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Abstract 

In order to achieve the reduction target of GHG emissions, the Japanese government aims at 

securing 33.6-35.3 TWh of electricity generation from renewable energy sources by 2030 and 

photovoltaic (PV) power generation is expected to account for a large share of electricity 

generation. Actually, recently there has been numbers of new entrants in the PV power generation 

business in Japan. This study applies the data envelopment analysis (DEA) and metafrontier 

global malmquist index (MGMI) to the unbalanced panel data on PV power generation activity 

from fiscal 2016 to 2020 in Japan and investigates the static and dynamic power generation 

efficiency for the PV power plants considering new entrants and regional heterogeneity. The 

results of static analysis indicate that the west region shows the most outstanding performance. 

On the other hand, the results of MGMI indicate that the east region experienced the largest 

growth in MGMI and the main driver of the increase in MGMI is technology innovation within 

the same region. In addition, this study also identifies the innovative PV power plants which 

contributed to the progress in regional and global frontier technology and the results imply that 

policymakers should encourage technology spillover between the innovative power plants and 

the others by coordinating interactions among them. 
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1. Introduction 

 

 According to The Sixth Strategic Energy Plan in Japan, the Japanese government plans 

to further promote the energy saving to address the growing energy demand induced by economic 

development and increase in the rate of electrification (Ministry of Economy, Trade and Industry: 

METI, 2021). As a result, the electricity demand is expected to be 86.4 TWh in 2030, which will 

be reduced by 13% compared to that in 2013 (METI, 2021). In order to achieve the reduction 

target of GHG emissions (46% reduction compared to 2013 level), the Japanese government aims 

at securing 33.6-35.3 TWh of electricity generation from renewable energy sources, which will 

account for 36-38% of the total electricity generation in Japan in 2030. The installation capacity 

of photovoltaic (PV) power generation systems is 72 GW in Japan, the third largest installation 

capacity in the world, in 2020 (International Energy Agency: IEA, 2021). Furthermore, at most 

26.2 GW of newly installation in PV power generation systems is expected by 2030 (METI, 2021). 

 

 On the other hand, high rate of production improvement resulted from incremental 

innovation has been leading to the dramatic cost reduction in the products such as light bulbs, 

aircraft (e.g., DC-3), passenger car (e.g., the Model T Ford), computer core memory and TV 

(OECD, 2018: Abernathy and Utterback, 1978). In the near future, PV power generation systems 

will be added to these model cases. Actually, the global weighted-average levelized cost of 

electricity (LCOE) for the commercial PV power generation systems decreased by as large as 

85% from 2010 to 2020 (International Renewable Energy Agency: IRENA, 2021). 

 

 When focusing on Japan, the LCOE value drastically decreased from 0.339 USD/kWh 
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in 2012 to 0.132 USD/kWh in 2020 (IRENA, 2021) and it has been lowering the entry wall in the 

PV power generation business. Moreover, recently there has been a growing attention to the 

carbon neutrality in Japan and it has been attracting numbers of new entrants in the PV power 

generation business (METI, 2022). Specifically, after the introduction of feed-in tariff (FIT) 

system in 2012, newly approved installation capacity in PV power generation systems (with the 

inverter rated capacity over 10 KW and not for residential) reached approximately 67.7 GW in 

total as of the end of December 2021 (Agency for Natural Resources and Energy, 2022). On the 

other hand, when we look at the share of newly approved installation capacity in PV power 

generation systems by region, it varies from region to region (North: 6.5%, East: 51.0%, West: 

42.5%) (Agency for Natural Resources and Energy, 2022). This fact means that there is a 

difference in the levels of vitalization of new entrants in PV power generation business among 

the regions. 

 

Baily et al. (1992) and Foster et al. (2001) pointed out that the growth rate of total factor 

productivity (TFP) increases when a company with cutting-edge technology and advanced 

business model newly enters into the market or when a company with deteriorated productivity 

due to reasons such as technology obsolescence leaves from the market. Although the innovation 

has been confirmed in terms of cost in the PV power generation business, it has not been cleared 

yet that the technology innovation resulted from the new entrants pointed out by Baily et al. (1992) 

and Foster et al. (2001) has been promoted. 

 

 For evaluating the levels of technology innovation, a combined analytical framework of 

data envelopment analysis (DEA) and Malmquist productivity index (MPI) has been widely 

utilized (Cooper et al., 2007). DEA is a nonparametric method first developed by Charnes et al. 
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(1978) to evaluate the performance of decision-making units (DMUs) simultaneously considering 

multiple inputs and outputs without any assumption for the type of production function. In DEA, 

efficiency scores are estimated based on the relative distance between the inefficient DMUs and 

the production possibility frontier (Cooper et al., 2007). On the other hand, conventional MPI 

decomposes the productivity change into two terms of frontier-shift effect (i.e., innovation effect) 

and catch-up effect (Cooper et al., 2007; Färe et al., 1994). However, conventional MPI has two 

shortcomings. First, the MPI is calculated on the basis of geometric mean and thus is not circular 

and its adjacent period components can provide different measures of productivity change (Pastor 

and Lovell, 2005). Second, the MPI overlooks the innovation effect within the group (e.g., 

regional and industrial groups) (Oh and Lee, 2010). 

