated by the difference between gross output and intermediate input. We 

use the province-level purchasing price index to deflate material inputs and provincial-level 

producer price indices for 2-digit sectors to deflate outputs. The province-level price indices are 

obtained from the China Price Statistical Yearbook2. 

 
2 China Price Statistical Yearbook 2018, Tables 2-1-5 and 2-2-2 give the most recent changes in producer price and 

purchasing price indices. 
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We combine several datasets together to construct firm real capital stock. Our primary source 

is the SAT dataset, which gives us the (net) book value of firms’ fixed capital stock. Because of 

the essential difference in service lives between equipment and structures, we employ the industry-

level data of equipment and structure capital stock to decompose firms’ fixed capital into the two 

parts. In order to obtain the initial capital stock, we use the 1993 industrial census provided by 

Brandt et al. (2012) to measure the capital stock growth rates. Investment deflators on equipment 

and structure from China Fixed Asset Statistical Yearbook are used to deflate the nominal 

investment. The data construction details can be found in the appendix. 

We obtain province-level prices of electricity, coal (bituminous coal), gasoline (93# unleaded 

gasoline) from the WIND database3, which collects energy prices in various regions and industries 

from the National Development and Reform Commission (NDRC) and related industry 

associations in China. We need energy prices because in the SAT dataset, energy inputs are 

measured in real quantities, i.e. tons or kW·h, but gross outputs and intermediate inputs are in 

monetary values. Energy prices are used to calculate energy expenditures which is then used to 

calculate non-energy intermediate inputs. 

Our next step is to delete the observations with obvious errors, i.e. the missing observations 

with negative or zero gross outputs, labor and capital inputs. Furthermore, we delete implausible 

or extremely volatile observations as described in the appendix. Removing these implausible data 

yields a sample with 634,633 firms and 1,487,822 observations. Table 1 presents the summary 

statistics for the samples after deleting observations with obvious and likely errors. 

 

Table 1: Summary statistics of 634,633 firm sample 

Variable Obs.    Mean Median SD Min Max 

VE 1487822 55793 9222 159252 88 1184964 

K 1487822 1967 206 6374 0 48804 

L 1487822 192 69 366 5 2468 

M 1487822 42292 7219 115637 34 846396 

ELC 1487822 547 42 1915 1 14762 

 
3 Energy prices are collected from WIND database maintained by Wind Information Co. Ltd 

(https://www.wind.com.cn/), which, like China’s Bloomberg, consolidates various data sources and offers 

comprehensive data access to China’s financial and macroeconomic data. 
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CL 1487822 807 0 4505 0 38685 

OIL 1487822 70 0 304 0 2491 

 

4. CGE Model and Carbon Pricing Scenario Setting 

 To illustrate the impacts of parameter differences on economic model simulations, we 

applied a recursive Computable General Equilibrium (CGE) model to conduct simulations on 

carbon pricing in China, with two alternative sets of production function parameters. One set of 

the parameters are based on GTAP elasticities, and the other set of the parameters are based on our 

estimated elasticity parameters.  

 The detail CGE model that used in this paper is described in Nielsen and Ho (2013, 

Appendix A) and we summarize the key features of the current version here.  

 The model is a Solow-type dynamic recursive one where an exogenous savings rate 

determines investment that are projected to fall over time. The savings is allocated to investment 

and financing the (exogenous) government and current account deficits. Investment adds to next 

period’s capital stock. Labor supply is set exogenously, that is, there is no leisure demand and no 

elastic supply response to wages. Enterprises pay VAT and taxes on capital income, and retain part 

of the profits for investment, resulting in a “dividend payout” rate that is smaller than 1. 

 The model is based on the social accounting matrix table of year 2014, updated from 2012 

national input-output table of China. There are 33 industries identified and production is 

represented by Constant Elasticity of Substitution functions with constant returns to scale. Product 

markets are competitive are assumed to be competitive and prices equal marginal cost. Labor is 

mobile across sectors, which simplifies the reality of structural barriers.  

