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Abstract: The heterogeneous input-output model has found widespread application in research on
trade value-added, energy, and environment in recent years. However, due to the lack of data on
trade flows between various types of enterprises when compiling heterogeneous input-output
tables, scholars have had to rely on proportionality assumption and optimization methods to
construct intermediate flow matrices. Based on a thorough study of existing methods for
compiling heterogeneous input-output tables, this study proposes a novel method based on Monte
Carlo simulation for generating initial values for intermediate flow matrices, which are then
adjusted using the TRAS method to ensure conformity with the structural characteristics of the
heterogeneous input-output model. The study then measures the accuracy of the Leontief inverse
matrix, output multipliers, and export value-added. By simulating the intermediate flow matrix
elements 10,000 times under two scenarios, i.e., normal distribution and lognormal distribution,
and varying the mechanism for forming the standard deviation of the intermediate flow matrix
elements during the simulation, the study shows that the uncertainty of the intermediate flow
matrix, Leontief inverse matrix, output multipliers, and export value-added of the Chinese
non-competitive input-output model adapted from ICIO-DF(2016) exhibits a decreasing trend.
The results of the study indicate that in the process of establishing a heterogeneous input-output
model, as long as the total matrix, such as output, value-added, final demand, imports, and exports,
are accurately estimated, even if the intermediate flow matrix obtained from proportionality
assumptions and optimization methods is biased, the accuracy of the Leontief inverse matrix,
output multipliers, and export value-added can still be maintained and improved in order, and the
empirical research results obtained from the model can still maintain a high overall accuracy.

Key works: Heterogeneous input-output model; Distinguish between domestic and foreign
investment; Monte Carlo simulation; TRAS; Accuracy

1. Introduction

The Input-Output (IO) model, as a type of general equilibrium model, has played an
irreplaceable role in analyzing macroeconomic policies from a multi-sectoral perspective since its
inception. However, traditional IO tables only differentiate industries or products, and explore the
interrelationships between industry or product sectors, lacking the ability to model and analyze
from other perspectives beyond industries or products. As a new research hotspot, the
heterogeneous IO model increases the dimensions of the IO model by splitting economic sectors
according to certain standards, and has the ability to analyze the differences in production
technology, product distribution, and industrial connections of different types of enterprises within
the same sector from a more micro perspective.

Based on the above functions, heterogeneous IO models are widely used in research fields
such as employment, global value chains, and environmental economics. Scholars have compiled



numerous heterogeneous input-output tables from dimensions such as trade patterns, enterprise
ownership attributes, and enterprise scale, and have achieved fruitful results. Many economists
have noted the uniqueness of processing trade in terms of production technology and value-added
composition, they used methods such as quadratic programming to distinguish processing trade
from general trade on the basis of a non-competitive input-output table, and constructed a
heterogeneous input-output model that distinguishes trade patterns. Economic indicators such as
trade added value, trade embodied carbon emissions, and vertical specialization rate were
accurately measured, and the problem that the original measurement methods distorted trade
value-added and trade status was solved (Chen et al., 2001; Lau et al., 2007; Koopman et al., 2012;
Dietzenbacher et al., 2012; Yang et al., 2015; Chen et al., 2019). Due to significant differences in
production technology, product distribution, and other aspects among enterprises with different
ownership, the heterogeneous input-output model that distinguishes enterprise ownership has
received widespread attention. Duan et al. (2013) and Ma et al. (2015) compiled a heterogeneous
input-output table regarding both trade pattern and enterprise ownership, and calculated the
contributions of enterprises with different ownership types or trade pattern to China's export
value-added and national income. Jiang (2015a, 2015b) used the heterogeneous IO table compiled
by Ma (2015) to calculate the differences in energy utilization efficiency among enterprises with
different ownership types. In addition, some scholars have noted the heterogeneity of the scale of
enterprises, Tang et al. (2016) found that Chinese state-owned enterprises and private small and
medium-sized enterprises mainly engage in indirect exports, and the domestic part of export
value-added is relatively high. Meng et al. (2018) used the heterogeneous IO table compiled by
Tang et al. (2016) to measure the carbon emissions of enterprises of different sizes. Zhang Junrong
et al. (2021) constructed a heterogeneous IO model that distinguishes the scale of enterprises, and
used the structural decomposition analysis (SDA) method to analyze the employment-promoting
effect and influencing factors of enterprises of different scales in China's internal and external
circulation.

In recent years, heterogeneous input-output models have been combined with multi-regional
input-output models (MRIO), Duan and (2018) pointed out that due to the uneven distribution of
China's processing trade among regions, the heterogeneity of trade modes should be considered in
Chinese regional input-output table, otherwise the share of local value-added in China's exports in
each region will be overestimated to varying degrees. Based on the OECD's Global Input-Output
Database (ICIO-DF) that distinguishes enterprise ownership from 2005 to 2016, Cadestin et al.
(2018) found that multinational corporations have significant direct and indirect impacts on the
output, value added, international trade, and employment of their subsidiaries in host countries,
and the extent of their influence depends on the level of integration between the subsidiaries of
multinational corporations and the host country's economy. Meng et al. (2020) found significant
differences in the smile curves of domestic and foreign-funded information and communication
technology (ICT) enterprises in the global value chain between China and the United States,
proving that enterprises in the two countries participate in global value chain with different
technological advantages, reflecting the full use of the relative competitive advantages of the two
countries. Zhang et al. (2020) tracked the carbon footprint of foreign subsidiaries of multinational
enterprises and found that due to a decrease in carbon intensity, the total amount of carbon
emissions transferred through investment reached its peak in 2011. The carbon footprint of
multinational companies from developed countries has decreased, while the carbon transfer from



mainland China has significantly increased. Duan and Jiang (2021) simulated carbon emissions
under the scenario of anti-globalization, and found that multinational companies have caused
pollution haven effects in both high-income and low-income economies. The rise of
anti-globalization may temporarily suppress the overall increase in global carbon emissions.