 

 To address these shortcomings, Oh and Lee (2010) proposed the metafrontier global 

Malmquist index (MGMI) assuming the contemporaneous and intertemporal frontier 

technologies as well as the global frontier technology. The MGMI is circular and can shed light 

on the technology innovation at group levels. Furthermore, Zhang and Choi (2013) proposed the 

method for identifying the ‘innovator’1 by utilizing the framework of MGMI. Zhang and Choi 

(2013) found that fossil fuel power plant companies owned by the central government in China 

lacked technological innovation and technological leadership, while several companies owned by 

the local government contributed to the progress in local group frontier and global frontier 

technologies during the study period. 

 

 In the light of these research background and acquired knowledge from the previous 

                                                      
1 In Zhang and Choi (2013), ‘innovators’ are defined as the DMUs which contribute to the progress 
in global or group frontier technologies. 
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studies, this study applies the DEA and MGMI to the unbalanced panel data consist of pooled 750 

observations for PV power generation activity from fiscal 2016 to 2020 in Japan to address the 

following research questions; 

 

 Have the new entrants in the PV power generation business been promoting the technology 

innovation in this field? 

 In that case, how much difference in the levels of technology innovation would be existing 

between the regions? 

 What are the characteristics of the ‘innovators’? 

 

To the best our knowledge, most previous DEA studies only considered the existing 

companies and ignored new entrants. In this paper, we investigate the dynamics in technology 

innovation in the field of PV power generation systems in Japan in detail and discuss the issues 

for the substantial new installation of them in the future. 

 

The remainder of this paper is organized as follows. In Section 2, the proposed research 

framework is described. The data used in this study are explained in Section 3, the results and 

policy discussion are presented in Section 4, and concluding remarks are given in Section 5. 

 

2. Methodology 

2.1 Output-oriented slacks-based measure (SBM) model 

 

This study employs output-oriented SBM model to evaluate power generation efficiency 
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of PV power plants in Japan. Following Tone (2001), we can calculate power generation 

efficiency of 𝑛𝑛′-th power plant by solving the following fractional programming problem: 

 

           min.         𝐷𝐷𝑛𝑛′(𝑥𝑥,𝑦𝑦) =
1−1𝐽𝐽 ∑

𝑠𝑠
𝑗𝑗𝑛𝑛′
−

𝑥𝑥𝑗𝑗𝑛𝑛′
𝐽𝐽
𝑗𝑗=1

1+1
𝐾𝐾∑

𝑠𝑠𝑘𝑘𝑛𝑛′
+

𝑦𝑦𝑘𝑘𝑛𝑛′
𝐾𝐾
𝑘𝑘=1

  

      subject to    1 + 1
𝐾𝐾
∑

𝑠𝑠𝑘𝑘𝑛𝑛′
+

𝑦𝑦𝑘𝑘𝑛𝑛′
𝐾𝐾
𝑘𝑘=1 = 1  

                       𝑥𝑥𝑗𝑗𝑛𝑛′ − 𝑠𝑠𝑗𝑗𝑛𝑛′
− = ∑ 𝜆𝜆𝑛𝑛𝑥𝑥𝑗𝑗𝑛𝑛𝑁𝑁

𝑛𝑛=1                    (𝑗𝑗 = 1, … , 𝐽𝐽)  

                       𝑦𝑦𝑘𝑘𝑛𝑛′ + 𝑠𝑠𝑘𝑘𝑛𝑛′
+ = ∑ 𝜆𝜆𝑛𝑛𝑦𝑦𝑘𝑘𝑛𝑛𝑁𝑁

𝑛𝑛=1                 (𝑘𝑘 = 1, … ,𝐾𝐾)  

                      ∑ 𝜆𝜆𝑛𝑛𝑁𝑁
𝑛𝑛=1 = 1  

                      𝜆𝜆𝑛𝑛 ≥ 0, 𝑠𝑠𝑗𝑗𝑛𝑛′
− ≥ 0, 𝑠𝑠𝑘𝑘𝑛𝑛′

+ ≥ 0                 (1) 

 

where 𝜆𝜆𝑛𝑛  is an intensity variable for constructing the production possibility set by a convex 

combination, 𝑠𝑠𝑗𝑗𝑛𝑛′
−  is slack of 𝑗𝑗-th input for plant 𝑛𝑛′, and 𝑠𝑠𝑘𝑘𝑛𝑛′

+  is slack of 𝑘𝑘-th output for plant 

𝑛𝑛′ . 𝐽𝐽 , 𝐾𝐾 , and 𝑁𝑁  denote the number of inputs, outputs, and observations, respectively. We 

consider three inputs (solar irradiation, temperature, and inverter rated capacity) and one output 

(actual electricity generation) in this study. Thus, the number of inputs and outputs are three and 

one, respectively (i.e., 𝐽𝐽 = 3  and 𝐾𝐾 = 1 ). 𝐷𝐷𝑛𝑛′(𝑥𝑥,𝑦𝑦)  is the efficiency score and power plant 

with 𝐷𝐷𝑛𝑛′(𝑥𝑥,𝑦𝑦) = 1 can be regarded as efficient. The fractional programming problem (1) can 

be transformed into a linear program using the Charnes-Cooper transformation (See Tone, 2001). 
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2.2 Metafrontier Global Malmquist Index (MGMI) 

 

Following Oh and Lee (2010) and Zhang et al. (2013), this study calculates MGMI and 

decomposes it into three components: efficiency change (EC), best practice gap change (BPGC), 

and technological gap change (TGC). PV power generation performance is closely related to 

latitude and weather; thus, there is regional heterogeneity in PV power generation technology. To 

deal with the heterogeneity, we employ metafrontier DEA framework (O’Donnell, 2008; Eguchi 

et al., 2021). This study divides all PV power plants into three regional groups: north, east, and 

west. 