 

Our CGE model presents the same structure with our empirical model framework (Eq. 11-

13). At the top tier, output is a function of the primary factor-energy basket (VE) and the non-

energy intermediate input basket (M), ( , , )jt jt jtQI f VE M t= . The VE basket is an aggregate of 

value added (VA) and the energy basket (E). Value added is a function of the 3 primary factors – 

capital (K), labor (L) and land (T). The energy aggregate is a CES function of coal, oil mining, gas 
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mining, petroleum refining & coal products, electricity and gas commodities. The materials 

aggregate (M) is a Cobb-Douglas function of the 27 non-energy commodities.  

 

We assume that capital that is inherited from the previous period is fixed in each sector, but 

new capital is mobile across sectors. The actual capital market in China is fragmented with large 

state-owned banks favoring certain sectors and certain state-owned enterprises. Just as in the 

product markets, recognizing these non-competitive features would be a complicated diversion 

from the simple objective of assessing demographic effects on consumption and overall growth. 

  

For each commodity, domestic goods are combined with imports to form the total supply. 

Total demand for a commodity is the sum of intermediate demands, consumption, government, 

investment and exports. Consumption is given by a translog demand function that depends on 

future demographic composition; as the population age and incomes rise, the consumption basket 

shifts towards income-elastic goods and those consumed by older households. These changes in 

consumption demand affects the composition of supply and thus the demand for labor. 

The model distinguishes industries from commodities as in the official Use and Make 

input-output tables. Each industry may make a few commodities and each commodity may be 

made by a few industries; e.g. the Refining industry produces Refining commodity and Chemical 

commodity, and the Chemical commodity comes from Refining, Chemical, Primary Metal and 

other industries. 

There are taxes and subsidies on industry gross output (or sales tax) and we represent the 

net value by the ad-valorem tax rate.  Public revenue comes from direct taxes on capital and labor, 

value-added taxes, indirect taxes on output, consumption taxes, tariffs on imports, externality 

taxes, and other non-tax fees. For carbon pricing, we adopt a gradually increased carbon pricing 

regime from 2020 to 2030, to reach China’s NDC target under the commitment for Paris 

Agreement. We assume the carbon pricing regime is implemented under the neutral tax reform 

framework, which means the increased revenue from carbon taxes were used to reduce the other 

pre-existing taxes proportionally, so that the government revenue is kept the same in the base case 

and the counterfactual policy case. The detail scenarios for our model analysis were listed in table 

2. We compare the difference between carbon tax scenario with base case, and then examine the 
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alternative when using common GTAP parameters or using our estimated production function 

parameters.  

 

Table 2: Base Case and Carbon Pricing Scenarios 

Scenarios Features 

Base Case No Carbon Pricing, using GTAP parameters 

Base Case _ E No Carbon Pricing, using empirically estimated parameters 

Carbon Tax  Carbon Pricing, using GTAP parameters, and same carbon tax 

regime as Carbon Tax_E, to meet NDC target, note in this 

scenario would not be necessarily equal to 62.5%, it is actually 

roughly 63% in our simulation 

Carbon Tax _E (65%) Carbon Pricing, using empirically estimated parameters, carbon 

tax policy reach NDC 62.5% carbon intensity target in 2030 

 

5. Results 

5.1 Elasticities of substitution 

Table 2 presents the estimated elasticities for all three of the nested CES production functions 

in equations (11-13); 1/ (1 ) = − . All elasticities are positive, suggesting those inputs are 

substitutes. However, the elasticities vary significantly across sectors. Coal and oil mining sectors 

have the largest energy substitution elasticities ( E ). Overall, the substitution elasticities among 

energy inputs (electricity, coal and oil) are larger than the substitution elasticity between capital 

and labor ( VA ), while the substitution elasticities between value-added and energy ( VE ) are the 

smallest among the three elasticities in most sectors. The simple average energy elasticity is 0.928 

and 0.734 for capital-labor and 0.756 for value-added-energy. The median elasticities are 0.855, 

