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ABSTRACT 

Based on the pioneering work on the estimation of China’s information and communication 

technology (ICT) assets by industry in Liang, Wu, and Fukao (2022) and the substantial 

revisions of the China Industrial Productivity (CIP) capital and labor accounts, we revisit the 

role of ICT in the Chinese economy since the reform. Methodologically, we follow our earlier 

growth accounting work to quantify the role of China’s ICT (Wu and Liang, 2017) a la 

Jorgenson (2001). However, the newly available data allows us to investigate ICT-specific 

industries, identified by the direct measure of ICT intensity, in a framework that is coherently 

integrated with the CIP capital accounts including the estimated stock of IT and CT assets. Our 

new results still support our earlier findings that Chinese ICT-producing and intensive-using 

industries in manufacturing were the key drivers to China’s productivity growth. We show that 

over the 40 years investigated since 1978, while providing 34 percent of China’s 8.3 percent 

annual value-added growth, these major ICT players contributed 132 percent of China’s 1.1 

percent annual total factor productivity (TFP) growth. We can therefore reiterate the 

proposition proposed in our 2017 paper that the rapid development of the ICT industries 

enabled the Chinese economy to compensate for its heavy productivity losses caused by other 

industries and the policy-induced misallocation of capital resources.  
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1. INTRODUCTION 

China’s rapid emergence as the world’s largest manufacturing powerhouse cannot be 

properly assessed without a good understanding of the role of information and communication 

technology or ICT. Nevertheless, the lack of a direct measure of ICT assets in China’s capital 

stock, especially at the industry level, was the main impediment to that assessment. Our earlier, 

yet the first ever, attempt to quantify the role of ICT in the Chinese economy (Wu and Liang, 

2017) had no choice but adopted the US criteria in identifying, hence categorizing ICT-making 

and using industries as developed in Jorgenson’s 2001 paper on the role of ICT in the US 

economy. We showed that over the period 1981–2012 the so-identified ICT-producing and 

using industries in manufacturing appeared to be the key drivers to China’s productivity growth 

contributing 149 percent of China’s 0.8 percent annual TFP growth while sharing only 29 

percent of China’s 9.4 percent annual GDP growth. We therefore suggested that the not only 

did ICT industries compensate for China’s heavy productivity losses in other industries but 

also for policy-induced resource misallocation across industries.  

However, either supporting or challenging this finding cannot easily bypass the potential 

problems of the use of the US ICT standards to identify “ICT-related industries” in China. This 

motivated us to explore proper approaches to a direct measure of China’s ICT assets, which 

resulted in the preliminary, yet pioneering estimates as reported in Liang, Wu, and Fukao 

(2022), and hence making a revisiting of the role of ICT in China’s growth possible.1 In the 

present paper, to better account for the role of ICT in China’s growth, considering the recent 

revisions of the CIP (China Industrial Productivity) or China KLEMS capital and labor 

accounts, 2  we have further improved China’s ICT estimates following the same 

methodological principles in Liang, Wu, and Fukao (2022). 

We first measure ICT intensity for each industry by the share of ICT capital services in 

total capital services, defined as changes in the user cost weighted capital assets, and then use 

it to categorize ICT or non-ICT industries together with their positions in the chains of 

production, i.e., ICT making or using. We however keep agriculture, mining, construction, and 

non-market services as independent groups. The so-grouped CIP data is analyzed in a growth 

accounting model a la Jorgenson (Jorgenson 2001; Jorgenson et al. 2005a) that specifies the 

role of individual industries in an aggregate production possibility frontier (APPF) framework 

and use a direct aggregation across industries approach by Domar weights to account for the 

interactions of individual industries within the system. It allows us to decompose the 

contribution of capital input into ICT and non-ICT capital and labor input by skill level, and to 

fragment China’s productivity growth into the effect of ICT-specific industries and the effect 

of factor reallocation across industries.  

What we have obtained based on this new data endeavor have lent a strong support to our 

earlier findings and conclusions (Wu and Liang, 2017). They show that despite for a much 

longer investigation period compared to our earlier work, ICT-producing industries and ICT-

 
1 See Wu and Yu (2022) for an ICT policy-oriented analysis using part of the data provided by Liang, Wu, 

and Fukao (2022). 

2 See details of the data work revising the CIP capital and labor accounts in Wu and Liang (2023 forthcoming) 

and Wu and Zhang (2023 forthcoming).  
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using industries in manufacturing were still the key drivers to China’s productivity growth, 

contributing 132 percent of China’s 1.1 percent annual aggregate TFP growth while sharing 

only 34 percent of China’s 8.3 percent annual value-added growth. 

The rest of this paper will proceed as the followings. Section 2 describes our methodology 

for measuring rental prices and capital services and introduces a Jorgensonian growth 

accounting framework redesigned from an ICT/non-ICT perspective. Section 3 explains the 

updated and revised CIP data and ICT-specific industry groupings. Section 4 reports and 

interprets the growth accounting results. Section 5 concludes this study with caveats. 

2. ACCOUNTING FOR THE ROLE OF ICT  

Estimation of the Rental Prices and Capital Services 

Liang, Wu, and Fukao (2022) were the first to attempt to estimate the ICT tangible 

investment series and construct the ICT capital stock by industry in China’s assets over the 

past 40 years. A growth accounting framework at both the aggregate and industry levels is 

useful for investigating the role of ICT played in China’s growth and productivity performance. 

However, the contribution of capital input to the economic growth under such a framework is 

defined in terms of capital services rather than capital stock. This is important to reflect the 

impact of shifting the composition of capital from non-ICT assets to ICT equipment on the 

growth.  

The prices of capital services, also called rental prices, are crucial for transforming capital 

stock into capital services. To aggregate capital service flows across assets, rental prices should 

be used as the weights, as implied by the production theory, to reflect marginal products. Hence, 

assets with relatively high service prices and marginal products, such as ICT equipment, 

receive larger weights. As introduced by Jorgenson (1963) and Hall and Jorgenson (1967), 

rental prices can be estimated as follows: 

(1) 𝑃𝑘,𝑗,𝑡
𝐾 = (𝑖𝑗,𝑡 − 𝜋𝑘,𝑗,𝑡)𝑃𝑘,𝑗,𝑡−1

𝐼 + 𝛿𝑘𝑃𝑘,𝑗,𝑡
𝐼   

where 𝑃𝑘,𝑗,𝑡
𝐾  is the rental price for asset type 𝑘 in industry 𝑗 at the year 𝑡, 𝑖𝑗,𝑡 is the nominal rate 

of return, 𝑃𝑘,𝑗
𝐼  is the price of investment, the asset-specific capital gains term is 𝜋𝑘,𝑗,𝑡 =

(𝑃𝑘,𝑗,𝑡
𝐼 − 𝑃𝑘,𝑗,𝑡−1

𝐼 ) 𝑃𝑘,𝑗,𝑡−1
𝐼⁄ , 𝛿𝑘 is the rate of depreciation. 