 

The MGMI can be calculated and decomposed by solving three types of DEA model: 

global model, intertemporal model, and contemporaneous model. In the global model, power 

generation efficiency of 𝑛𝑛′-th power plant in year 𝑡𝑡′ (i.e., global efficiency) is calculated by 

referring to the global production technology constructed by all regions in all years as follows: 

 

              min.      𝐷𝐷𝑛𝑛′
𝐺𝐺 (𝑥𝑥𝑡𝑡′ ,𝑦𝑦𝑡𝑡′) =

1−1𝐽𝐽 ∑
𝑠𝑠
𝑗𝑗𝑛𝑛′𝑡𝑡′
−

𝑥𝑥𝑗𝑗𝑛𝑛′𝑡𝑡′
𝐽𝐽
𝑗𝑗=1

1+1
𝐾𝐾∑

𝑠𝑠𝑘𝑘𝑛𝑛′𝑡𝑡′
+

𝑦𝑦𝑘𝑘𝑛𝑛′𝑡𝑡′
𝐾𝐾
𝑘𝑘=1
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        subject to    1 + 1
𝐾𝐾
∑

𝑠𝑠𝑘𝑘𝑛𝑛′𝑡𝑡′
+

𝑦𝑦𝑘𝑘𝑛𝑛′𝑡𝑡′
𝐾𝐾
𝑘𝑘=1 = 1  

                       𝑥𝑥𝑗𝑗𝑛𝑛′𝑡𝑡′ − 𝑠𝑠𝑗𝑗𝑛𝑛′𝑡𝑡′
− = ∑ ∑ 𝜆𝜆𝑛𝑛𝑡𝑡𝑥𝑥𝑗𝑗𝑛𝑛𝑡𝑡𝑇𝑇

𝑡𝑡=1
𝑁𝑁
𝑛𝑛=1               (𝑗𝑗 = 1, … , 𝐽𝐽)  

                       𝑦𝑦𝑘𝑘𝑛𝑛′𝑡𝑡′ + 𝑠𝑠𝑘𝑘𝑛𝑛′𝑡𝑡′
+ = ∑ ∑ 𝜆𝜆𝑛𝑛𝑡𝑡𝑦𝑦𝑘𝑘𝑛𝑛𝑡𝑡𝑇𝑇

𝑡𝑡=1
𝑁𝑁
𝑛𝑛=1             (𝑘𝑘 = 1, … ,𝐾𝐾)  

                      ∑ ∑ 𝜆𝜆𝑛𝑛𝑡𝑡𝑇𝑇
𝑡𝑡=1

𝑁𝑁
𝑛𝑛=1 = 1  

                      𝜆𝜆𝑛𝑛𝑡𝑡 ≥ 0, 𝑠𝑠𝑗𝑗𝑛𝑛′𝑡𝑡′
− ≥ 0, 𝑠𝑠𝑘𝑘𝑛𝑛′𝑡𝑡′

+ ≥ 0    (2) 

 

where 𝑁𝑁 and 𝑇𝑇 denote the number of observations and years, respectively. The study period 

of this study is between fiscal 2016 and 2020, and there were 750 observations during the period 

(i.e., 𝑁𝑁 = 750 and 𝑇𝑇 = 5).  

 

In the intertemporal model, power generation efficiency of 𝑛𝑛′-th power plant in year 𝑡𝑡′ 

(i.e., intertemporal efficiency) is calculated by referring to the intertemporal production 

technology constructed by each region in all years as follows: 

 

             min.       𝐷𝐷𝑛𝑛′
𝐼𝐼 (𝑥𝑥𝑡𝑡′ ,𝑦𝑦𝑡𝑡′) =

1−1𝐽𝐽 ∑
𝑠𝑠
𝑗𝑗𝑛𝑛′𝑡𝑡′
−

𝑥𝑥𝑗𝑗𝑛𝑛′𝑡𝑡′
𝐽𝐽
𝑗𝑗=1

1+1
𝐾𝐾∑

𝑠𝑠𝑘𝑘𝑛𝑛′𝑡𝑡′
+

𝑦𝑦𝑘𝑘𝑛𝑛′𝑡𝑡′
𝐾𝐾
𝑘𝑘=1

  

       subject to    1 + 1
𝐾𝐾
∑

𝑠𝑠𝑘𝑘𝑛𝑛′𝑡𝑡′
+

𝑦𝑦𝑘𝑘𝑛𝑛′𝑡𝑡′
𝐾𝐾
𝑘𝑘=1 = 1  

                       𝑥𝑥𝑗𝑗𝑛𝑛′𝑡𝑡′ − 𝑠𝑠𝑗𝑗𝑛𝑛′𝑡𝑡′
− = ∑ ∑ 𝜆𝜆𝑛𝑛𝑡𝑡𝑥𝑥𝑗𝑗𝑛𝑛𝑡𝑡𝑇𝑇

𝑡𝑡=1
𝑁𝑁𝑅𝑅
𝑛𝑛=1               (𝑗𝑗 = 1, … , 𝐽𝐽)  