0.684 and 0.685, respectively. This indicates that, although different types of energy are typically 

substitutable, it is the most difficult to replace energy inputs with capital and labor, i.e. reduction 

of energy use requires more capital and labor inputs than other substitution relation. 
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Table 2: Estimation results on the elasticities of substitution 

Sector s
VE

 s
VA

 s
E

 

Agriculture 0.764 (0.098) 0.663 (0.066) 0.896 (0.068) 

Coal Mining 0.693 (0.057) 0.716 (0.057) 2.263 (0.930) 

Oil Mining 0.560 (0.069) 0.684 (0.392) 1.593 (0.846) 

Nonenergy mining 0.612 (2.411) 0.881 (0.447) 0.543 (0.117) 

Food mfg 0.782 (0.327) 0.620 (0.217) 0.713 (0.118) 

Textiles 0.663 (0.072) 0.622 (0.067) 0.881 (0.111) 

Apparel, leather 0.786 (0.076) 0.724 (0.124) 0.854 (0.071) 

Sawmills and furniture 0.916 (2.390) 0.528 (0.128) 0.752 (0.128) 

Paper, printing, recording media 0.482 (0.030) 1.273 (0.246) 0.814 (0.687) 

Petroleum processing 0.503 (0.125) 0.836 (1.065) 0.518 (0.099) 

Chemicals 1.172 (0.519) 0.852 (0.152) 1.251 (0.997) 

Nonmetal mineral products 0.986 (0.115) 0.551 (0.171) 1.579 (0.411) 

Primary metals 0.736 (0.132) 0.685 (0.264) 1.005 (0.323) 

Metal products 0.670 (0.084) 0.681 (0.059) 1.001 (0.459) 

Machinery 0.748 (0.071) 0.674 (5.084) 0.972 (0.078) 

Transportation equipment 1.909 (2.718) 0.716 (0.107) 0.726 (0.116) 

Electrical machinery 0.838 (0.164) 0.607 (0.085) 0.911 (0.089) 

Comm. equip, computer, electronic 0.731 (0.128) 0.748 (0.147) 1.138 (1.032) 

Water utilities 0.445 (0.124) 0.610 (0.323) 0.915 (0.813) 

Other manufacturing, recycling 0.655 (0.101) 0.652 (0.463) 0.746 (0.091) 

Electricity, steam 0.665 (0.080) 0.653 (0.083) 0.845 (0.104) 

Gas utilities 0.663 (0.193) 0.604 (0.137) 0.828 (0.135) 

Construction 0.705 (0.068) 0.677 (0.064) 0.864 (0.076) 

Transportation svc 0.685 (0.116) 0.597 (0.394) 0.676 (0.131) 

Telecommunications, Software and IT 1.336 (0.318) 0.556 (0.045) 0.855 (0.082) 

Wholesale and Retail 0.677 (0.042) 0.725 (0.107) 0.965 (0.048) 

Hotels and Restaurants 0.729 (0.781) 0.797 (0.291) 0.795 (0.138) 

Finance 0.679 (0.120) 0.718 (0.126) 0.752 (0.085) 

Real estate 0.406 (0.615) 1.312 (0.245) 0.960 (0.128) 

Business services 0.579 (0.172) 0.713 (7.311) 0.722 (0.136) 

Other services 0.675 (0.246) 1.083 (0.830) 0.423 (0.091) 

Notes: Standard errors, obtained by bootstrapping 500 times for each sector, are reported in 

brackets. 

 

Comparison to other elasticity estimates 
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There are only a few estimates of production function elasticities for China industries using 

firm-level data. Berkowitz et al. (2017), using value-added functions, find the elasticity of 

substitution between labor and capital is greater than 1 in most sectors and on average is 1.553. 