Due to more detailed classification within the sectors, the construction of the heterogeneous
input-output model mentioned above lacks sufficient economic data support, and has to use
proportionality assumption and optimization methods such as RAS to fill in missing data.
However, a large amount of inferred data leads to errors in heterogeneous input-output models.
Existing research has not considered the issue of model accuracy, and it is not known how errors
in the original model will affect the research results. Based on a systematic study of the
conventional construction method of heterogeneous input-output models, this paper identifies the
main sources of errors in the model. Monte Carlo simulation is conducted based on the
distribution law of elements in the input-output table, and the simulated table is adjusted using
TRAS to have the same structure as the original heterogeneous input-output table. On this basis,
the propagation law of errors in the heterogeneous input-output model is analyzed in depth, and
potential biases in research results are measured. Suggestions are proposed to improve the
accuracy of heterogeneous input-output models.

The structure of the remaining parts of this paper is as follows: Part 2 systematically reviews
the conventional construction method for heterogeneous input-output models, identifies potential
sources of errors. Part 3 explains the difficulties in studying the accuracy of heterogeneous
input-output models and introduces methods based on Monte Carlo simulation and TRAS to study
model accuracy. Part 4 demonstrates the selection and processing of research materials, and
introduces the core calculation formulas of input-output analysis. Part 5 measures the errors of the
Leontief inverse matrix, output multipliers, and export value-added, and explores the propagation
law of errors in the actual application process of the model. Part 6 summarizes the main
conclusions of this paper and proposes suggestions to improve the accuracy of heterogeneous
input-output models.

2. The conventional construction method of heterogeneous input-output model

The essence of heterogeneous input-output model is to add additional dimensions to the basic
input-output model that distinguishes between industrial or product sectors. The core of this model
is to split the intermediate flow matrix, final demand matrix, value-added matrix, and output
vector of the basic input-output table based on the division criteria of this additional dimension.

The conventional construction method of heterogeneous input-output model can be roughly
divided into three steps. Firstly, based on customs statistics, statistical yearbooks and other
databases to obtain or use gravity models and other methods to estimate the total quantity data
such as the final demand matrix, value-added matrix and output vector after splitting. Secondly,
obtain the initial values of the elements in the intermediate flow matrix. Due to the lack of
sufficient detailed data for splitting the intermediate flow matrix, it is necessary to rely on
proportionality assumption in the compilation process. Based on the total quantity matrices such
as output, value-added, final demand, import and export, the proportion of different types of
enterprises' output in sector � (marked as ��

�1 ) and the proportion of intermediate inputs used in
sector � (marked as ��

�2 ) are calculated. Then, the intermediate flow matrix element ��� in the
original input-output table is multiplied by these two ratios to obtain the initial value of the



intermediate flow matrix element in the segmented heterogeneous input-output table. For example,
the consumption of �1 type enterprises in sector � by �2 type enterprises in sector �:

���
�1�2 = ��

�1��
�2���

Finally, according to methods such as RAS and quadratic optimization, the initial values of the
intermediate flow matrix are coordinated to satisfy the balance structure of input-output model,
forming a complete heterogeneous input-output model.

From the above conventional construction steps of heterogeneous input-output model, it can
be seen that the aggregate matrices such as output, value-added, final demand, import and export
in the model are obtained or estimated according to economic statistical data from various sources,
and thus have a relatively high level of accuracy. The estimation of intermediate flow matrix relies
on proportionality assumption and optimization methods such as RAS, which is the main source
of error in heterogeneous input-output models. Proportionality assumption implies that different
types of enterprises within the same sector use intermediate inputs from different types of
enterprises in other sectors based only on the proportion of their output, without any preference for
intermediate goods from different types of enterprises. This is a very strong assumption that does
not align with reality. Tang (2016) found that foreign-owned enterprises tend to use imported
intermediate inputs rather than domestically produced ones, and enterprises with different
ownership exhibit significant preference differences in the use of intermediate inputs. In addition,
optimization methods such as RAS only adjust the intermediate flow matrix to meet the basic
balance relationship of input-output model, and the influence of this method on the accuracy of the
input-output model needs further study. Furthermore, as the core of input-output analysis, the
Leontief inverse matrix relies on the output vector and the intermediate flow matrix in its
calculation. The value-added and final demand matrices are only used as satellite matrices
multiplied by the Leontief inverse matrix when studying specific issues. Their impact on the
overall accuracy of the input-output model is lower than that of the Leontief inverse matrix.
Therefore, the key to studying the accuracy of heterogeneous input-output models is to
systematically analyze the accuracy issues caused by the assumption of proportionality and
balance optimization methods used in the construction of the intermediate flow matrix, and to
analyze the impact of errors in intermediate flow matrix elements on model accuracy.

3. Methods for measuring the accuracy of heterogeneous input-output model

3.1. The main method for measuring the accuracy of input-output model
Since the inception of input-output analysis, research on its accuracy has received widespread

attention from scholars. This is because information on measuring uncertainty helps
decision-makers understand the assumptions and limitations behind the data, enabling them to
make sound decisions in a well-informed manner (Lenzen, 2012). In addition, research on model
accuracy helps to improve the methods of compiling input-output tables, achieving the goal of
improving model accuracy under constraints of funding and personnel.

The use of non-survey and partial survey methods to update and compile input-output tables
has facilitated the development of research on measuring model accuracy. To measure the
accuracy of I-O tables prepared using the RAS method and other methods, scholars have
undertaken a comparative analysis of non-survey or partial survey I-O tables with those prepared
using survey methods. In this context, they have constructed indicators to measure matrix
differences which directly measure the comprehensive error of input-output matrix (Leontief,



1966; Theil, 1971; Sawyer and Miller, 1983; Miller and Blair, 1982, 1983; Lahr, 2001). However,
these indicators have different applicable scenarios, and the calculation results of different
indicators may conflict with each other regarding the accuracy of the same model. Improper use of
these indicators may lead to erroneous conclusions. Researchers such as Knudsen and
Fotheringham (1986), Lahr (1998), Gallego and Lenzen (2009), and Wiebe and Lenzen (2016)
have systematically compared various indicators for measuring differences in matrices. They
found that weighted standardized total percentage error (WSTPE) and standardized weighted
absolute difference (SWAD) are widely used due to their simplicity and easy of understanding.
Meanwhile, metrics such as mean absolute difference, root mean squared error, correlation
coefficient and its inverse, and R-squared are symmetrical and suitable for matrices with many
zero elements after standardization.