                       𝑦𝑦𝑘𝑘𝑛𝑛′𝑡𝑡′ + 𝑠𝑠𝑘𝑘𝑛𝑛′𝑡𝑡′
+ = ∑ ∑ 𝜆𝜆𝑛𝑛𝑡𝑡𝑦𝑦𝑘𝑘𝑛𝑛𝑡𝑡𝑇𝑇

𝑡𝑡=1
𝑁𝑁𝑅𝑅
𝑛𝑛=1             (𝑘𝑘 = 1, … ,𝐾𝐾)  
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                      ∑ ∑ 𝜆𝜆𝑛𝑛𝑡𝑡𝑇𝑇
𝑡𝑡=1

𝑁𝑁
𝑛𝑛=1 = 1  

                      𝜆𝜆𝑛𝑛𝑡𝑡 ≥ 0, 𝑠𝑠𝑗𝑗𝑛𝑛′𝑡𝑡′
− ≥ 0, 𝑠𝑠𝑘𝑘𝑛𝑛′𝑡𝑡′

+ ≥ 0    (3) 

 

where 𝑁𝑁𝑅𝑅 denotes number of observations classified as group 𝑅𝑅 (𝑅𝑅 =

north, east, and west). The number of observations in north, east, and west regions is 263, 192, 

and 300, respectively. Thus, 𝑁𝑁north = 263, 𝑁𝑁east = 192, and 𝑁𝑁west = 300. 

 

In the contemporaneous model, power generation efficiency of 𝑛𝑛′-th power plant in 

year 𝑡𝑡′ (i.e., contemporaneous efficiency) is calculated by referring to the contemporaneous 

production technology constructed by each region in each year as follows: 

 

             min.       𝐷𝐷𝑛𝑛′
𝐶𝐶 (𝑥𝑥𝑡𝑡′ ,𝑦𝑦𝑡𝑡′) =

1−1𝐽𝐽 ∑
𝑠𝑠
𝑗𝑗𝑛𝑛′𝑡𝑡′
−

𝑥𝑥𝑗𝑗𝑛𝑛′𝑡𝑡′
𝐽𝐽
𝑗𝑗=1

1+1
𝐾𝐾∑

𝑠𝑠𝑘𝑘𝑛𝑛′𝑡𝑡′
+

𝑦𝑦𝑘𝑘𝑛𝑛′𝑡𝑡′
𝐾𝐾
𝑘𝑘=1

  

        subject to    1 + 1
𝐾𝐾
∑

𝑠𝑠𝑘𝑘𝑛𝑛′𝑡𝑡′
+

𝑦𝑦𝑘𝑘𝑛𝑛′𝑡𝑡′
𝐾𝐾
𝑘𝑘=1 = 1  

                       𝑥𝑥𝑗𝑗𝑛𝑛′𝑡𝑡′ − 𝑠𝑠𝑗𝑗𝑛𝑛′𝑡𝑡′
− = ∑ 𝜆𝜆𝑛𝑛𝑡𝑡′𝑥𝑥𝑗𝑗𝑛𝑛𝑡𝑡′𝑁𝑁𝑅𝑅𝑡𝑡′

𝑛𝑛=1                 (𝑗𝑗 = 1, … , 𝐽𝐽)  

                       𝑦𝑦𝑘𝑘𝑛𝑛′𝑡𝑡′ + 𝑠𝑠𝑘𝑘𝑛𝑛′𝑡𝑡′
+ = ∑ 𝜆𝜆𝑛𝑛𝑡𝑡′𝑦𝑦𝑘𝑘𝑛𝑛𝑡𝑡′𝑁𝑁𝑅𝑅𝑡𝑡′

𝑛𝑛=1                (𝑘𝑘 = 1, … ,𝐾𝐾)  

                      ∑ ∑ 𝜆𝜆𝑛𝑛𝑡𝑡𝑇𝑇
𝑡𝑡=1

𝑁𝑁
𝑛𝑛=1 = 1  

                     𝜆𝜆𝑛𝑛𝑡𝑡 ≥ 0, 𝑠𝑠𝑗𝑗𝑛𝑛′𝑡𝑡′
− ≥ 0, 𝑠𝑠𝑘𝑘𝑛𝑛′𝑡𝑡′

+ ≥ 0    (4) 
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where 𝑁𝑁𝑅𝑅𝑡𝑡′  denotes number of observations classified as group 𝑅𝑅 (𝑅𝑅 =

north, east, and west) in year 𝑡𝑡′. The number of observations in each region and each year is 

presented in Table 1 in Section 3. The illustration of the global, intertemporal, and 

contemporaneous frontiers is described in Figure 1. 