They also use the control function approach, but did not consider omitted price bias or the non-

identification problem of gross output functions. In contrast, only 3 of our 31 sectors have capital-

labor substitution elasticity greater than 1. The estimates of capital-labor substitution elasticity for 

other countries are typically smaller than 1, as summarized by Raval (2019), which compare 44 

estimates from the literature and find the median estimate is only 0.54.  

For substitution elasticities among energy inputs, only Fisher-Vanden et al. (2004) employ 

firm-level data to estimate the elasticities for China; this earlier work use simple regressions that 

do not address the endogeneity issues discussed in Section 2 and find the elasticities range from 

0.29 to 1.31. Other studies use industrial and provincial data, such as Smyth et al. (2011), Ma and 

Stern (2016). Smyth et al. (2011) find the interfuel elasticities are close to 1, while the results of 

Ma and Stern (2016) are just around 0.5 in most cases. Zha and Zhou (2014) also estimate a nested 

CES production function using industry-level data, and find the average elasticity between value-

added and energy is 0.94. 

  

5.2 Base Case Simulation of CGE Model 

The main variables of the base case path are given in Table 3. GDP grows at 6.5% during 

2014-2020, then decelerates to 5.0% in 2020-30 4 . Energy consumption is calibrated to the 

projections in IEA (2016) and total energy use grows at 1.6% during 2017-30 with a substantial 

switch from coal to oil and gas. Coal consumption only grow at 0.90% annually. Oil will rise 

relatively faster than coal use, while natural gas grows more than twice speed of oil. Given IEA’s 

conservative view of China’s coal use forecast, total CO2 emissions (including processed carbon 

emissions in the cement sector) only grow at 1.2% per year during 2017-30, fossil-fuel combusted 

carbon emissions grow at 1.4%. Our economic growth projection for 2030 is roughly doubling of 

the 2017 level, based on US$2005 PPP level.  

 
4 This is consistent with the deceleration observed during 2010-2016, and with the government target of 6.5% 
growth for the 13th Five Year Plan. These growth projections are also similar to those in World Bank-DRC (2013) and 
IEA (2014). 
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Table 3. Base case projection of output and energy use 

  GTAP Case Empirical Case 

Variable 2020 2030 

2017-30 

growth 

rate 

2020 2030 

2017-30 

growth 

rate 

          

Population (million) 1,403 1,416 0.16% 1,403 1,416 0.16% 

Effective labor supply (bil. 

2014 yuan) 
27,433 25,527 -0.61% 27,433 25,527 -0.61% 

GDP (billion 2014 yuan) 93,065 151,463 5.30% 92,853 141,242 4.72% 

Consumption/GDP 0.46 0.53   0.47 0.57   

Energy use (million tons sce*) 4,697 5,456 1.62% 4,944 5,696 1.73% 

Coal use (million tons) 4,240 4,721 0.90% 4,372 4,688 0.69% 

Oil use (million tons) 665 799 2.23% 721 871 2.56% 

Gas use (million cubic meters) 291,908 458,128 5.27% 310,306 470,799 5.21% 

Electricity use (TWh) 6,898 7,869 1.57% 7,460 8,792 2.11% 

CO2 emissions (fossil fuel, 

million tons) 
10,164 11,741 1.40% 11,871 12,932 1.04% 

CO2 emissions (total, million 

tons) 
11,451 12,955 1.23% 12,364 12,973 0.92% 

Carbon intensity (kg 

CO2/yuan) 
0.123 0.086 -3.86% 0.128 0.092 -3.52% 

          

GDP per capita (2014 yuan)      66,340     107,000         66,189       99,780    

GDP per capita; PPP US$2005 11,734  18,926    11,708  17,649    

 Now we revise the basic CES parameters that cited from GTAP modeling database5. 

Table 3 also presents the basic economic indicators, energy use and carbon emission output 

results using the empirically estimated parameters given in table 2. Since the parameters used for 

base case and counterfactual carbon tax scenarios, so we present both scenarios to compare with 

the one using GTAP parameters.  