Multi-regional input-output models (MRIO) have extremely high requirements for
interregional trade data and rely on many assumptions during their construction. There are no
highly credible MRIO tables prepared using survey methods to serve as a benchmark for accuracy
research. In order to address the lack of a reference basis, scholars compare the accuracy of MRIO
models through mutual comparison with world input-output tables such as Eora, WIOD,
EXIOBASE, and GTAP. Geschke et al. (2014) created new GMRIO tables by combining raw data,
constraints, and integration methods from different GMRIO tables and compared them with the
original tables. They found that the quality of the basic data plays a crucial role in determining the
quality of the GMRIO table. The integration method used in Eora model can produce higher
quality GMRIO tables based on the raw data from other GMRIO systems.

In addition to directly measuring the error of the input-output table matrix elements, another
important approach to study the accuracy of the model is to analyze the process of error
propagation from the intermediate flow matrix to the Leontief inverse matrix and multiplier, in
order to measure the bias in the final calculation results of the model. The majority of empirical
studies suggest that so long as the errors in the intermediate flow matrix are kept within an
acceptable range, the significant presence of elements which overestimate or underestimate the
actual flow of goods and services between sectors, along with the model's intricate
interrelationships, lead to a net neutralization of errors in the final results (Jensen, 1980; Peters,
2007; Yamakawa and Peters, 2009; Lenzen and Peters, 2010). Therefore, from initial intermediate
flow matrix to Leontief inverse matrix and then to multipliers and export value-added, the errors
gradually decrease. These research conclusions are consistent with the concept of overall accuracy
proposed by Lenzen et al. (2013), in which the accuracy of individual elements in input-output
analysis is insignificant. As long as the overall analysis results produced by the model can reflect
the real economic situation and meet the decision-makers' purposes, the model's accuracy can be
accepted.

In the study of the accuracy of heterogeneous input-output models, the lack of a survey-based
heterogeneous table as a reference benchmark, coupled with only one table for each dimension of
heterogeneity, renders it impossible to employ the approach of assessing GMRIO model accuracy
by cross-referencing multiple input-output tables depicting the same dimension of heterogeneity.
As such, the key to studying the accuracy of heterogeneous input-output models lies in the
construction of a reference basis.
3.2. Generating intermediate flow matrix through Monte Carlo simulation

Due to the specific row-column balance structure and the fact that the elements of the



intermediate flow matrix in input-output models are not deterministic parameters but rather
stochastic variables that follow a stable distribution pattern (Torres-González and Yang, 2019),
scholars have used Monte Carlo simulation to generate a large number of input-output matrices
and satellite accounts that satisfy the above characteristics. These matrices and accounts cover all
possible forms that the actual input-output models may present, and serve as mutual reference
benchmarks for studying the accuracy of input-output models.

Lenzen et al. (2010) investigated the error of carbon emissions caused by consumption
through 5000 Monte Carlo simulations. They found that the overall consumption-based carbon
emissions were accurate, but there were significant errors in sectoral consumption-based carbon
emissions. Mroan and Wood (2014) conducted a sensitivity analysis of the carbon footprint
estimated by different MRIO models using Monte Carlo simulations. They found that the accuracy
of national or regional carbon footprint estimates is positively correlated with the size of the
economy, and there is temporal continuity in the estimates. Dietzenbacher (2006) used Monte
Carlo simulation to study the distribution of output multipliers when the elements of the
intermediate flow matrix are randomly distributed. It was found that the output multipliers
exhibited statistically significant positive bias, but the impact was negligible. Lenzen (2011) used
Monte Carlo simulation method to demonstrate that the use of small-scale survey data can
significantly improve the accuracy of MRIO tables.

Based on previous research, this paper employs Monte Carlo simulation to generate the
intermediate flows matrix, capturing the possible errors in the heterogeneous input-output model.
Then, the Leontief inverse matrix, output multipliers, and export value-added are calculated for
each simulation model to measure their differences and study the impact of errors on the model
accuracy as well as the propagation mechanism from the intermediate flows matrix to the final
results.

Monte Carlo simulation requires a clear understanding of the distribution of intermediate
flow matrix elements. Wilting (2012) suggests that intermediate flow matrix elements are
approximately normally distributed, while Lenzen et al. (2010) argue that intermediate flow
matrix elements follow a log-normal distribution, with larger values being relatively accurate.
Based on these studies, to ensure the robustness of our results, we constructed two simulation
scenarios. Scenario one assumes that intermediate flow matrix elements follow a normal
distribution with the values in the heterogeneous input-output table as the mean, while scenario
two assumes a log-normal distribution for intermediate flow matrix elements.

In previous studies, researchers such as Rypdal and Winiwarter (2001), Wilting (2012), and
Moran et al. (2014) assumed that the relative standard deviation of intermediate matrix elements is
0.1. In our study, we adopt this assumption in scenario one. In scenario two, we refer to the
research results of Lenzen et al. (2010) and assume the relative standard deviation of intermediate
matrix elements as:

����
0 / ���

0 = 0.393 ���
0 −0.302

The reliability of research results can be significantly influenced by the number of Monte
Carlo simulations performed. Dietzenbacher (2006) suggests that increasing the number of
simulations beyond 1000 times will not substantially alter the research findings. As the
intermediate flow matrix simulated in this study is relatively large, to ensure reliable research, the
empirical research section of this paper includes over 1000 simulations.



3.3. Adjusting the structure of intermediate flow matrix with TRAS
Due to the fact that the total intermediate demand and intermediate input of each sector in a

heterogeneous input-output model can be calculated or estimated from economic statistics data
with high accuracy, and the intermediate flow matrix elements in a heterogeneous input-output
model are obtained by splitting the intermediate flow matrix elements in the basic model.
Therefore, the generated intermediate flow matrix in simulation should meet the following
conditions: (1) the row sum of intermediate flow matrix elements equals the determined
intermediate input of the sectors; (2) the column sum of intermediate flow matrix elements equals
the determined intermediate demand of the sectors; (3) the intermediate flow matrix elements in
the basic model equal to the sum of multiple intermediate flow matrix elements in the split
heterogeneous model; and (4) there are no negative intermediate flow matrix elements in a
heterogeneous input-output model. This should be taken into consideration in the empirical
analysis of this study.