 

 

Figure1. Illustration of the proposed research framework 

 

Solving the above three models, we can calculate and decompose MGMI. The 

calculation and decomposition process of MGMI are as follows: 
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       𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼𝑛𝑛′ =
𝐷𝐷𝑛𝑛′
𝐺𝐺 (𝑥𝑥𝑡𝑡′+1,𝑦𝑦𝑡𝑡′+1)
𝐷𝐷𝑛𝑛′
𝐺𝐺 (𝑥𝑥𝑡𝑡′ ,𝑦𝑦𝑡𝑡′)

 

               = �
𝐷𝐷𝑛𝑛′
𝐶𝐶 (𝑥𝑥𝑡𝑡′+1,𝑦𝑦𝑡𝑡′+1)
𝐷𝐷𝑛𝑛′
𝐶𝐶 (𝑥𝑥𝑡𝑡′ ,𝑦𝑦𝑡𝑡′)

�×

⎩
⎪
⎨

⎪
⎧�
𝐷𝐷𝑛𝑛′
𝐼𝐼 (𝑥𝑥𝑡𝑡′+1,𝑦𝑦𝑡𝑡′+1)

𝐷𝐷𝑛𝑛′
𝐶𝐶 (𝑥𝑥𝑡𝑡′+1,𝑦𝑦𝑡𝑡′+1)�

�
𝐷𝐷𝑛𝑛′
𝐼𝐼 (𝑥𝑥𝑡𝑡′ ,𝑦𝑦𝑡𝑡′)

𝐷𝐷𝑛𝑛′
𝐶𝐶 (𝑥𝑥𝑡𝑡′ ,𝑦𝑦𝑡𝑡′)

�
⎭
⎪
⎬

⎪
⎫

×

⎩
⎪
⎨

⎪
⎧�
𝐷𝐷𝑛𝑛′
𝐺𝐺 (𝑥𝑥𝑡𝑡′+1,𝑦𝑦𝑡𝑡′+1)

𝐷𝐷𝑛𝑛′
𝐼𝐼 (𝑥𝑥𝑡𝑡′+1,𝑦𝑦𝑡𝑡′+1)�

�
𝐷𝐷𝑛𝑛′
𝐺𝐺 (𝑥𝑥𝑡𝑡′ ,𝑦𝑦𝑡𝑡′+1)
𝐷𝐷𝑛𝑛′
𝐼𝐼 (𝑥𝑥𝑡𝑡′ ,𝑦𝑦𝑡𝑡′)

�
⎭
⎪
⎬

⎪
⎫

 

               =
𝑇𝑇𝐸𝐸𝑛𝑛′,𝑡𝑡′+1
𝑇𝑇𝐸𝐸𝑛𝑛′,𝑡𝑡′

×
𝐵𝐵𝐵𝐵𝑀𝑀𝑛𝑛′,𝑡𝑡′+1
𝐵𝐵𝐵𝐵𝑀𝑀𝑛𝑛′,𝑡𝑡′

×
𝑇𝑇𝑀𝑀𝑅𝑅𝑛𝑛′,𝑡𝑡′+1
𝑇𝑇𝑀𝑀𝑅𝑅𝑛𝑛′,𝑡𝑡′

 

               = 𝐸𝐸𝐶𝐶𝑛𝑛′ × 𝐵𝐵𝐵𝐵𝑀𝑀𝐶𝐶𝑛𝑛′ × 𝑇𝑇𝑀𝑀𝐶𝐶𝑛𝑛′           (5) 

 

where 𝑇𝑇𝐸𝐸𝑖𝑖𝑡𝑡 denotes technical efficiency, 𝐵𝐵𝐵𝐵𝑀𝑀𝑖𝑖𝑡𝑡 denotes best practice gap, and 𝑇𝑇𝑀𝑀𝑅𝑅𝑖𝑖𝑡𝑡 denotes 

technology gap ratio of 𝑖𝑖-th plant in year 𝑡𝑡. In addition, 𝐸𝐸𝐶𝐶 denotes efficiency change, 𝐵𝐵𝐵𝐵𝑀𝑀𝐶𝐶 

denotes best practice gap change, and 𝑇𝑇𝑀𝑀𝐶𝐶 denotes technology gap change. The EC term is a 

measure of the catch-up effect within the same region, and EC captures how close a plant moves 

toward the contemporaneous production technology. Here, 𝐸𝐸𝐶𝐶 > 1  means an efficiency gain 

within the same regional group. The BPGC term measures changes in best-practice gap ratio 

between contemporaneous production technology and intertemporal production technology 

during two periods. Here, 𝐵𝐵𝐵𝐵𝑀𝑀𝐶𝐶 > 1  means that contemporaneous technology frontier shifts 

toward the intertemporal technology frontier. The TGC term is a measure of changes in the 

technology gap ratio between intertemporal production technology and global production 

technology during two periods. Here, 𝑇𝑇𝑀𝑀𝐶𝐶 > 1  indicates a decrease in the technology gap 

between the intertemporal production technology for a specific regional group and the global 
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production technology. See Oh and Lee (2010) and Zhang et al. (2013) for more details. 