 We can see from table 3 that, the GDP grows slower in the empirical case. Total energy 

grows at similar pattern, however in the empirical case coal use grows slower, while oil use 

grows faster. The gas use is similar, but the electricity use is much higher in the empirical case. 

Given the coal use grows slower, the carbon emissions accordingly also grow slower than the 

 
5 Detail see GTAP7 Manual book, Chap.7 Behavior Parameters by Hertel et. al;  
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GTAP case. Carbon intensity, GDP per capita, or GDP per capita in PPP terms are slightly 

smaller in the empirical case. 

5.3 Carbon Pricing Simulations 

In the economic model, we assume competitive markets and carbon tax were imposed on 

fossil fuel uses according to their carbon contents. With the carbon tax at upstream of fossil fuels 

on coal, oil and gas, the output price of other commodities would also increase due to the input-

output linkages. The complete set of equations is given in a technical report (Cao and Ho 2017); 

here we note the main aspects to clarify the implementation of the policy scenarios as summarized 

in Table 2. 

Table 4. Comparing Carbon Tax Policy Impacts using GTAP parameters and Our Empirical 

Case 

  GTAP case   Empirical case 

  Base case 

2030 

policy 

case   Base case 

2030 

policy 

case 

Variable -63.21%   -62.50% 

         

GDP (billion yuan 2014)     151,463  -0.150      141,242  -0.163 

Consumption (bil yuan 2014)       75,687  -0.182        75,952  -0.203 

Investment (bil yuan 2014)       56,907  -0.211        49,459  -0.188 

Government consumption (bil yuan 2014)       13,313  0.000        10,397  0.000 

Energy use (million tons of sce)         5,456  -8.11          5,696  -11.75 

Coal use (million tons)         4,722  -11.97          4,688  -20.16 

Oil use (million tons)            799  -2.51             871  -5.72 

Gas use (billion cubic meters)     458,128  -7.58      470,799  -6.19 

Electricity (billion kWh)         7,869  -3.34          8,792  -3.9 

CO2 emissions (inc cement; mil tons)       12,826  -9.51        12,973  -13.3 

carbon tax revenue as %total revenue   2.31%     2.4% 

 

 Table 4 provides the comparison between the carbon tax simulations in the GTAP 

parameter case and Empirical parameter case. We first set a carbon tax imposed at the upstream 

mine mouth of coal, oil and natural gas, then the price signals would send forward through inter-

sectoral linkages using the updated SAM tables. We can see that, using empirical parameters not 

only affect the base case, the confound impacts lead to relatively larger impacts on GDP and 

consumption, but slightly lower impacts on investment. The impacts on energy use, coal use, oil 

use are bigger, while impacts on natural gas are smaller. The impact on electricity use is slightly 
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higher. Given the impacts on coal and primary energy are larger, the impact on carbon reduction 

is also bigger. Tax revenue as a share of total revenue is slightly higher, with very similar 

magnitude. 

5.4 Sensitivity Analysis 

 In addition, we conduct a sensitivity analysis by varying certain key sectors, while keeping 

the other sectors with the same GTAP parameters as baseline GTAP-CGE model to test for the 

sensitivity of sectoral elasticities. We consider the following scenarios: 1) only coal sector use 

empirical estimated parameters; 2) electricity sector only; 3) all energy sectors, including coal, oil, 

natural gas, refining sector, electricity and gas product sector; 4) all energy intensity and trade 

exposed (EITE) sectors, including all energy sectors, and paper, chemical, non-mineral product 

(mainly cement), primary metal, metal; 5) all sectors are using empirically estimated parameters.  