However, due to the randomness of Monte Carlo simulation, the intermediate input-output
matrix generated by simulation cannot satisfy the above requirements. In this paper, TRAS
method is used for adjustment. This paper takes the total intermediate input and total intermediate
demand of each sector as row and column constraints, and takes the intermediate flow matrix
elements of the original input-output model before splitting as constraints for the corresponding
intermediate flow matrix element blocks after splitting. The detailed process of the TRAS method
refers to Gilchrist and St Louis (1999). The above adjustments not only realize the randomness of
the intermediate flow matrix generated by simulation, maintain the structural characteristics of the
heterogeneous input-output model, but also highly restore the compilation process of the
heterogeneous input-output model, effectively improving the reliability of the research results.

4. Selection and processing of research materials

4.1. Selection of research materials
This study utilizes the 2016 Input-Output Framework for Foreign and Domestic Firms

(ICIO-DF) released by OECD as research materials. The ICIO-DF distinguishes 34 sectors of 60
countries or regions (36 OECD countries, 23 non-OECD countries, and 1 other region in the world)
into domestic or foreign firms, constructing a large heterogeneous input-output table that contains
a 4080×4080 matrix of intermediate flows. This dataset has been widely used by scholars in
empirical research.

The construction of ICIO-DF table generally follows the conventional construction method
of heterogeneous input-output model. The detailed process can be found in Cadestin's (2018)
report, which can be divided into three main steps as follows.

The first step involves constructing matrices that distinguish between countries or regions,
sectors, and ownership of output, value-added, and trade (exports and imports). The initial values
of the matrices are obtained through the Activities of Multinational Enterprises (AMNEs), the
OECD Trade by Enterprise Characteristics (TEC) database and data from National Statistics
Offices, missing values are estimated through FDI data or statistical methods such as gravity
models. The initial values are then adjusted to match the ICIO table provided by the World
Input-Output Database (WIOD). The second step involves splitting the intermediate flow matrix
and final demand matrix of the original ICIO table based on the assumption of proportionality, as
shown in Figure 1. The method for splitting the intermediate flow matrix can be summarized as



follows: based on the proportions of output produced by domestic or foreign-owned firms in
sector � (marked as ��

� ) and the proportions of intermediate input used by sector � (marked as
��

� ), the original intermediate flow matrix element ��� is split to obtain the initial values of the
intermediate flow matrix elements ���

�c in the ICIO-DF table. For example, the initial value of the
direct consumption of domestic-owned firms in sector � by foreign-owned firms in sector � is:

���
�� = εi

dδj
f���

The third step utilizes a quadratic optimization method to achieve a balanced heterogeneous
input-output table that distinguishes between domestic and foreign investment.

Figure 1: Breaking down the ICIO table into ICIO-DF tables
Due to the enormous size of ICIO-DF, Monte Carlo simulations and calculations of the

Leontief inverse matrix, output multipliers, and export value-added exceeded the computational
capacity of personal computers. To save computation time, this paper converted the ICIO-DF table
into a non-competitive table for China, with the following processing steps: (1) adding up the
intermediate inputs from different countries or regions as the import intermediate input matrix for
division by sector and ownership; (2) adding up the final demand from different countries or
regions as the import final demand matrix for division by sector and ownership; (3) adding up
China's supply of intermediate inputs and final demand for other countries or regions as the export
vector. (4) Since the intermediate input, value-added, final demand, and output for private
households with employed persons in ICIO-DF table are all zero, this paper removed this sector
from the differentiated domestic and foreign investment non-competitive input-output table for
China.

The adjustments mentioned above only involve the treatment of the import intermediate input
matrix and final demand matrix for China, while the domestic intermediate input matrix, output
vector, and value-added vector remain unchanged and retain the values of the ICIO-DF. Therefore,
the adjusted non-competitive table of China with domestic and foreign investment classification
can still be used to test the impact on accuracy of the model caused by assumption of



proportionality and quadratic optimization method.
4.2. Calculate the Leontief inverse matrix, output multiplier and export added-value

As the intermediate flow matrix ��0 in the Chinese non-competitive input-output table with
domestic and foreign investment classification is obtained by aggregating the intermediate inputs
from different countries or regions to China in the ICIO-DF table, it possesses a level of
uncertainty comparable to that of the domestic intermediate flow matrix ��0 . Therefore, in the
Monte Carlo simulation performed in this study, the intermediate flow matrices for both domestic
and imported goods were processed according to the same rules.

��0 and ��0 represent the domestic and imported intermediate flow matrices, respectively,
in the non-competitive input-output table of China with domestic and foreign investment
classification, while ���

�0 and ���
�0 represent the elements in these matrices. During the Monte

Carlo simulation, we assume that the elements of the initial domestic and imported intermediate
flow matrices follow a normal distribution with mean values as ���

�0 and ���
�0 , respectively. This

assumption means that elements of initial intermediate flow matrices in each simulation is
obtained by adding a disturbance term ( ���

� and ���
� ) to the base value ( ���

�0 and ���
�0 ). The

disturbance terms follow normal distributions: ���
�~N(0, ����

�0) and ���
�~N(0, ����

�0). Therefore, in
each simulation, the initial domestic intermediate flow matrix is marked as ��� = ��0 + �� , and
the initial imported intermediate flow matrix is marked as ��� = ��0 + �� , where �� and ��

are the disturbance matrices of domestic and imported intermediate flow matrices, respectively.
To maintain the structural characteristics of the heterogeneous input-output model, we

performed TRAS adjustments on initial domestic and imported intermediate flow matrices,
denoted as ��� and ���, respectively, resulting in adjusted matrices �� and ��.

When calculating the total input vector of a sector, in order to satisfy the column balance
relationship of the input-output model, we sum the domestic intermediate input matrix, import
intermediate input matrix, and value-added vector column-wise, that is, x = ��� + ��� + v. Here,
� is a row vector with all elements equal to 1, and v is the value-added row vector.