 

2.3 Identifying the innovators 

 

 Finally, we identify the innovative power plants which contributed to the progress in 

global or group frontier technologies (i.e., innovators) during the study period following Zhang 

and Choi (2013). Group innovators are the power plants with outstanding technology growth 

rate within a regional group and global innovators are the innovative power plants in terms of 

global production technology. Group innovators can be identified by the following three 

conditions (Zhang and Choi, 2013): 

 

𝐵𝐵𝐵𝐵𝑀𝑀𝐶𝐶 > 1 (6𝑎𝑎) 

( ) ( )+ + >
 1 1, 1 6t t tD x y b  

( ) ( )+ + + =
 1 1 1, 1 6t t tD x y c  

 

Eq. (6a) indicates that the contemporaneous frontier around an innovative power plant should 

shift toward the intertemporal frontier between year t and t+1. Eq. (6b) suggests that the 

production activity of an innovative power plant in year t+1 should be outside the 
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contemporaneous frontier in year t. Eq. (6c) means that an innovative power plant should be 

located on the contemporaneous frontier in year t+1. 

 

 Global innovators can also be identified as follows (Zhang and Choi, 2013). 

 

𝑇𝑇𝑀𝑀𝐶𝐶 > 1 (7𝑎𝑎) 

( ) ( )+ + =
 1 1, 1 7G t tD x y b  

 

Eq. (7a) indicates that a global innovative power plants should be among technologically 

leading power plants, reducing the technology gap between the intertemporal production 

technology for a specific regional group and the global production technology between year t 

and t+1. Eq. (7b) means that a global innovative power plant should be located on the global 

frontier in year t+1. 

 

3. Data 

 

 This study considers three inputs and one output to evaluate the power generation 

efficiency of the PV power plants in Japan. As the inputs, we consider solar irradiation (MJ/m2), 
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temperature (degree) 2  and inverter rated capacity (Mw). As the output, actual electricity 

generation (Gwh) is utilized. Increasing solar irradiation and inverter rated capacity leads to the 

increment in electricity generation. However, increase in the temperature would deteriorate the 

power generation efficiency (Dubey et al., 2013). Therefore, we utilize the inverse of temperature 

as an input. In this study, annual input and output data for each PV power plant are considered as 

individual observations. We constructed the annual dataset by summing up the monthly data for 

solar irradiation, inverter rated capacity and actual electricity generation when the PV power 

plants were under operation, while we utilized the average value for the temperature as an input. 

The data for the inverter rated capacity and actual electricity generation were obtained from METI 

(2022) and solar irradiation and temperature were from JMA (2022). The research period is from 

fiscal 2016 to 2020. 

 

 Table 1 shows the average values for each input and output and the number of 

observations by regional groups. Following JMA (2022), each PV power plant is classified into 

three regional groups (i.e., north, east, west) based on the location. It should be noted that number 

of observations varies from year to year because we utilize the pooled data to investigate the 

impact of new entrants on the frontier technology of PV power plants. In the north, east and west 

regions, number of observations is increased by 3.64, 3.65 and 2.10 times from 2016 to 2020, 

respectively. In the east and west regions during the study period, inverter rated capacity and 

actual electricity generation increase by annual rate of approximately 7-8%. Conversely, in the 

north region, inverter rated capacity and actual electricity generation decrease by annual rate of 

1.8% and 3.2%, respectively. 

                                                      
2 We utilized the data on solar irradiation and temperature observed at the nearest seat of a 
prefectural government for each PV power plant. 
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Table 1. Average values for each input and output and number of observations by regional groups 

 

 

4. Result 

4.1 Static efficiency 

 

 Figure 2 provides the comparison of average value of the three static efficiency scores 

during the whole study period, which are measured based on the contemporaneous, intertemporal 

2016 2017 2018 2019 2020

Number of observations 25 35 45 62 91

Solar irradiation
(MJ/m 2 )

130.00 130.41 133.08 139.92 127.67

Temperature
(degree )

6.70 7.62 9.47 5.63 9.55

Inverter rated
capacity (Mw )

267.63 261.44 251.44 249.72 249.02

Actual electricity
generation (Gwh )

31.49 30.97 29.27 30.66 27.91

Number of observations 17 30 28 55 62

Solar irradiation
(MJ/m 2 )

140.68 148.92 169.14 145.57 151.44

Temperature
(degree )

13.00 11.13 16.08 14.36 14.38

Inverter rated
capacity (Mw )

177.92 199.33 216.83 229.07 241.83

Actual electricity
generation (Gwh )

21.14 24.63 25.53 28.10 29.93

Number of observations 40 46 57 73 84

Solar irradiation
(MJ/m 2 )

141.27 167.46 152.91 147.73 162.77

Temperature
(degree )

14.84 16.34 15.93 16.12 16.18

Inverter rated
capacity (Mw )

236.76 262.84 294.18 287.13 322.23

Actual electricity
generation (Gwh )

28.95 34.33 36.64 34.96 40.70

North

East

West
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and global models. For all three efficiency scores, the west region shows the highest performance. 

Specifically, when focusing on the gap in three efficiency scores in the west region, the gap is 

smaller than the other two regions, meaning that relative distance between the contemporaneous, 

intertemporal and global frontiers in this region is very close. In Japan, west region is the area 

with sufficient solar irradiation (Table 1) and it would contribute to this result. 