 Table 5 provides the results of this sensitivity analysis assuming we adopt different 

parameters while keeping the other sectors using GTAP parameters, to checking if any sector is 

more sensitive to the parameter changes. We found that we start from single sector coal and 

electricity sector, both of them would have similar impacts on GDP, but not the same impacts on 

consumption and investment. Changing coal sector parameters would bring larger impacts on 

consumption but smaller impacts on investment. The impacts on energy and carbon are relatively 

smaller for revising coal sector than revising electricity sector, except the impact on natural gas.  

 However, when we compound more sectors into the analysis, such as revising all energy 

sector parameters, some of the effects may confound, but some may offset with each other. Finally, 

we add more EITE sectors upon energy sectors, then we found that the overall impacts on coal use 

would be compounded, leading to a larger impacts of carbon reductions using empirical parameter 

model. The impacts on GDP, consumption and investment depend on the real case, and the net 

results may offset with different assumptions.  
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Figure 5. Sensitivity analysis with empirical parameters limited to certain sectors 

  Sensitivity Analysis 

Variable coal electricity energy eite all 

2030 carbon intensity reduction -63.30% -63.60% -63.70% -63.70% -62.50% 

GDP (billion yuan 2014) -0.157 -0.150 -0.082 -0.189 -0.163 

Consumption (bil yuan 2014) -0.186 -0.096 -0.044 -0.210 -0.203 

Investment (bil yuan 2014) -0.217 -0.293 -0.209 -0.235 -0.188 

Government consumption (bil yuan 2014) 0.000 0.000 0.000 0.000 0.000 

Energy use (million tons of sce) -8.58 -9.43 -9.23 -11.40 -11.75 

Coal use (million tons) -12.90 -13.89 -14.63 -17.96 -20.16 

Oil use (million tons) -2.35 -2.62 -1.68 -2.41 -5.72 

Gas use (billion cubic meters) -7.57 -7.28 -5.54 -8.54 -6.19 

Electricity (billion kWh) -3.18 -4.56 -3.45 -5.15 -3.86 

CO2 emissions (inc cement; mil tons) -9.94 -11.21 -11.16 -12.81 -13.26 

carbon taxes as %total revenue 2.31% 2.29% 2.28% 2.29% 2.44% 

 

6. Conclusion 

Estimating the substitution elasticity of energy is of great importance both in theory and 

in practice. The substitutability of energy is a crucial parameter in energy-economic models, 

especially computable general equilibrium (CGE) models, which are used to analyze policies. 

However, such parameters are often not estimated for single countries, so most CGE model 

developer would have to rely on GTAP or other parameters in the literature. In this field, 

gasoline elasticity or simple electricity elasticity are often found in the micro-empirical studies, 

while the tier structure of energy substitution are still lacking in the literature. Therefore, in this 

paper we use ACF method to estimate sectoral CES production functions and find significant 

heterogeneity in substitution elasticities across different industries. Then we incorporate these 

empirically estimated elasticities into the CGE model to simulate China’s carbon pricing policies 

to reach NDC targets in 2030.  

Our study would potentially provide useful by sectoral energy elasticities for CGE 

modelers to use, or as robustness or sensitivity analysis. In order to compare how our empirical 

CGE parameters differ from the general case using GTAP parameters, we use a carbon tax policy 

in China to reach the medium NDC target as an example to test for the model sensitivity. We 

find our empirical CGE model project lower GDP growth and higher energy projections, 

however with lower coal use and carbon emissions. In the counterfactual carbon tax exercises, 
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we found compared to the GTAP parameter case simulations, our empirical case would cause 

slightly larger GDP loss and greater energy use and carbon emission reductions. Finally, we also 

conduct a sensitivity analysis on only switching a few sectors, especially energy sectors, found 

the impact on energy use and carbon emissions can be confounded, while other factors may 

offset and net effects are uncertain. 
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A Appendix 

A.1 Constructing real capital 

Let VK
it

b  denotes the book value of capital of firm i  at year t  in the SAT dataset. Data from Wu 

(2015) is used to decompose VK
it

b into two parts: structure capital (VK
it

bs ) and equipment capital 

(VK
it

be). Wu’s industry classification is based on the Chinese Industry Production (CIP) code and 

we match it with the national economic industrial code from NBS. We also use this data to 

decompose the firm-level capital stock in 1993 VK
i1993

b  provided by Brandt et al. (2012) into 

VK
i1993

bs  and VK
i1993

be . 