      For ICT capital, we construct the harmonized deflators based on the US ICT capital goods 

prices to control for domestic inflation in Liang, Wu, and Fukao (2022). The depreciation rates 

for ICT capital from the Bureau of Economic Analysis (BEA)–31.5 percent for IT equipment 

and 11.5 percent for CT equipment–were adopted because of the lack of the survey data on the 

service lives of ICT assets in China. For non-ICT capital, we use investment prices and 

depreciation rates from Wu (2015). 

The nominal rate of return can be derived from the ex-post approach that exhausts capital 

income and is consistent with constant returns to scale. The nominal rate of return is the same 

across assets within an industry but is allowed to differ across industries: 

(2) 𝑖𝑗,𝑡 =
𝑃𝑗,𝑡
𝐾𝐾𝑗,𝑡+∑ (𝑃𝑘,𝑗,𝑡

𝐼 −𝑃𝑘,𝑗,𝑡−1
𝐼 )𝐴𝑘,𝑗,𝑡−∑ 𝑃𝑘,𝑗,𝑡

𝐼 𝛿𝑘𝐴𝑘,𝑗,𝑡𝑘𝑘

∑ 𝑃𝑘,𝑗,𝑡−1
𝐼 𝐴𝑘,𝑗,𝑡𝑘
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where the first term 𝑃𝑗,𝑡
𝐾𝐾𝑗,𝑡 is the capital compensation in industry 𝑗, and 𝐴𝑘,𝑗,𝑡 is the real net 

capital stock. 

       To estimate capital services by industry, we assume that the flow of capital services for 

each asset is proportional to its stock and is independent of time. We use a Tornqvist quantity 

index to aggregate over assets. The quantity index of capital services in industry 𝑗 is defined as 

follows: 

(3) ∆ ln𝐾𝑗 = ∑ �̅�𝑘,𝑗∆ ln 𝐴𝑘,𝑗𝑘  

where ∆ ln 𝐴𝑘,𝑗 = ln𝐴𝑘,𝑗,𝑡 − ln𝐴𝑘,𝑗,𝑡−1, 𝐾𝑗 is an index of capital services in industry 𝑗, the time 

subscript is dropped for simplicity, and the value share of each type of capital services is: 

(4) 𝑤𝑘,𝑗 =
𝑃𝑘,𝑗
𝐾 𝐾𝑘,𝑗

∑ 𝑃𝑘,𝑗
𝐾 𝐾𝑘,𝑗𝑘

 

and the two-period average value share weight is: 

(5) �̅�𝑘,𝑗 = (𝑤𝑘,𝑗,𝑡 +𝑤𝑘,𝑗,𝑡−1) 2⁄ . 

        Finally, we define the economy-wide index of capital services as the Tornqvist aggregate 

of the capital stock from all assets: 

(6) ∆ ln𝐾 = ∑ �̅�𝑘∆ ln𝐴𝑘𝑘  

where the value share of each type of capital services is: 

(7) 𝑤𝑘 =
𝑃𝑘
𝐾𝐾𝑘

∑ 𝑃𝑘
𝐾𝐾𝑘𝑘

 

and the two-period average share weight is: 

(8) �̅�𝑘 = (𝑤𝑘,𝑡 + 𝑤𝑘,𝑡−1) 2⁄  

and the economy-wide capital stock for each type of asset is the simple sum across industries: 

(9)  𝐴𝑘 = ∑ 𝐴𝑘,𝑗𝑗 . 

Growth Accounting Framework 

The role of ICT in China’s economic growth and productivity performance can be 

examined through a growth accounting framework in which the contribution of ICT-specific 

industries and ICT capital can also be traced. We decompose the aggregate growth into 

contributions of ICT and non-ICT capital input, contributions of labor input from skilled 

workers, and TFP. The aggregate value-added production function is defined as: 

(10) 𝑉 = 𝑓(𝐾𝐼𝐶𝑇 , 𝐾𝑁𝑂𝑁 , 𝐿𝐿 , 𝐿𝑀 , 𝐿𝐻, Ω) 

where 𝐾𝐼𝐶𝑇 is the ICT capital services, 𝐾𝑁𝑂𝑁 is the non-ICT capital services, 𝐿𝐿 is the low-

skilled labor services, 𝐿𝑀 is the medium-skilled labor services, 𝐿𝐻  is the high-skilled labor 

services, Ω is the aggregate TFP, and the time subscript is dropped for simplicity. 
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      Under the assumption of perfect competitive factor markets where the marginal product of 

each input equals its price and constant returns to scale, the production function (10) can be 

transformed into the following growth accounting equations: 

(11) ∆ ln𝑉 = �̅�𝐾∆ ln𝐾 + �̅�𝐿∆ ln 𝐿 + Ω 

(12) ∆ ln𝑉 = �̅�𝐾,𝐼𝐶𝑇∆ ln𝐾𝐼𝐶𝑇 + �̅�𝐾,𝑁𝑂𝑁∆ ln𝐾𝑁𝑂𝑁 + �̅�𝐿,𝐿∆ ln 𝐿𝐿 +
�̅�𝐿,𝑀∆ ln 𝐿𝑀 + �̅�𝐿,𝐻∆ ln 𝐿𝐻 +Ω 

where 𝑉  is the aggregate real value-added, 𝐾  is the aggregate capital services, 𝐿  is the 

aggregate labor services, �̅� denotes the two-period average shares of factor income in value-

added, and the change in the logarithm of a variable denotes its growth rate. The assumption 

of constant returns to scale implies that 𝑢𝐾 + 𝑢𝐿 = 1 , 𝑢𝐾,𝐼𝐶𝑇 + 𝑢𝐾,𝑁𝑂𝑁 = 𝑢𝐾 , and 𝑢𝐿,𝐿 +
𝑢𝐿,𝑀 + 𝑢𝐿,𝐻 = 𝑢𝐿. 

      This aggregate value-added growth may also be expressed in terms of the decompositions 

of stock and quality contributions of factor inputs as: 

(13) ∆ ln𝑉 = �̅�𝐾∆ ln 𝐴 + �̅�𝐾∆ ln𝑄𝐾 +�̅�𝐿∆ ln𝐻 + �̅�𝐿∆ ln𝑄𝐿 + Ω 

where 𝐴 is the aggregate capital stock, 𝑄𝐾 is the quality of capital, 𝐻 is the aggregate hours 

worked, and 𝑄𝐿 is the quality of labor. 

      To trace the ICT-specific industry origins of growth, this study adopts APPF approach 

developed by Jorgenson (1966). This approach relaxes the strong assumption that all industries 

are subject to the same value-added production function, as imposed by the conventional 

aggregate production function (APF) approach. Given the heavy government interventions and 

institutional setups that cause market imperfections in China, the APF approach is undoubtedly 

inappropriate for the growth accounting exercise of the economy, especially when the 

performances of specified industries are compared across the economy. The aggregate value-

added from the APPF approach is defined as a Tornqvist index of industry value-added as: 

(14) ∆ ln𝑉 = ∑ �̅�𝑉,𝑗𝑗 ∆ ln 𝑉𝑗 

where 𝑤𝑉,𝑗 is the share of industry value-added in aggregate value-added: 

(15) 𝑤𝑉,𝑗 =
𝑃𝑗
𝑉𝑉𝑗

∑ 𝑃𝑗
𝑉𝑉𝑗𝑗

 

and 𝑃𝑗
𝑉 is the implicit price of industry value-added, 𝑉𝑗 is the industry value-added, and the 

two-period average share �̅�𝑉,𝑗 = (𝑤𝑉,𝑗,𝑡 + 𝑤𝑉,𝑗,𝑡−1) 2⁄ . 