 

The gap in global, intertemporal and contemporaneous efficiency scores between the 

west and north regions is 0.214, 0.219 and 0.066, respectively. These results indicate that, 

although the static efficiency gap within the same region is marginal, efficiency gap between the 

regions and years is very remarkable. 

 

 

Figure 2. Comparison of the three static efficiency scores (average) 

 

4.2 Dynamic efficiency and its drivers 
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 Figure 3 and Table 2 represent the cumulative and annual changes in average MGMI 

for each region between 2016 and 2020, respectively. According to Figure 3, all three regions 

experienced the consistent growth in MGMI during the study period except for the north region 

between 2019 and 2020. As one of the possible reasons for the decline in MGMI in the north 

region between 2019 and 2020, the amount of solar irradiation was the smallest in 2020 during 

the whole study period and it would have lowered the electricity generation. Figure 3 also 

indicates that the east region shows the most substantial growth in MGMI among the three 

regions and it increased by 33.2% between 2016 and 2020. Annual change rate of MGMI for the 

north, east and west regions is 2.4%, 7.5% and 5.6%, respectively (Table 2). 

 

 Considering the obtained results in Figures 2 and 3, the west region shows the highest 

static efficiency scores among the three regions, while the east region experienced the largest 

growth in MGMI. Next we identify the drivers of the dynamic efficiency change by 

investigating the components of MGMI. 

 

 
Figure 3. Cumulative change in MGMI 
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Table 2. Annual change rate of MGMI 

 

 

 Figure 4 and Table 3 represent the cumulative and annual changes in EC, BPGC, and 

TGC, respectively. When focusing on the average annual change rate of the three indicators 

provided in Table 3, BPGC is dominant in all three regions. This result demonstrates that the 

increase in BPGC, technology innovation within the same region (i.e., narrowed relative 

distance between the contemporaneous and intertemporal frontiers), is the main driver of the 

increasing power generation efficiency of PV power plants in all three regions.  

 

 On the other hand, when we look at the change in EC (Figure 4(a) and Table 3), it has 

the negative impact on MGMI in the east region, while the east region shows the highest 

average annual growth rate of BPGC and TGC among the three regions. These results imply 

that, although the innovative PV power plants in the east region substantially progressed the 

contemporaneous and intertemporal frontier during the study period, catch-up by the other PV 

power plants was not promoted enough. 

 

 Focusing on the annual change rate of each indicator for the west region, TGC 

overcomes BPGC during the periods of 2017-18 and 2018-19 (Table 3). This result indicates 

that the technology innovation in this region more progressed the intertemporal frontier 

technology rather than the contemporaneous frontier technology in these periods. In next 

16-17 17-18 18-19 19-20 Average
North 1.050 1.002 1.085 0.961 1.024
East 1.114 1.059 1.115 1.012 1.075

West 1.054 1.069 1.042 1.058 1.056
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section, we identify the innovative PV power plants which contribute to the progress in 

contemporaneous and intertemporal frontiers. 
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Figure 4. Cumulative changes in EC, BPGC and TGC 

 

Table 3. Annual change rate of EC, BPGC and TGC 

 

 

4.3 Identifying group and global innovators 

 

 In this section, we identify the innovative PV power plants by using Eqs. (6a)-(7b). 

Table 4 provides the list of innovative PV power plants for contemporaneous and global 

16-17 17-18 18-19 19-20 Average
North 0.999 1.002 0.751 1.285 1.009
East 0.919 0.964 0.968 1.099 0.988

West 0.988 0.993 1.027 1.028 1.009
16-17 17-18 18-19 19-20 Average

North 1.034 1.051 1.388 0.756 1.057
East 1.222 1.054 1.168 0.913 1.089

West 1.079 1.020 0.994 1.015 1.027
16-17 17-18 18-19 19-20 Average

North 1.021 0.970 1.088 1.005 1.021
East 1.004 1.070 1.002 1.022 1.024

West 0.987 1.057 1.017 1.008 1.017

EC

BPGC

TGC
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frontiers3. Group innovator represents the PV power plants which contributed to the progress in 

contemporaneous frontier technology and narrowing the distance between contemporaneous and 

intertemporal frontiers. Global frontier innovator represents the PV power plants which 

contributed to the progress in intertemporal frontier technology and narrowing the distance 

between intertemporal and global frontiers. 

 

 Table 4 indicates that, in all three regions, a lot of innovative power plants contributed 

to the progress in contemporaneous frontier technology between 2017 and 2018. However, after 

2018, the number of group innovators drastically decreased in the north and east regions. This 

result means that large increase in BPGC in the east region between 2018 and 2019 (Table 3) 

was led by only power plant #5 (Table 4). On the other hand, in the west region, a lot of PV 

power plants still contributed to the progress in contemporaneous frontier technology after 

2018. Furthermore, several group and global innovators started the operation after 2017. This 

result proves that technology innovation has been induced by the new entrants in the field of PV 

power generation. 