Based on this, the direct consumption coefficient matrix of domestic products can be
calculated as

�� = ����−1

where the elements ���
� represents the direct consumption of domestic products of sector i caused

by the unit output of sector j . Similarly, the direct consumption coefficient matrix of imported
products can be obtained as

�� = ����−1

According to the basic theory of input-output analysis, the Leontief inverse matrix is calculated
B = (I − ��)−1

where I is the unit matrix with the same dimension as �� . The Leontief inverse matrix, also
known as the total requirement coefficient matrix, has elements ��� that represents the final
demand for the output of sector i in order to consume the unit value of sector j . The output
multiplier vector

λ = uB
can be obtained by adding up the columns of the Leontief inverse matrix, where each element λ�

represents the total output of all sectors directly or indirectly induced by the unit final demand of
sector j.

Finally, the heterogeneous input-output model obtained from each simulation is used to



estimate the value added generated by exports. Specifically, the domestic value added driven by
exports is calculated as

�� = ��(I − ��)−1�
and the foreign value added driven by exports is

�� = ���(I − ��)−1�
where �� is the row vector of value-added and � is the export column vector.

5. Conclusion

5.1. Accuracy of Leontief inverse matrix elements
In order to investigate the effect of the number of Monte Carlo simulations on the research

results, and to determine the number of simulations needed to obtain stable results, this study
conducted 10 to 10,000 simulations of the non-competitive input-output table of China adapted
from the ICIO-DF table in two scenarios. The simulation results show that whether the elements
of the intermediate flow matrix follow a normal distribution with a standard deviation of 0.1 times
the mean or a lognormal distribution, when the number of simulations exceeds 500, the
distribution of the standard deviation and coefficient of variation of the Leontief inverse matrix
elements obtained by simulation tends to be stable. This is consistent with the research findings of
Dietzenbacher (2006). To ensure the reliability of the research conclusions, we use the results of
10,000 Monte Carlo simulations as the basis for investigating the impact of assumption of
proportionality and optimization methods on the accuracy of heterogeneous input-output models.

We conducted 10,000 Monte Carlo simulations under the scenario one where the elements of
the intermediate flow matrix followed a normal distribution with a standard deviation of 0.1 times
the mean. The maximum standard deviation of the elements in the Leontief inverse matrix is
0.04275, the median is 0.00008, and 75% of the elements have a standard deviation of less than
0.0004. Thus, the vast majority of the elements only have minimal uncertainty.

According to the heat map, the standard deviations of the elements near the diagonal of the
Leontief inverse matrix before the 38th column are relatively large, indicating a significant
absolute error in the total requirement coefficients of mining and manufacturing enterprises for
different ownership attribute enterprises within their respective industries. In addition, the
standard deviations of the 21st row's 21st to 40th columns in the Leontief inverse matrix are also
relatively large. These elements correspond to the total requirement coefficients of the
manufacturing and construction sectors for domestic enterprises in the basic metal sector. Since
basic metals are an important input in the production processes of the manufacturing and
construction sectors, the corresponding total requirement coefficients are relatively large and can
generate large standard deviations.



Figure 2: Heatmap of standard deviation and coefficient of variation of the elements in the
Leontief inverse matrix in scenario one

Through 10,000 Monte Carlo simulations in scenario one, the maximum coefficient of
variation of the elements in the Leontief inverse matrix is 0.16378, with a median of 0.0482, and
95% of the elements have a coefficient of variation less than 0.1. Thus, only a small number of
elements in the Leontief inverse matrix have slightly larger coefficient of variation than their
corresponding elements in the intermediate flow matrix, indicating that the Leontief inverse
matrix is more precise than the intermediate flow matrix. The uncertainty of the intermediate flow
matrix is significantly reduced when calculating the Leontief inverse matrix.

The coefficient of variation (CV) heatmap of the Leontief inverse matrix for scenario 1
shows that the coefficient of variation of the main diagonal elements is relatively small, implying
that the relative error of total requirements coefficients for firms with the same ownership in the
same sector is significantly lower than average. This is mainly because these coefficients have
larger numerical values. Moreover, the elements in the lower right corner of the Leontief inverse
matrix have a generally higher coefficient of variation, indicating that the total requirements
coefficients between service sectors are more sensitive to the initial uncertainty of the input-output
matrix even if the initial elements are normally distributed with a relative standard deviation of 0.1.
Missing coefficient of variation values in the 60th row and column are due to the absence of
foreign-funded enterprises in public management, national defense, and compulsory social
security sectors, resulting in corresponding intermediate flow matrix and Leontief inverse matrix
values of zero.

In Scenario 2, assuming that the elements of the intermediate flow matrix follow a lognormal
distribution with a standard deviation as

����
0 = 0.393 ���

0 0.698

Through 10,000 Monte Carlo simulations, the maximum standard deviation of the elements in the
Leontief inverse matrix is 0.01061, the median is 0.00005, and more than 75% of the element
standard deviations are less than 0.0002. The maximum value of the coefficient of variation of the
Leontief inverse matrix elements is 0.62301, with an average of 0.050649 and a median of
0.02788, and more than 75% of the element coefficients of variation are less than 0.06, with very
few elements having a larger coefficient of variation. It can be seen that the distribution of the
Leontief inverse matrix elements in Scenario 2 is more concentrated than in Scenario 1, indicating



a higher level of relative accuracy.

Figure 3: Heatmap of standard deviation and coefficient of variation of the elements in the
Leontief inverse matrix in scenario two

Figure 3 reveals that the total requirements coefficient of foreign-funded enterprises in the
agriculture, forestry and fishing sector to domestic enterprises has the maximum standard
deviation among the elements in the Leontief inverse matrix. Moreover, the standard deviation of
the elements near the main diagonal and the elements in columns 21-40 of row 21 in the Leontief
inverse matrix are relatively high, which is similar to the characteristics observed in Scenario 1.

The coefficients of variation for several rows and columns in the Leontief inverse matrix are
relatively large, including the 40th, 56th, 62nd, 64th, and 66th rows, as well as the 56th, 62nd,
64th, and 66th columns. The main reason for this phenomenon is the relatively low participation
of foreign invested enterprises in sectors such as construction, real estate, education, human health
and social work, arts, entertainment, recreation and other service sectors. The corresponding
elements in the intermediate flow matrix are small, and in Scenario 2 where the variability of
matrix elements is negatively correlated with their absolute value, the variability of these elements
in the Leontief inverse matrix is relatively large.