Let t
0
 be the year when firm i  first appears in the SAT dataset and t*  be the year when the firm 

was established. We first establish the industry average growth rate of capital between 1993 and 

t
0
 using the 1993 data. The average firm capital stock in industry j  and province p  in 1993, for 

structure and equipment, is: 

 VK
jp1993

bs =
1

nf
jp

V
iÎj ,p

å K
i1993

bs   

where nf
jp

 is the number of firms of type jp  in the 1993 dataset. We compute a similar average 

for firms in the NBS data: 

 VK
jpt

bs =
1

nf
jp

V
iÎj ,p

å K
it

bs   

Then the average growth rate of the firms in industry j  and province p  between 1993 and t
0
 is: 

 g
jpt

be = (VK
jpt

0

be /VK
jp1993

be )
1/(t

0
-1993)

-1  

If the firm was established after 1992, we assume that the initial equipment and structure stock at 

t* is given by a constant growth rate equal to the industry/province rate calculated above. For the 

years between t*and t
0
, we use the same growth rates to calculate the nominal stock. For the firms 

established before 1993, we make further simplifying assumptions, i.e. its nominal capital stock in 

1993 may be given by the industry average growth rate. 
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Next, we calculate industry-level equipment and structure stock growth rates g
jt

s and g
jt

e  from 

1981 to 1993 using national industry stock estimates in Wu (2015). Following Brandt et al. (2012), 

we assume the earliest possible establishment year is 1978, the beginning of the economic market 

reforms. We also assume the industry-level growth rate from 1978 to 1980 is the same as the 

growth rate in 1981. The book value in year t  is thus estimated as 

 VK
it

bs =VK
it*

bs ×(1+ g
jt

0

s )(t-t*) , t = t*,...,t
0
  

In the SAT dataset, some firms don’t have continuous observations during the sample period. To 

fill in the gaps, we use the years next to the gap years to linearly interpolate the missing years. 

After constructing the time series of book values of the equipment and structure stocks for each 

firm since establishment, we can calculate the real capital stock series. The nominal net investment 

(new investment less disposals) is simply given by VK
it

bs -VK
it-1

bs . We take the national investment 

goods price indices ( PK
t

s , PK
t

e ) from the China Statistical Yearbook to deflate these nominal 

investments. Depreciation rates for assets in China (d
s
,d

e
) are taken from Harry Wu. 

The initial real equipment and structure stocks in year t*are: 

 K
it*

e =VK
it*

be / PK
t*

e ,K
it*

s =VK
it*

bs / PK
t*

s   

Table 3 reports the summary statistics for nominal and real equipment and structure stock. The 

mean of real equipment stock is less than the mean of nominal equipment stock, but the mean of 

real structure stock is quite close to the mean of nominal equipment stock. This is because the price 

index for structure has been rising for most of the sample period, while the index for equipment 

has been relatively stable. This also highlights the importance of distinguishing the two categories 

of fixed capital. 

Table 3: Summary statistics on nominal and real equipment and structure stock 

Variable Obs. Mean Median SD Min Max 

VKbs 5061903 28663 203 661556 0 269253300 

Ks 5061903 25682 323 574253 0 192639184 

VKbe 5061903 9320 68 214061 0 98660536 

Ke 5061903 10099 124 250069 0 116241488 
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As noted in Jorgenson et al. (2005), one should distinguish between capital stocks and annual 

service flows since the depreciation rates of different assets vary widely. We apply a simple form 

of the capital cost in Jorgenson et al. (2005), ignoring tax complications. The ex-ante annual rental 

costs of a unit of equipment and structure are given by: 

 PKD
t

e = (r
t
-p

t

e +d
e
)PK

t-1

e , PKD
t

s = (r
t
-p

t

s +d
s
)PK

t-1

s   

where p
t

a = PK
t

a / PK
t-1

a -1 is the rate of capital gains, r
t
 is discount rate that we proxy with the 

national one-year loan rate decided by the central bank. We have to use a national cost of capital 

since we do not have regional or industry investment deflators. 