      We are particularly interested in the growth contributions of the industries that produce 

ICT goods (ICT-producing), those that intensively use ICT (ICT-intensive-using), those that 

do not intensively use ICT (non-ICT-intensive-using), and other industries (other) that are not 

grouped into ICT-related groups for convenience in analyzing their performance in the context 

of the Chinese economy, such as agriculture and non-market services. Note that, in empirical 

exercises, these broad groups may be further broken down. For example, both the ICT-

intensive-using group and non-ICT-intensive-using group are divided into manufacturing and 
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services sectors. Therefore, the equation (14) can be rewritten as the sum of the contribution of 

these ICT-specific groups: 

(16) ∆ ln𝑉 = ∑ �̅�𝑉,𝑗∆ ln 𝑉𝑗𝑗∈𝐼𝐶𝑇𝑃 +∑ �̅�𝑉,𝑗∆ ln𝑉𝑗𝑗∈𝐼𝐶𝑇𝑈 +∑ �̅�𝑉,𝑗∆ ln 𝑉𝑗𝑗∈𝑁𝑂𝑁 +

+∑ �̅�𝑉,𝑗∆ ln 𝑉𝑗𝑗∈𝑂𝑇𝐻  

where subscript 𝐼𝐶𝑇𝑃 denotes for ICT-producing group, 𝐼𝐶𝑇𝑈 for ICT-intensive-using groups, 

𝑁𝑂𝑁 for non-ICT-intensive-using groups, and 𝑂𝑇𝐻 for other groups. 

       We also analyze the sources of aggregate labor productivity growth, defined as the 

aggregate value-added per economy-wide hour worked as: 

(17) ∆ ln𝑣 = ∆ ln 𝑉 − ∆ ln𝐻 

(18) ∆ ln𝑣 = �̅�𝐾∆ ln 𝑘 + �̅�𝐿∆ ln𝑄𝐿 +Ω 

where 𝑣 = 𝑉/𝐻 is aggregate value-added per hour worked, and 𝑘 = 𝐾/𝐻 is the capital per 

hour worked. 

       Finally, to investigate the contributions of industry to aggregate TFP growth, the “direct 

aggregation across industries” approach developed by Jorgenson, Gollop, and Fraumeni (1987) 

is preferred in this study. This approach has been used by Jorgenson and Stiroh (2000), 

Jorgenson (2001), and Jorgenson, Ho, and Stiroh (2005a, 2005b) to quantify the role of 

information technology (IT)-producing and IT-using industries in the US economy. No cross-

industry restrictions on either value-added or inputs are imposed by this approach, which 

eliminates the assumptions of equal value-added functions, mobility of inputs across industries, 

and equal factor prices for all industries.  

       The aggregate value-added growth can be expressed as the weighted contribution of 

industry capital services, industry labor services, and industry TFP as follows: 

(19) ∆ ln𝑉 = ∑ (�̅�𝑉,𝑗
�̅�𝐾,𝑗

�̅�𝑉,𝑗
∆ ln𝐾𝑗 + �̅�𝑉,𝑗

�̅�𝐿,𝑗

�̅�𝑉,𝑗
∆ ln 𝐿𝑗 +

�̅�𝑉,𝑗

�̅�𝑉,𝑗
Ω𝑗)𝑗  

where 𝐿𝑗 is industry labor services, Ω𝑗  is industry TFP, 𝑣𝐾,𝑗  is the share of industry capital 

income in industry gross output, 𝑣𝐿,𝑗 is the share of industry labor income in industry gross 

output, and 𝑣𝑉,𝑗 is the share of industry value-added in industry gross output. And the third 

term in the parentheses of the right side is the industry TFP growth weighted by Domar weight, 
�̅�𝑉,𝑗

�̅�𝑉,𝑗
. All weights are two-period averages. 

        Similarly, we can trace the contributions of ICT-specific groups to aggregate TFP growth 

by breaking down the Domar-weighted contributions from equation (19) as: 

(20) ∑
�̅�𝑉,𝑗

�̅�𝑉,𝑗
Ω𝑗𝑗 = ∑

�̅�𝑉,𝑗

�̅�𝑉,𝑗
Ω𝑗 +∑

�̅�𝑉,𝑗

�̅�𝑉,𝑗
Ω𝑗𝑗∈𝐼𝐶𝑇𝑈 + ∑

�̅�𝑉,𝑗

�̅�𝑉,𝑗
Ω𝑗𝑗∈𝑁𝑂𝑁 +𝑗∈𝐼𝐶𝑇𝑃

+∑
�̅�𝑉,𝑗

�̅�𝑉,𝑗
Ω𝑗𝑗∈𝑂𝑇𝐻 . 
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Resource Reallocation Effects 

      In practice, we can observe the different prices for each specific type of factor inputs across 

industries may be due to institutional obstacles which contradicts to the assumption imposed 

by the APPF approach that they must receive the same price in all industries. If factor inputs 

move from the industries with low factor prices to the industries with high factor prices, GDP 

can be raised. This reallocation effect will be reflected in the aggregate TFP growth measured 

using the APPF approach. However, this strong assumption is relaxed by “direct aggregation 

across industries” approach as discussed in the previous sub-section. The factor input growth 

is aggregated across industries using the factor income in each industry as aggregation weights. 

Therefore, if factor inputs are reallocated from the industries with low factor prices to those 

with high factor prices, the effect is treated as an increase in the aggregate input growth. Hence, 

the resource reallocation effects can be measured by the difference between these two growth 

accounting approaches. More precisely, we subtract equation (19) from equation (11) and 

rearrange it to obtain: 

(21) Ω = Ω𝐷 +Ψ𝐾 + Ψ𝐿 

where Ω𝐷  is the Domar-weighted aggregate TFP growth, Ψ𝐾  is the reallocation effect of 

capital, and Ψ𝐿 is the reallocation effect of labor, which are defined as: 

(22) Ω𝐷 = ∑
�̅�𝑉,𝑗

�̅�𝑉,𝑗
Ω𝑗𝑗  

(23) Ψ𝐾 = ∑ (�̅�𝑉,𝑗
�̅�𝐾,𝑗

�̅�𝑉,𝑗
∆ ln𝐾𝑗𝑗 ) − �̅�𝐾∆ ln𝐾 

(24) Ψ𝐿 = ∑ (�̅�𝑉,𝑗
�̅�𝐿,𝑗

�̅�𝑉,𝑗
∆ ln 𝐿𝑗𝑗 ) − �̅�𝐿∆ ln 𝐿. 