In order to study the propagation law of uncertainty in Scenario 2, this paper calculates the
ratio of the coefficient of variation of the corresponding elements in the Leontief inverse matrix
and the intermediate flow matrix, and draws a heat map. As shown in Figure 4, the coefficient of
variation of the Leontief inverse matrix elements in Scenario 2 is smaller than that of the
intermediate flow matrix elements. This phenomenon is similar to Scenario 1, indicating that the
Leontief inverse matrix is less uncertain than the intermediate flow matrix. In addition, the ratio of
the coefficient of variation is smaller on the main diagonal, indicating that the uncertainty of the
total requirements coefficients of enterprises with the same ownership attributes in the same sector
is significantly reduced when calculating the Leontief inverse matrix. Moreover, the elements in
the lower right corner of the figure are relatively large. This phenomenon is also reflected in
Scenario 1, indicating that the uncertainty of the service sectors is reduced to a lesser extent
compared to the mining and manufacturing sectors when calculating the Leontief inverse matrix.



Figure 4: Ratio of coefficient of variation between elements in the Leontief inverse
matrix and the intermediate flow matrix under Scenario 2

In summary, regardless of whether the elements of the intermediate flow matrix are random
variables that follow a normal distribution or a lognormal distribution, the uncertainty of the
intermediate flow matrix will be significantly reduced in the Leontief inverse matrix. When
constructing heterogeneous input-output models such as ICIO-DF, the uncertainty caused by
assumption of proportionality and optimization method on the intermediate flow matrix will be
significantly alleviated when calculating the Leontief inverse matrix, and these conventional
techniques for compiling heterogeneous input-output tables will not have a significant impact on
the accuracy of the model.
5.2. The accuracy of the output multipliers

Output multipliers is a row vector obtained by summing the columns of Leontief inverse
matrix

λ = uB
where the element λ� represents the total amount of output that is generated in all sectors by an
increase of one unit of final demand in sector �. Multipliers, such as the output multipliers, are of
great importance in input-output analysis, and it is necessary to investigate the impact of using
assumption of proportionality and optimization methods on the accuracy of output multipliers.

Figure 5: Standard deviation and coefficient of variation of output multipliers for each
sector in Scenario 1

Figure 5 shows the standard deviation and coefficient of variation of output multipliers for
each sector obtained from 10,000 Monte Carlo simulations in Scenario 1. It can be seen that the



standard deviation of output multipliers for each sector is within the range of 0-0.02, and the
coefficient of variation of output multipliers is within the range of 0-0.008, indicating that the
assumptions in Scenario 1 do not cause significant fluctuations in the estimated values of sectoral
output multipliers and that output multipliers are highly accurate. Among all domestic and foreign
invested sectors, the foreign invested sectors of textiles, wearing apparel, leather and related
products has the largest standard deviation and coefficient of variation of output multipliers, at
0.01834 and 0.00634, respectively. The standard deviation and coefficient of variation of output
multipliers for each sector are positively correlated, but the distribution of coefficient of variation
of output multipliers is more concentrated. The standard deviation of output multipliers for
manufacturing sectors is generally larger than that for service sectors, but the difference in
coefficient of variation is not significant.

Figure 6: Standard deviation and coefficient of variation of output multipliers for each
sector in Scenario 2

Figure 6 shows the standard deviation and coefficient of variation of output multipliers for
each sector in scenario 2. Compared with scenario 1, the standard deviation and coefficient of
variation of output multipliers are smaller, with the standard deviation distribution ranging from 0
to 0.01 and the coefficient of variation distribution ranging from 0 to 0.005. However, unlike
scenario 1, the standard deviations and coefficients of variation of output multipliers are larger for
the foreign invested sectors in education, human health and social work, arts, entertainment,
recreation, and other services than for the manufacturing sectors. This is because foreign invested
enterprises are less involved in these industries, and the corresponding values of the intermediate
flow matrix elements are smaller. Under the assumption of lognormal distribution, the uncertainty
of the intermediate flow matrix elements is greater.

Combining Figures 5 and 6, it can be observed that regardless of whether the intermediate
flow matrix elements follow a normal or lognormal distribution, the relative uncertainty measured
by the coefficient of variation decreases gradually from the intermediate flow matrix elements to
the elements of the Leontief inverse matrix and then to the output multipliers. The errors in
intermediate flow matrix are neutralized during the relevant calculations of the input-output
model.
5.3. Accuracy of export value-added

The heterogeneous input-output model has been widely applied in measuring export
value-added, addressing the bias caused by the inability of traditional input-output models to
distinguish trade patterns and enterprise types. However, there has been no discussion regarding
the accuracy of the research results. This paper uses the non-competitive input-output table of



China with domestic and foreign investment classification, adapted from ICIO-DF, to measure the
domestic and foreign value-added in China's exports, and discusses the error range of China's
export value-added in two different scenarios.

Due to the significant differences in absolute values of export value-added among different
sectors, this paper normalizes the export value-added of each sector by dividing the value obtained
from each simulation by the mean value obtained from 10,000 simulations. This allows for
analysis of the relative error range of export value-added for each sector. Each violin plot shows
the red dot representing the export value-added calculated from the original data of the
non-competitive input-output table of China with domestic and foreign investment classification.
The three horizontal lines represent the maximum, minimum, and median values of the simulation
results, while the black bars represent the upper and lower quartiles of the simulation results.

Based on the findings from Figure 7 and Figure 8, we can observe that in scenario one, where
the intermediate flow matrix elements are random variables following a normal distribution with a
standard deviation of 0.1 times the mean, the simulation results of domestic and foreign export
value-added for all sectors exhibit a normal distribution. Additionally, it is noteworthy that our
original data calculated export value-added is at the center of the simulation results. The upper and
lower quartiles of the normalized simulation results for all sectors are within the range of
0.94-1.06. Except for the foreign-invested sector in construction, the extremes of the normalized
simulation results are within the range of 0.8-1.2. Among all 66 sectors, 62 sectors have
normalized simulation results with extremes within the range of 0.9-1.1.