The total annual capital cost for firm i  is the sum of the two categories of capital: 

  PKD
t

eK
it

e + PKD
t

sK
it

s =VKD
it
  

where VKD
it

denotes the nominal value of capital input. 

For the first period, we normalize real capital input as KD
i
0

=VKD
i
0

. For later periods, we define 

the real capital input of firm i  as the Tornqvist index over the two asset types: 

 ln
KD

it

KD
it-1

= v
it

sln
K
it

s

K
it-1

s
+ v

it

eln
K
it

e

K
it-1

e
  

where the weights are: 

 v
it

a = (v
it

a + v
it-1

a ) / 2, v
it

a = PKD
t

aK
t

a /VKD
it
  

The firm-level capital rental price is therefore given by PKD
it

=VKD
it

/ KD
it

. 

A.2 Data cleaning procedures 

Besides deleting the observations with obvious errors, i.e. the missing observations with non-

positive gross outputs, labor and capital inputs, we employ the following algorithms to delete 

implausible or extremely volatile observations: 

• Values of outputs, intermediate inputs, sales revenues that are unchanged in current consecutive 

years (23,891). 

• Real output growth rate is greater than 1, but intermediate input growth rate is less than 0.5 in 

that year, and capital, labor growth rates are less than 0.5 during recent previous five years (11,995). 
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• Labor growth rate is greater than 5 in current year but fall by more than -0.5 in the next year, or 

it’s less than -0.5 in current year but greater than 5 in the next year (13,061). 

• Labor growth rate is greater than 1 but output growth rate is less than -0.5 (14,019). 

• Wage (per worker) growth rate is greater than 1 and wage is greater than 10000, but output 

growth rate is less than -0.5 and labor growth rate is greater than -0.5 (31,100). 

• Labor, capital, output, wage growth rate is less than -0.99 (32,288). 

• Labor, capital, output, wage growth is greater than 30 (57,178). 

• Output/capital and output/labor growth rates are greater than 1, value-added/capital, value-

added/labor growth rates are less than -0.5, intermediate input/capital, intermediate input/labor 

growth rates are less than -0.5 (24,538). 

• Outputs or intermediate inputs are rounded to very few significant digits for consecutive years, 

e.g. 160000. We exclude observations which are divisible by 100 for 3 or more years (32,439). 

Removing these implausible data yields a sample with 634,461 firms and 1,487,822 observations. 

The distribution of the cleaned sample is presented in the second and third panels of Table 4, from 

which we can see that deleting these observations do not change the yearly distribution of the 

original data. 

Table 4: Sample distributions before and after deleting observations with obvious and hidden 

errors 

  
Original sample 

After deleting non- 

positive energy inputs 

After deleting      

implausible obs. 

  Obs. Percent Obs. Percent Obs. Percent 

2007 313,051 5.59 116,108 3.82 68,685 4.62 

2008 404,170 7.21 169,066 5.57 101,920 6.85 

2009 624,076 11.14 335,068 11.03 171,807 11.55 

2010 746,770 13.33 343,237 11.29 197,491 13.27 

2011 691,865 12.35 368,131 12.12 197,883 13.30 

2012 690,826 12.33 447,253 14.73 201,924 13.57 

2013 714,606 12.75 477,634 15.73 199,799 13.43 

2014 717,477 12.81 408,923 13.46 173,678 11.67 

2015 699,918 12.49 371,575 12.23 174,635 11.74 
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