Equation (21) expresses the aggregate TFP growth in terms of three sources: Domar-

weighted TFP growth (Ω𝐷), reallocation of capital (Ψ𝐾) and reallocation of labor (Ψ𝐿) across 

industries. This Domar weighting scheme (
�̅�𝑉,𝑗

�̅�𝑉,𝑗
), originated by Domar (1961), plays a key role 

in the direct aggregation across industries of the Jorgensonian growth accounting framework. 

A direct consequence of the Domar-aggregation is that the weights do not sum to unity, 

implying that aggregate productivity growth amounts to more than the weighted average of 

industry-level productivity growth (or less, if negative). This reflects the fact that productivity 

change in the production of intermediate inputs do not only have an “own” effect but in 

addition they lead to reduced or increased prices in downstream industries, and that effect 

accumulates through vertical links. As elaborated by Hulten (1978), the Domar aggregation 

method establishes a consistent link between the industry level productivity growth and the 

aggregate productivity growth. Productivity gains of the aggregate economy may exceed the 

average productivity gains across industries because flows of intermediate inputs between 

industries contribute to aggregate productivity by allowing productivity gains in successive 

industries to augment one another. The same logic can explain productivity losses.  

The next two terms reflect the impact on aggregate TFP growth of the reallocation effect 

of capital (Ψ𝐾) and labor (Ψ𝐿) across industries, respectively. It should be noted that both 

theoretically and methodologically, when these terms are not negligible, it indicates that 

industries do not face the same factor costs, which suggests a violation of the assumption of 

the widely used aggregate approach. However, one should not expect a significant reallocation 
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effect in an economy with a well-developed market system. However, this analytical tool is 

very useful for China, where strong government interventions in resource allocation may have 

caused severe market distortions (Hsieh and Klenow 2009; Wu 2016). 

3. DATA AND ICT-SPECIFIC INDUSTRY GROUPING 

The CIP Data and its Revisions⎯A Brief Introduction 

This study uses the revised and updated CIP (China Industrial Productivity) data (CIP 4.0, 

see Wu et al, 2023, forthcoming, for details). The construction of the CIP data adheres to the 

principle of KLEMS (an acronym for all inputs: Capital, Labor, Energy, Material, and Services; 

see O’Mahony and Timmer, 2009, for details). In the case of input and output data, the CIP 

industry accounts are made coherently consistent with the official annual GDP accounts as 

control totals and the official full input-output system published every five years as control 

structures, reconstructed and interpolated to obtain the time series of the national accounts (Wu 

and Ito, 2015). It should be noted that in constructing industry accounts we do not challenge 

the official statistics except for necessary consistency adjustments. Therefore, the widely 

reported and discussed data falsification problems should be born in mind when interpreting 

our results.3 

The revision of the nominal input and output data in CIP 4.0 is based on the lately available 

Chinese 2012 and 2017 input-output tables and GDP accounts from 2010 onwards. 

Accordingly, the updated national accounts data for the period 2007–2017 are used to 

interpolate the input-output series between the 2007 and 2012 tables, and between the 2012 

and 2017 tables replacing the extrapolated series from 2007 onwards in CIP 3.0 and an 

extension to 2018. The nominal accounts can then be double deflated by a producer price index 

(PPI) matrix, constructed based on official PPIs for the agricultural and industrial sectors, 

relevant components of consumer price index (CPI) for service industries and wage index for 

“non-market” services (i.e., education, healthcare, and government) (Wu and Li, 2021). 

However, the revised and updated CIP 4.0 PPI is still domestic transactions-based by nature, 

that is, due to the lack of official data it has not yet been able to consider the effect of the price 

changes of imported intermediate inputs. This may induce some biases to industries that have 

been heavily depending on imported materials, including ICT producers.  

In the case of employment data, as explained in Wu, Yue, and Zhang (2015), the CIP 3.0 

industry labor accounts are built on all available employment statistics and surveys, 

reconstructed to ensure consistency with population censuses as control totals. The numbers 

employed include both employees and self-employed people (farming households and self-

employed retailers and transporters). They are converted to hours worked based on various 

census and survey data and made cross-classified by gender, age, and educational level. The 

cost or compensation accounts of the labor quantitative matrices are controlled by the national 

income accounts built in the input-output system. With a better use of the economic census 

data, the revision in CIP 4.0 has solved two major problems in CIP 3.0, that is, the cross-

 
3 China’s official estimates of GDP growth have long been challenged for upward bias (see Wu 2013 and 

2014). Alternative estimates have indeed shown slower growth rates than the official accounts. The most affected 

sectors are manufacturing and so-called “non-material services” (including non-market services). Wu (2013) 

shows that the official industrial output index has substantially moderated the impact of external shocks. Besides, 

Wu (2014) also shows that the official 5-6 percent annual growth of labor productivity in “non-material services” 

appears to be too good to be true if considering the international norm of between -1 and +1 percent per annum 

in the literature (Griliches 1992; van Ark 1996). 
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industry distribution of “other employment” within the official employment statistical system, 

termed as Residual 1, and the cross-industry distribution of “other employment” within the 

census employment boundary, termed as Residual 2 (for details see Wu and Zhang, 2023 

forthcoming). 

In the case of capital data, we have substantially revised the capital account in the CIP 3.0 

database which was constructed based on the principles documented in Wu (2015). The 

revisions in CIP 4.0 are primarily designed for the reconciliations of the sum of industry 

investment series in the CIP, constructed mainly based on the investment statistics for officially 

defined “above-size” firms, with the national gross fixed capital formation or GFCF as reported 

in the Chinese input-output accounts. Considering the ownership breakdown by industry, an 

idea that uses more information than focusing on the industry level, the gap observed between 

the CIP investment total and the GFCF total is allocated to the below-size private firms, 

assuming that these below-size firms concentrate only in labor intensive industries and hence 

have constant labor productivity that allows us to distribute the investment gap by the labor 

employment structure of the concerned labor intensive industries (for details see Wu and Liang, 

2023 forthcoming). 

ICT-Specific Industry Grouping 

Since we are interested in how ICT has affected the productivity performance in the 

Chinese economy, the entire economy can be divided into two large sectors: the ICT sector and 

the non-ICT sector. The impact of ICT is distributed through industries by means of using ICT 

assets with ICT-trained skilled workers. Therefore, to explore the role of ICT we may consider 

distinguishing industries making or intensively using ICT equipment from those not intensively 

doing so. We used the ICT intensity as our indicator to identify the “ICT-intensive-using 

industries”. The ICT intensity in this study is defined as the share of ICT capital services within 

total capital services. Industries with ICT intensity above the median are identified as ICT-

intensive-using industries.4 

In addition, ICT producers should be distinguished from ICT users. As explained by 

Jorgenson (2001), on the one hand, as ICT-producing industries become more efficient, more 

ICT equipment and software can be produced using the same cost. This raises ICT producers’ 

productivity and contributes to aggregate TFP growth through ICT users. On the other hand, 

investment in ICT equipment leads to the growth of productive capability in ICT-using 

industries because labor is working with more efficient equipment. Such an increase in ICT 

deployment affects TFP growth only if spillovers exist between ICT producers and users.  