Figure 7: The violin plots of domestic export value-added for each sector under Scenario 1



Figure 8: The violin plots of foreign export value-added for each sector under Scenario 1
In Scenario 2, the distribution range of the normalized simulation results of most sectors'

export value-added is smaller than that in Scenario 1, except for the foreign invested sector in
human health and social work, which are an exception and have extreme values ​ ​ that exceed
the range of 0.8-1.2. This is because the corresponding elements in the intermediate flow matrix
for this sector is extremely small, and the relative standard deviation of the elements is magnified
under the assumption of Scenario 2, resulting in a more scattered simulation result for the export
value-added. However, the domestic and foreign value-added included in the sector's export are
both less than 1 million US dollars, so the absolute error of the sector's export value-added can
still be ignored. Overall, the export value-added of sectors in Scenario 2 is more accurate than that
in Scenario 1.

Figure 9: The violin plots of domestic export value-added for each sector under Scenario 2



Figure 10: The violin plots of foreign export value-added for each sector under Scenario 2
The above findings suggest that sectors’ export value-added has relatively low uncertainty,

regardless of the distribution of intermediate flow matrix elements. Specifically, the relative error
range of sectors’ export value-added is smaller than that of intermediate flow matrix elements and
Leontief inverse matrix elements. The export value-added calculated by the non-competitive
input-output model of China with domestic and foreign investment classification has a high degree
of accuracy. Furthermore, assumption of proportionality and optimization method widely
employed in compiling heterogeneous input-output tables do not significantly affect overall results
such as multipliers and export value-added. The above conclusion aligns with research findings on
the decreasing uncertainty of SRIO and MRIO tables from the intermediate flow matrix to the
Leontief inverse matrix and multipliers. Therefore, this verifies the universality of the concept of
overall accuracy proposed by Lenzen et al. (2013) in various input-output models.
5.4. The impact of standard deviation variation in intermediate flow matrix elements on
accuracy

To investigate the accuracy of the non-competitive input-output model of China with
domestic and foreign investment classification, this paper adopts two scenarios where the
intermediate flow matrix elements follow a normal distribution and a log-normal distribution
respectively. However, under each distribution type, the standard deviation of the elements only
satisfies one fixed functional form. In order to enhance the robustness of the research results, we
change the mechanism for forming the standard deviation of the intermediate flow matrix
elements and explore the impact of different functional forms of the standard deviation on the
accuracy of the Leontief inverse matrix, output multipliers, and export value-added.

Based on the previous analysis, it can be concluded that the simulation results become stable
after 1000 Monte Carlo simulations. In scenario one, where the intermediate flow matrix elements
are assumed to follow a normal distribution, this study conducted 1000 Monte Carlo simulations
with a relative standard deviation ranging from 0.1 to 1.0 in increments of 0.01 to measure the
distribution of the Leontief inverse matrix elements and output multipliers.



Figure 11: Distribution of Leontief inverse matrix elements under different relative standard
deviations of intermediate flow matrix elements in Scenario 1

Figure 12: Distribution of output multipliers under different relative standard deviations of
intermediate flow matrix elements in scenario 1

From Figures 11 and 12, it can be observed that the standard deviation and coefficient of
variation of the Leontief inverse matrix elements and output multipliers slowly increase as the
relative standard deviation of the intermediate flow matrix elements increases. The mean and
upper quartile of the standard deviation of the Leontief inverse matrix elements do not exceed
0.006, and the mean and upper quartile of the coefficient of variation do not exceed 0.7. The mean
and upper quartile of the standard deviation of the output multiplier are less than 0.07, and the
mean and upper quartile of the coefficient of variation are less than 0.03. These phenomena
indicate that when the distribution of intermediate flow matrix elements in the non-competitive
input-output model of China with domestic and foreign investment classification is more
concentrated than the normal distribution with a relative standard deviation of 1, the accuracy of
the Leontief inverse matrix elements obtained from the table is higher than that of the intermediate
flow matrix elements, and the accuracy significantly improves from the Leontief inverse matrix to



the output multipliers.

Figure 13: Distribution of export value-added under different relative standard deviation of
intermediate flow matrix elements in Scenario 1

From Figure 13, it can be seen that with the increase of the relative standard deviation of
intermediate flow matrix elements, the distribution range of export value-added simulation results
shows a trend of rapid expansion followed by stabilization. Moreover, the distribution range of
domestic value-added driven by exports does not exceed 1% of the mean, while the distribution
range of foreign value-added driven by exports does not exceed 3% of the mean. This indicates
that even when the uncertainty of intermediate flow matrix elements reaches the standard
deviation to 1 times of the mean, the accuracy of export value-added is still very high. In addition,
with the increase of the relative standard deviation of intermediate flow matrix elements, the
domestic value-added driven by exports calculated from the original data of the non-competitive
input-output model of China with domestic and foreign investment classification, gradually
approaches the simulation result from below, while the foreign value-added driven by exports
gradually approaches the simulation result from above. This phenomenon confirms the research
results of Dietzenbacher (2006), which found that when the intermediate flow matrix elements are
random variables that follow a certain distribution rule, the Leontief inverse matrix elements have
a statistically significant but negligible positive bias, meaning that elements with larger values are
more likely to be overestimated. Due to the fact that the elements in the Leontief inverse matrix
for domestic enterprises are generally larger than those for foreign enterprises in the same industry,
and domestic enterprises have a higher domestic value-added rate while foreign enterprises have a
higher foreign value-added rate, it results in a phenomenon of upward bias for domestic
value-added and downward bias for foreign value-added when calculating the export value-added.
However, this bias has little effect on the calculation results of export value-added and can be
ignored in empirical research.

In scenario two, the intermediate flow matrix elements are random variables that follow a
log-normal distribution

����
0 = � ���

0 �

As the mechanism by which changes in � affect the accuracy of the model in this scenario is the
same as that in scenario one, we maintain the setting of � = 0.393 and study only the effect of
changes in the exponent � on accuracy. Additionally, given the fact that larger values in the
intermediate flow matrix of input-output tables correspond to more accurate estimates, we set the



range of variation for � to 0-1 and conduct 1,000 Monte Carlo simulations at intervals of 0.01 to
measure the distribution of Leontief inverse matrix elements, output multipliers, and export
value-added.