 

 Interestingly, several PV power plants were identified as group innovator multiple 

times (i.e., North: #92, East: #5, #46, #84, West: #175, #179, #185, #190, #218, #229). Other 

plant managers and policymakers should refer to the facilities and management of these PV 

power plants in their region for improving the power generation efficiency. In addition, power 

plants #92, #93, and #94 in the north region and power plants #208 and #210 in the west region 

are operated by the same company. The expertise of this company would be useful for the 

                                                      
3 We were not able to make use of the data before 2016. Therefore, the PV power plants whose 
initial year of operation is 2016 might be started operating before 2016. 
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technology improvement for the other PV power plants. Moreover, the PV array rated capacity 

of innovators rages from 5 MW to 235.4 MW. Thus, plant managers can refer to the suitable 

innovator with production capacity close to their own power plants. 

 

 Finally, most of the global frontier innovators are concentrated in the west region. This 

result would indicate that technology innovation has been actively advancing in the west region. 

On the other hand, it might be possible that distinctive characteristics of the west region (e.g., 

large amount of solar irradiation) has also been boosting the innovation. Conventional 

Malmquist index would overlook the innovation in the group frontiers. We made use of 

metafrontier global Malmquist index to shed light on the group innovators to provide the useful 

information of the technology spillover and knowledge sharing for the effective operation of PV 

power generation systems in Japan. In addition, we consider the impact of new entrants on the 

technology innovation, whereas most previous studies ignore it. These are the main novelty of 

this study. 

 

Table 4. Innovative PV power plants for contemporaneous and global frontiers 
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*Information in the parentheses represents location of PV power plant, initial year of operation 

and PV array rated capacity, respectively. 

 

5. Conclusion 

 

 This study applied the DEA and MGMI to the unbalanced panel data for PV power 

generation activity from fiscal 2016 to 2020 in Japan and investigated the static and dynamic 

power generation efficiency for the PV power plants. The results of static analysis indicate that 

the east region shows the most outstanding performance and efficiency gap between the regions 

and years is very remarkable. On the other hand, the results of MGMI indicate that, although the 

MGMI increased in all three regions, the east region experienced the largest growth in MGMI. 

 

 Investigating the components of MGMI indicates that BPGC, technology innovation 

within the same region, is the main driver of increasing MGMI in all three regions. However, 

North East West

2016-17 #92 (Fukushima, 2016, 12.2MW), #46 (Choshi, 2016, 27MW), #84 (Shizuoka, 2016, 32MW)
#123 (Hikone, 2016, 35MW), #179 (Takamatsu, 2016, 25.3MW),
#191 (Osaka, 2016, 19.7MW), #208 (Osaka, 2016, 10MW),
#210 (Osaka, 2016, 10.5MW)

2017-18
#16 (Fukushima, 2017, 55.6MW), #92 (Fukushima, 2016, 12.2kW),
#93 (Fukushima, 2016, 5.0kW), #94 (Aomori, 2016, 148.0MW),
#108 (Fukushima, 2017, 29.9MW)

#4 (Choshi, 2016, 20MW), #5 (Toyama, 2016, 5.3MW),
#31 (Tsukuba, 2017, 20.5MW), #46 (Choshi, 2016, 27MW),
#84 (Shizuoka, 2016, 32MW), #99 (Nagoya, 2016, 10.5MW)
#110 (Nagoya, 2016, 27.7MW)

#172 (Fukuoka, 2017, 11MW), #175 (Kagoshima, 2016, 70MW),
#185 (Kagoshima, 2016, 12.6MW), #192 (Kumamoto, 2016, 22.4MW),
#194 (Miyazaki, 2017, 96.2MW), #218 (Kagoshima, 2017, 32.3MW)

2018-19 #50 (Muroran, 2016, 111.0MW), #108 (Fukushima, 2017, 29.9MW) #5 (Toyama, 2016, 5.3MW)
#175 (Kagoshima, 2016, 70MW), #185 (Kagoshima, 2016, 12.6MW),
#190 (Matsue, 2016, 42.9MW), #208 (Osaka, 2016, 10MW),
#218 (Kagoshima, 2017, 32.3MW), #229 (Hiroshima, 2017, 235.4MW)

2019-20 − −

#179 (Takamatsu, 2016, 34.0MW), #185 (Kagoshima, 2016, 12.6MW),
#190 (Matsue, 2016, 42.9MW), #191 (Osaka, 2016, 15MW)
#214 (Miyazaki, 2016, 24.5MW), #229 (Hiroshima, 2017, 235.4MW)

North East West

2016-17 − − −

2017-18 − #84 (Shizuoka, 2016, 32MW) #218 (Kagoshima, 2017, 32.3MW)

2018-19 #108 (Fukushima, 2017, 29.9MW) −
#185 (Kagoshima, 2016, 12.6MW),
#208 (Osaka, 2016, 10MW)

2019-20 − − #214 (Miyazaki, 2016, 24.5MW)

Group innovator
Period

Global frontier innovator
Period
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EC has the negative impact on MGMI in the north and east region, implying that, although the 

technology innovation within the same region was promoted by several innovative power 

plants, catch-up by the other PV power plants was not enough. In order to increase the EC 

effect, policymakers should encourage technology spillover between the innovative power 

plants and the others by coordinating interactions among them. 

 

At the presentation of the IIOA conference in Langkawi, we further discuss the future 

direction of PV power generation in Japan. 
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