To better investigate the industry origins of the impact of ICT on the aggregate TFP 

performance, it is necessary to distinguish between manufacturing and services industries in 

ICT-intensive users and non-ICT-intensive users. Therefore, we categorize the 37 CIP 

industries into nine groups: ICT-producing, ICT-intensive-using manufacturing, ICT-

intensive-using services, non-ICT-intensive-using manufacturing, non-ICT-intensive-using 

services and four others: agriculture, mining, construction, and non-market services (see Table 

 
4 To identify the ICT-intensive-using industries, considering the change of ICT intensity over time, we 

calculate the average of this indicator for three time points, i.e., 2005, 2010, and 2015.  
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A1 for details). This grouping is guided by our desire to study differences across industries that 

vary in ICT use intensity and also considers institutional settings in China.5 

We conjecture that the productivity growth of ICT-producing and ICT-intensive-using 

manufacturing groups may generally outperform other groups. We may also expect the latter 

group to use ICT equipment most intensively and benefit from the spillover effect of the former, 

growing more rapidly than the former group; hence, it would be the most important contributor 

to aggregate TFP growth.  

4. EMPIRICAL RESULTS 

ICT-Specific Group Contributions to Aggregate Growth and Sources of Growth 

We devote this sub-section to examine group contributions to China’s aggregate value-

added growth, in parallel with the scrutiny of factor contributions to aggregate value-added 

growth. For the latter, we further distinguish the contributions of various types of factor inputs 

and the contributions of the stock and quality of factor inputs to aggregate growth. The results 

are summarized in Table 1.  

As shown in the first panel of Table 1, adopting double-deflation procedures and using the 

industry weights from our ICT-specific industry grouping, the Chinese economy achieved a 

real value-added growth of 8.31 percent per annum from 1978 to 2018. On average, the three 

ICT-related groups made up 56 percent of China’s GDP growth (4.65 percentage points or ppts 

out of the 8.31 percent annual growth), or 34 percent if focusing only on ICT-producing and 

ICT-intensive-using manufacturing industries (2.83 ppts out of the 8.31 percent annual growth, 

of which 0.77 ppts was attributed to ICT-producing and 2.06 to ICT-using manufacturing). As 

expected, the latter group, as the one using ICT equipment most intensively and benefiting 

from the spillover effect of the former, indeed expanded more rapidly; hence, it was the most 

important contributor to aggregate GDP. The largest GDP contributor was nevertheless the 

non-ICT manufacturing group, which accounted for 28 percent (2.31 ppts) of GDP growth. 

This is not surprising, given the nature of China’s catch-up through export-oriented 

manufacturing.  

Factor contribution wise, of the economy-wide 8.31 percent annual value-added growth 

for the entire period, the contribution of capital input was 5.99 ppts, labor input 1.24 ppts, and 

TFP growth 1.08 ppts on average. This means that the Chinese economy relied 72.1 percent of 

its real value-added growth on capital input growth, 14.9 percent on labor input growth, and 

the remaining 13.0 percent on total factor productivity growth. Over time, the contribution of 

capital input increased from 56.8 percent in the initial 1980s to 65.7 percent post-WTO, then 

it even jumped to 98.2 percent post global financial crisis (GFC) (5.18 the contribution of 

capital input growth to 5.28 value-added growth in 2012–2018). The share of ICT capital input 

started at 0.4 percent of value-added growth and peaked at 9 percent on the eve of WTO entry 

and recently declined by 4.3 percent. Liang, Wu, and Fukao (2022) examined the decline in 

ICT investment within each industry rather than the substitution effect between industries. 

Moreover, ICT investment could be crowded out by huge investments in infrastructure during  

  

 
5 Compared with Wu and Liang (2017) in which the ICT-specific grouping is conducted using the US criteria 

from Jorgenson et al. (2005a) due to unavailability of ICT assets data for China, the change is minor in industry 

composition of the groups. 
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TABLE 1 

SOURCES OF AGGREGATE VALUE-ADDED GROWTH IN CHINA, 1978–2018 
(Contributions are share-weighted rate in percentage points) 

 1978-1984 1984-1992 1992-1996 1996-2001 2001-2007 2007-2012 2012-2018 1978-2018 
 Industry Contribution to Value-Added Growth 

Value-added growth due to (%) 9.92 7.66 9.40 7.48 10.73 8.14 5.28 8.31 

   -ICT-producing  0.63 0.37 1.04 0.63 1.22 0.95 0.79 0.77 

   -ICT-using manufacturing 2.40 2.01 2.83 1.94 2.57 2.11 0.81 2.06 

   -ICT-using services 2.15 1.09 1.05 1.02 2.71 2.74 2.01 1.82 

   -Non-ICT manufacturing 3.13 1.52 3.26 2.20 3.01 2.36 1.29 2.31 

   -Non-ICT services 0.01 0.39 0.21 0.56 1.23 0.66 0.40 0.50 

   -Agriculture 1.80 1.12 0.76 0.51 0.38 0.35 0.25 0.77 

   -Mining -0.75 0.09 -0.10 0.37 -0.01 0.14 0.10 -0.03 

   -Construction 0.28 0.70 0.26 0.17 0.60 0.08 0.21 0.36 

   -Non-market services 0.27 0.37 0.09 0.09 -0.98 -1.25 -0.57 -0.25 

 Factor Contribution to Value-Added Growth (by Type) 
 

Value-added growth due to (%) 9.92 7.66 9.40 7.48 10.73 8.14 5.28 8.31 

   - Capital input: 5.63 5.02 6.41 5.53 7.05 7.83 5.18 5.99 

      - Non-residential structure 2.86 1.52 1.90 1.86 1.93 2.59 2.36 2.12 

      - ICT equipment 0.03 0.17 0.72 0.67 0.75 0.51 0.01 0.16 

      - Non-ICT equipment 2.71 3.25 3.50 2.75 4.14 4.56 0.21 0.25 

      - Dwellings 0.03 0.08 0.29 0.25 0.22 0.17 2.51 3.32 

   - Labor input: 1.94 1.67 1.71 0.57 1.12 1.20 0.34 1.24 

      - Low-skilled labor 0.50 0.09 -0.24 -0.41 -0.21 -0.54 -0.17 -0.11 

      - Medium-skilled labor 1.36 1.34 1.42 0.84 1.25 -0.47 -0.27 0.81 

      - High-skilled labor 0.08 0.25 0.54 0.14 0.07 2.21 0.78 0.54 

   - Aggregate TFP 2.35 0.96 1.27 1.38 2.56 -0.89 -0.24 1.08 
 Factor Contribution to Value-Added Growth (by Quantity and Quality) 

Value-added growth due to (%) 9.92 7.66 9.40 7.48 10.73 8.14 5.28 8.31 

   - Capital input: 5.63 5.02 6.41 5.53 7.05 7.83 5.18 5.99 

      - Stock 5.62 4.78 6.46 5.71 6.95 7.25 4.94 5.85 

      - Capital quality (composition) 0.00 0.24 -0.05 -0.18 0.10 0.58 0.24 0.14 

   - Labor input: 1.94 1.67 1.71 0.57 1.12 1.20 0.34 1.24 

      - Hours 1.67 1.35 1.12 0.36 0.81 -0.84 -0.29 0.65 

      - Labor quality (composition) 0.27 0.32 0.60 0.22 0.31 2.04 0.63 0.59 

   - Aggregate TFP 2.35 0.96 1.27 1.38 2.56 -0.89 -0.24 1.08 

              Source: Authors’ estimates. 
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the GFC decade, considering the government’s fiscal stimulus packages and heavy 

interventions in structural adjustments. 