Figure 14: The distribution of Leontief inverse matrix elements under different values of b

Figure 15: The distribution of output multipliers under different values of b
From Figure 14 and Figure 15, it can be seen that when b is less than 0.5, the standard

deviation and coefficient of variation of the Leontief inverse matrix elements and output
multipliers remain at a minimum level. When � is greater than 0.5, the standard deviation and
coefficient of variation show an exponential increase with the increase of �. However, even when
� approaches 1, the elements with larger values in the intermediate flow matrix are not estimated
more accurately. The upper quartile and mean of the standard deviation of the Leontief inverse
matrix elements are both less than 0.003, and the upper quartile and mean of the coefficient of
variation are both less than 0.35. The upper quartile and mean of the standard deviation of the
output multipliers are both less than 0.035, and the upper quartile and mean of the coefficient of
variation are both less than 0.016. This indicates that when the exponent in the standard deviation
function of the intermediate flow matrix elements varies within 1, the Leontief inverse matrix,



especially the output multipliers, still maintain a low level of uncertainty. This uncertainty shows a
decreasing trend from the intermediate flow matrix to the Leontief inverse matrix and then to the
output multipliers.

Figure 16: The distribution of export value-added under different values of b
Similar to the patterns of variation in the Leontief inverse matrix elements and output

multipliers, the distribution of simulated results for export value-added is highly concentrated
when � is less than 0.5. As � increases beyond 0.5, the range of simulated results for export
value-added shows an exponential increase. However, even when � = 1, export value-added still
exhibits a high degree of accuracy.

If we consider the normal distribution satisfied by the intermediate flow matrix elements in
Scenario 1 as a special case of lognormal distribution, the determining function of the standard
deviation of intermediate flow matrix elements can be expressed as

����
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where � and � are two variables that affect the accuracy of the heterogeneous input-output
model.

Based on the analysis above, it is known that the uncertainty of Leontief inverse matrix,
output multipliers, and export value added increases exponentially with the increase of the
exponential part �. However, due to the fact that larger values in the intermediate flow matrix are
estimated more accurately, the value of � is limited to the range of 0-1. Even when � is equal to
1, the model can still maintain a high level of accuracy.

The uncertainty of the heterogeneous input-output model also increases with the increase of
parameter � , but the magnitude of the increase shows a converging trend. This is because the
intermediate flow matrix must satisfy the specific structural form of the heterogeneous
input-output model, which allows for the mutual neutralization of errors in input-output matrix
elements. This mutual neutralization effect also ensures the overall accuracy of the model, and the
accuracy of the intermediate flow matrix, Leontief inverse matrix, output multipliers, and export
value-added gradually improves, with the accuracy of the calculation results approaching the total
value being the highest.

There are sufficient reasons to believe that even if the intermediate flow matrix elements are
random variables that follow a certain distribution, the data of the non-competitive input-output
model of China, adapted from the ICIO-DF, have significant biases. However, the Leontief inverse
matrix, output multipliers, and export value-added still have high accuracy and gradually improve



in accuracy. Therefore, although the assumption of proportionality and optimization method
widely used in compilation of heterogeneous input-output tables may cause biases in intermediate
flow matrix, they will not seriously affect the accuracy of the model and empirical research based
on the model.

6. Summary

A comprehensive understanding of the accuracy of the heterogeneous input-output model is a
fundamental prerequisite for correctly evaluating model results and making decisions based on
model conclusions. In recent years, the heterogeneous input-output model, as an emerging
research topic, has been widely applied in empirical research and has yielded a large number of
research results. However, to date, there has been no literature on the accuracy of the
heterogeneous input-output model, which is a major deficiency in this field of research.

This paper delves into the conventional methods of constructing heterogeneous input-output
models and finds that the assumption of proportionality and optimization method used in
compiling the intermediate flow matrix are important sources of errors affecting the accuracy of
heterogeneous input-output models. Based on this, we propose a method for measuring the
accuracy of the Leontief inverse matrix, output multipliers, and export value-added, which is
based on generating the intermediate flow matrix through Monte Carlo simulation and adjusting it
to meet the specific structure of the heterogeneous input-output model by TRAS. With the use of
this method, the current study investigates the accuracy of the non-competitive input-output table
of China, which was adapted from the 2016 Input-Output Framework for Foreign and Domestic
Firms (ICIO-DF). By simulating the intermediate flow matrix elements 10,000 times under normal
distribution and lognormal distribution, and varying the mechanism of forming the standard
deviation of intermediate flow matrix elements during the simulation, we find that regardless of
the distribution form of the intermediate flow matrix elements, the uncertainty of the intermediate
flow matrix, the Leontief inverse matrix, output multipliers, and export value-added all show a
decreasing trend, and the model can maintain high overall accuracy.

The results of this study demonstrate that heterogeneous input-output models represented by
ICIO-DF maintain good overall accuracy. As long as the total matrices such as output, value added,
imports and exports are accurately estimated in the process of compiling heterogeneous tables, the
assumption of proportionality and optimization method commonly used in the estimation of the
intermediate flow matrix will not significantly affect the accuracy of the model.
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Appendix
Schedule 1: ICIO-DF Table Sector Classification

Code Departments
A Agriculture, forestry and fishing
B Mining and extraction of energy producing products
C10T12 Food products, beverages and tobacco
C13T15 Textiles, wearing apparel, leather and related products
C16 Wood and products of wood and cork
C17T18 Paper products and printing
C19 Coke and refined petroleum products
C20T21 Chemicals and pharmaceutical products
C22 Rubber and plastic products
C23 Other non-metallic mineral products
C24 Basic metals
C25 Fabricated metal products
C26 Computer, electronic and optical products
C27 Electrical equipment
C28 Machinery and equipment, nec
C29 Motor vehicles, trailers and semi-trailers
C30 Other transport equipment
C31T33 Other manufacturing; repair and installation of machinery and equipment
DTE Electricity, gas, water supply, sewerage, waste and remediation services
F Construction
G Wholesale and retail trade; repair of motor vehicles
H Transportation and storage
I Accommodation and food services
J58T60 Publishing, audiovisual and broadcasting activities
J61 Telecommunications
J62T63 IT and other information services
K Financial and insurance activities
L Real estate activities
MTN Other business sector services
Or Public admin. and defence; compulsory social security
P Education
Q Human health and social work
RTS Arts, entertainment, recreation and other service activities
T Private households with employed persons