On the other hand, the contribution of labor input declined from 19.6 percent in the initial 

1980s to 10.4 percent post-WTO, then dropped to only 6.4 percent over the last sub-period of 

2012–2018. In fact, the decline in hours worked was substantial, 0.84 ppt per annum, between 

2007 and 2012. Nonetheless, the decline effect was cancelled out by a labor quality 

improvement of 2.04 ppts, which reflects the relatively fast growth of high-skilled workers 

with higher wages. In sharp contrast, the contribution of capital quality is very small, indicating 

less substitution for assets with relatively higher rates of return. 

The estimated TFP performance was highly unstable over time with the highest TFP 

growth achieved in the post-WTO stage during the period of 2001–2007 and the worst in the 

wake of the GFC. If the estimated annual aggregate TFP growth rates are translated into an 

index benchmarked in 1978, as shown in Figure 1, we observe a very volatile TFP performance 

around its underlying trend (level, not rate). Using the trend line as a yardstick to identify major 

shocks, we find that they are largely institutional.  

FIGURE 1 

AN INDEX OF CHINA’S AGGREGATE TOTAL FACTOR PRODUCTIVITY  
(1978 = 100) 

 
                              Source: Based on the results reported in Table 1.  

The first TFP drive was observed through the early to the late 1980s benefitted by China’s 

agricultural reforms and early industrial reforms. The move of TFP collapsed in the wake of 

the 1989 political crisis but recovered in the early 1990s in response to Deng’s call for bolder 

reforms and hence the SOE reforms in the mid-1990s. A strong TFP acceleration was seen 

following China’s WTO entry till it peaked on the eve of the global financial crisis. 

Unsurprisingly, the TFP index dropped sharply and lost all it had gained in the wake of the 

GFC. The TFP dive was temporarily saved by the unprecedented monetary and fiscal 

expansionary policies. Since the 2010s, when there was little room for further expansionary 

policy, it dropped again, negatively and substantially deviated from the underlying trend. It is 

perhaps too early to make a clear remark on the TFP recovery during the period of 2016–2018. 
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In our preliminary view, increasingly market-based consolidation and restructuring might have 

played a role as government interventions had to decrease because of the rising fiscal pressure.  

      Table 2 presents the results of the decomposition of China’s aggregate value-added per 

hour worked into changes in capital deepening, labor quality, and TFP. This enables us to 

separate the contribution of hours worked from the contribution of genuine labor productivity 

improvement and its sources. The Chinese economy once benefited significantly from the 

increase in hours worked or the so-called “demographic dividend.” However, this declined 

overtime, as shown in Table 2, from 3.74 percent per annum in 1978–1984 to 1.67 after China 

joined the WTO. In the post-GFC period (2007–2012), the growth of hours worked started to 

fall and dropped substantially by 1.83 percent per annum. This figure continued to drop by 0.57 

percent per annum over the last sub-period of 2012–2018, clearly indicating the complete loss 

of the “demographic dividend.” Although the growth of value-added per hour worked 

increased from 6.18 to 9.96 percent per annum, it appeared to rely increasingly on the growth 

in capital deepening ranging from 3.57 to 8.82 percent per annum. In fact, Table 2 shows that 

TFP growth was not necessarily in line with, or even completely contradictory to, the pace of 

capital deepening, which suggests a serious misallocation of resources as shown in Table 3.  

The ICT-Specific Industry Origins of Aggregate TFP Growth  

In order to explicitly account for productivity differences across ICT-specific groups and 

their impact on China’s aggregate TFP performance, we now introduce the “direct aggregation 

across industries” approach as given in equation (19) following the ICT studies on the US 

economy by Jorgenson, Ho, and Stiroh (2005a and 2005b). It accounts for the genuine TFP 

improvement within industries and factor reallocation effects across industries. The results 

presented in the first row of Table 3 are estimated with the stringent assumption that the 

marginal productivity of capital and labor are the same across all industries, which are the same 

as those presented in Table 1 and Table 2 above. As expressed in equation (19), if Domar 

weights are used, such an aggregate TFP growth rate can be decomposed into three additive 

components: 1) the change in aggregate TFP originating in industries summed up by Domar 

weights, 2) the change in capital reallocation across industries, and 3) the change in labor 

reallocation across industries.  

On average, for the entire period of 1978 to 2018, China’s Domar-weighted TFP growth 

is estimated at 1.00 percent per annum, compared to the aggregate TFP growth of 1.08 percent 

per annum. This result implies a net factor reallocation effect of 0.08 ppts. Table 3 also shows 

the contribution of each industrial group to the Domar-weighted annual TFP growth (see Table 

A2 for the results for individual industries). The biggest contributor to the Domar-weighted 

aggregate TFP growth was the ICT-intensive-using manufacturing group, contributing 1.04 

ppts. The ICT-producing group contributed 0.38 ppts. The non-market services group was the 

worst performer, dragging down the Domar weighted TFP growth by 0.66 ppts (Table 3). Such 

a sharp contrast across industry groups in TFP performance can also be observed over different 

sub-periods, reflecting significant shifts of policy regimes, which clearly suggests that treating 

individual industries as homogenous in growth accounting can substantially distort our view 

of the productivity performance of the Chinese economy and provide no vision of the industry 

origins of the aggregate TFP performance.  
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TABLE 2 

DECOMPOSITION OF AGGREGATE LABOR PRODUCTIVITY GROWTH IN CHINA 
(Contributions are weighted growth in percentage points) 

 1978-1984 1984-1992 1992-1996 1996-2001 2001-2007 2007-2012 2012-2018 1978-2018 

Value-Added Growth (APPF) (% p.a.) 9.92 7.66 9.40 7.48 10.73 8.14 5.28 8.31 
 Decomposition of Value-Added Growth 

   -Value added per hour worked 6.18 4.89 7.17 6.69 9.06 9.96 5.85 6.94 

   - Hours1 3.74 2.78 2.23 0.80 1.67 -1.83 -0.57 1.37 
 Contributions to Labor Productivity Growth 

Value-Added per hour worked 6.18 4.89 7.17 6.69 9.06 9.96 5.85 6.94 

   - Capital deepening 3.57 3.60 5.30 5.09 6.19 8.82 5.46 5.27 

   - Labor quality 0.27 0.32 0.60 0.22 0.31 2.04 0.63 0.59 

   - TFP growth 2.35 0.96 1.27 1.38 2.56 -0.89 -0.24 1.08 

    Source: Authors’ estimates. 

                Note: 1) The growth rate of hours worked, which is different from the contribution of hours in Table 1. 

TABLE 3 

DECOMPOSITION OF CHINA’S AGGREGATE TOTAL FACTOR PRODUCTIVITY GROWTH:  

DOMAR-AGGREGATION VIS-À-VIS FACTOR REALLOCATION EFFECTS 
(Decomposed TFP growth in percentage points) 

 1978-1984 1984-1992 1992-1996 1996-2001 2001-2007 2007-2012 2012-2018 1978-2018 

Aggregate TFP growth (% p.a.) 2.35 0.96 1.27 1.38 2.56 -0.89 -0.24 1.08 

  1. Domar-weighted TFP growth 1.55 0.01 0.75 1.88 2.95 -0.30 0.31 1.00 

      -ICT-producing  0.58 0.17 0.42 -0.05 0.60 0.58 0.42 0.38 

      -ICT-using manufacturing 1.37 0.78 1.48 1.91 1.00 0.53 0.52 1.04 

      -ICT-using services 0.79 -0.89 -1.23 -0.98 1.19 0.12 -0.32 -0.16 

      -Non-ICT manufacturing 0.94 -0.34 1.10 1.31 1.28 0.63 0.76 0.73 

      -Non-ICT services -0.50 0.08 -0.21 -0.30 0.30 -0.32 -0.58 -0.20 

      -Agriculture -0.30 0.15 0.40 0.24 0.45 0.69 0.49 0.28 

      -Mining -1.20 -0.31 -0.40 0.30 -0.54 -0.25 0.11 -0.34 

      -Construction -0.20 0.30 -0.42 -0.35 0.34 -0.49 -0.08 -0.08 

      -Non-market services 0.07 0.07 -0.38 -0.19 -1.68 -1.79 -0.99 -0.66 

  2. Reallocation of capital 0.38 0.60 -0.16 -0.39 -1.09 -0.44 -0.67 -0.21 

  3. Reallocation of labor 0.42 0.35 0.69 -0.12 0.70 -0.16 0.11 0.29 

                Source: Authors’ estimates following equation (19) and (21). 
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In terms of Domar-weighted TFP growth, the period of post-WTO was appraised with a 

very impressive 2.95 percent annual growth. The non-ICT-intensive-using manufacturing 

group was the key TFP contributor during this period, which could be due to the rise in labor-

intensive manufacturing after China’s WTO entry and the low labor cost. This is followed by 

ICT-intensive-using services and manufacturing. However, the post-GFC period (2007–2012) 

saw a considerable TFP decline of 0.3 percent per annum, the worst throughout the entire 

period in question. However, all three ICT-related groups, together with the non-ICT 

manufacturing group (0.63), still registered a positive TFP growth of 1.86 percent per annum 

(Table 3). See our above discussion of the TFP index for the TFP performance during the 

second half of the GFC decade in which the Domar-weighted TFP growth turned positive.  

The Effect of Factor Reallocation 

The slower Domar-weighted TFP growth (1.00) compared to the aggregate TFP growth 

(1.08) implies that the net reallocation of capital and labor is positive. Following equation (21), 

in Table 3 we show that this effect consists of a positive labor reallocation effect (Ψ𝐿) of 0.29 

ppts, yet a negative capital reallocation effect (Ψ𝐾) of -0.21 ppts. Figure 2 depicts the two 

reallocation effects as indices benchmarked at the initial point in 1978.  

It should be noted that such a magnitude of reallocation effect is typically not observed in 

market economies. Based on their empirical work on the US economy from 1977 to 2000, 

Jorgenson, Ho, and Stiroh (2005a) showed that, first, the reallocation effect was generally 

negligible; second, if it was non-negligible for some subperiods, the capital and labor 

reallocation effects generally moved in opposite directions. Jorgenson, Gollop, and Fraumeni 

(1987) also reported the reallocation of capital, which was typically positive, and the 

reallocation of labor, which was typically negative for the US economy for the period 1948–

1979. This is because capital grew more rapidly in industries with high capital service prices 

and, hence, high returns on capital, whereas labor grew relatively slowly in industries with 

high marginal compensation. 

FIGURE 2 

REALLOCATION EFFECTS OF CAPITAL AND LABOR INPUT 
(1978 = 100) 

 
Source: Based on the results reported in Table 3. 
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In the case of China, such a large magnitude and unexpected sign of capital and labor 

reallocation effects have two important implications. First, individual industries indeed face 

significantly different marginal factor productivity, suggesting that there are barriers to factor 

mobility that cause the misallocation of resources in the economy. The flip side of this finding 

is that corrections to distortions can potentially enhance productivity, which is good news in 

terms of much-talked-about and long-awaited structural reforms. 

We found that the effect of labor reallocation is generally positive over time, which 

suggests that labor market was much less distorted than the capital market, benefitting from 

increasing labor mobility along with reforms. Notably, the post-WTO period experienced the 

most significant productivity gain attributable to labor reallocation (0.7 in 2001–2007), which 

could be driven by the rapid expansion of export-oriented, labor-intensive industries, in line 

with China’s comparative advantage. In the wake of the GFC, the reallocation effect of labor 

turned negative immediately, which reflected the misallocation of labor caused by the shock 

of China’s export market, but it turned positive again in the later post-GFC period in 2012–

2018 mainly because of the rise of the market-based restructuring when the government 

interventions reduced. 

However, the capital reallocation differs in this case. In the early 1980s, the positive 

reallocation effect of capital was caused by the partial removal of the distortions inherited from 

the central planning period and the emergence of township and village enterprises (TVEs) that 

helped China to gain from its comparative advantage. However, it turned negative since the 

early 1990s largely caused by the government’s “freeing the small while maintaining the big” 

policy in the SOE reform, with its worst performance in the post-WTO period when China’s 

export expansion substantially improved the government fiscal position. This may also reflect 

local governments’ increasing engagement in GDP race by promoting local urbanization and 

a new round of extensive heavy industrialization that has been criticized as repetitious and 

redundant (J. Wu 2008). The capital misallocation continued since the GFC with the 

government’s four trillion rescue package that apparently took a heavy toll on the productivity 

growth regardless of the implementation of the “supply-side reform” in 2015. 

5. CONCLUDING REMARKS 

In this study, following the Jorgensonian APPF growth accounting framework and his 

approach of “direct aggregation across industries” through the Domar weights, extended to 

handle ICT-specific industry groups, and using the pioneering industry-level ICT capital stock 

estimates in Liang, Wu, and Fukao (2022), further revised based on the new CIP 4.0 capital 

and labor accounts, we revisit the role of ICT in the post-reform Chinese economy from 1978 

to 2018. The results in general not only confirm but also enhance our earlier findings that the 

Chinese ICT-producing and ICT-intensive-using manufacturing industries are the key drivers 

to China’s productivity growth. Specifically, while sharing about 34 percent of China’s 8.3 

percent annual value-added growth, these industries contributed 132 percent to China’s 1.1 

percent annual aggregate TFP growth.  

We therefore maintain our proposition in the Wu-Liang 2017 paper that the rapid 

development in ICT has enabled the Chinese economy to fully compensate for its heavy 

productivity losses in other industries, especially in mining, construction and some services, 

and the policy-induced misallocation of capital resources albeit very costly. The findings are 

alarming enough for the Chinese policy makers to seriously reconsider the China model of 
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growth so that to give more room for the market to enhance the ICT dynamism through more 

competitions and freer mobility of resources.  

We interpret the new findings with two caveats. Firstly, the rising role of ICT in today’s 

world could never be comprehensively assessed without considering the investment in software, 

but it is missing in our data. For example, we cannot be sure that if the observed significant 

decline in the input of ICT equipment since 2012 is true without a proper measure of the 

investment in software. Secondly, missing price changes of imported materials may have to 

some extent affected our results. Solving this problem is not only to make the price matrix 

more realistic and reflect the true intermediate costs facing Chinese producers, but more 

importantly to improve our measure of the real value-added growth for industries that heavily 

rely on imported parts and materials, among which ICT-related industries should be 

unquestionably on the top of the list. 
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APPENDIX 

TABLE A1 

CIP/CHINA KLEMS INDUSTRIAL CLASSIFICATION AND ICT-SPECIFIC GROUPING 

CIP 
EU- 

KLEMS 
Grouping Industry 

01 AtB Agriculture Agriculture, Forestry, Animal Husbandry and Fishery AGR 

02 10  Mining Coal mining CLM 

03 11  Mining Oil and gas extraction PTM 

04 13  Mining Metal mining MEM 

05 14  Mining Non-metallic minerals mining NMM 

06 15  Non-ICT-M Food and kindred products F&B 

07 16  Non-ICT-M Tobacco products TBC 

08 17  ICT-M Textile mill products TEX 

09 18  Non-ICT-M Apparel and other textile products WEA 

10 19  Non-ICT-M Leather and leather products LEA 

11 20  Non-ICT-M Saw mill products, furniture, fixtures W&F 

12 21t22 ICT-M Paper products, printing & publishing P&P 

13 23  Non-ICT-M Petroleum and coal products PET 

14 24  Non-ICT-M Chemicals and allied products CHE 

15 25  Non-ICT-M Rubber and plastics products R&P 

16 26  Non-ICT-M Stone, clay, and glass products BUI 

17 27t28 ICT-M Primary & fabricated metal industries MET 

18 27t28 Non-ICT-M Metal products (excl. rolling products) MEP 

19 29  ICT-M Industrial machinery and equipment MCH 

20 31  ICT-M Electric equipment ELE 

21 32  ICT-P Electronic and telecommunication equipment ICT 

22 30t33 ICT-P Instruments and office equipment INS 

23 34t35 ICT-M Motor vehicles & other transportation equipment TRS 

24 36t37 ICT-M Miscellaneous manufacturing industries OTH 

25 E Non-ICT-M Power, steam, gas and tap water supply UTL 

26 F Construction Construction CON 

27 G ICT-S Wholesale and Retail Trades SAL 

28 H Non-ICT-S Hotels and Restaurants HOT 

29 I ICT-S Transport and Storage T&S 

30 64  ICT-P Information Services P&T 

31 J ICT-S Financial Intermediation FIN 

32 K Non-ICT-S Real Estate Activities REA 

33 71t74 ICT-S Leasing, Technical, Science & Business Services  BUS 

34 L Non-market Public Administration and Defense ADM 

35 M Non-market Education EDU 

36 N Non-market Health and Social Security HEA 

37 O&P Non-ICT-S Other Services SER 

Source: See Wu and Ito (2015) for CIP classification. 
Notes: ICT-P: producing; ICT-M: using in manufacturing; ICT-S: using in services; non-ICT-M: manufacturing; non-

ICT-S: services; non-market: services. 

 

 



 Page 19 

 

 

TABLE A2  

INDUSTRY CONTRIBUTIONS TO VALUE-ADDED AND TOTAL FACTOR PRODUCTIVITY GROWTH 

1978–2018 

 Value-Added  Total Factor Productivity  

 VA 

weight 

VA 

growth 

Contribution 

to aggregate 

VA growth 

 Domar 

weight 

TFP 

growth 

Contribution 

to aggregate 

TFP growth 

AGR 0.184 3.76 0.77  0.294 1.50 0.28 

CLM 0.016 3.82 0.06  0.030 0.06 -0.01 

PTM 0.017 -8.52 -0.17  0.025 -12.91 -0.35 

MEM 0.006 6.12 0.03 
 

0.014 0.04 0.00 

NMM 0.006 7.95 0.05  0.013 1.65 0.02 

F&B 0.028 15.61 0.45  0.131 1.66 0.22 

TBC 0.012 6.58 0.06  0.018 -4.84 -0.13 

TEX 0.025 10.19 0.29  0.104 1.09 0.11 

WEA 0.009 13.10 0.11  0.034 1.37 0.04 

LEA 0.004 13.37 0.05  0.018 1.12 0.02 

W&F 0.007 14.11 0.10  0.025 2.18 0.06 

P&P 0.010 14.58 0.14  0.035 2.08 0.07 

PET 0.012 3.88 0.01  0.048 -3.00 -0.11 

CHE 0.035 16.38 0.56  0.130 2.27 0.27 

R&P 0.012 18.42 0.23  0.048 2.59 0.12 

BUI 0.024 10.49 0.25  0.073 1.36 0.13 

MET 0.034 6.25 0.16  0.137 -0.71 -0.09 

MEP 0.012 21.48 0.23  0.048 3.80 0.14 

MCH 0.033 17.42 0.58  0.115 4.33 0.42 

ELE 0.014 25.07 0.31  0.062 4.57 0.18 

ICT 0.015 39.29 0.50  0.075 7.69 0.32 

INS 0.003 16.71 0.05  0.011 3.77 0.03 

TRS 0.019 18.73 0.34  0.076 2.93 0.19 

OTH 0.013 18.59 0.23  0.035 4.03 0.16 

UTL 0.025 9.16 0.24  0.063 -0.74 -0.04 

CON 0.056 6.99 0.36  0.214 -0.31 -0.08 

SAL 0.079 10.89 0.77  0.139 0.90 0.08 

HOT 0.017 6.55 0.12  0.046 -1.14 -0.05 

T&S 0.048 7.77 0.38  0.095 -0.88 -0.07 

P&T 0.016 15.18 0.22  0.029 0.31 0.03 

FIN 0.045 11.03 0.44  0.070 -0.66 -0.06 

REA 0.035 11.49 0.30  0.047 1.21 -0.06 

BUS 0.025 8.90 0.24  0.060 -1.86 -0.11 

ADM 0.033 3.06 0.05  0.061 -1.32 -0.12 

EDU 0.026 -6.18 -0.16  0.043 -7.18 -0.30 

HEA 0.013 -9.84 -0.15  0.034 -6.37 -0.24 

SER 0.032 3.16 0.08  0.064 -1.21 -0.09 

Sum 1.000 
 

8.31  2.563 
 

1.00 

Source:  See Tables 1 and 3. 

Notes:  See Table A1 for industry abbreviation. Value added and TFP growth rates are annualized raw growth 

rates in percent. Industry contribution to VA and TFP growth is weighted growth rate in percentage 

points. See equation (22) for Domar aggregation. 
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