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ABSTRACT. Interregional input-output (IO) tables largely differ in the quantity and nature 
of the set of available information pertaining to interregional trade. With respect to ability 
to replicate interregional trade accurately, research to date suggests decreasing returns to 
scale persist regarding both more theoretical expectations and added empirical data. A basic 
underlying assumption is that intermediate industry accounts of the economies in 
interregional IO tables exist and are accurate. In fact, if they exist at the subnational level, 
such accounts are, at best, roughly estimated and predicated on far less empirical information 
than is available for economies of nations. Moreover, intra- economy intermediate-industry 
flows are typically markedly larger than the set of a region’s commodity in- and out-flows. 
So, if intermediate industry flows in a set of interregional IO accounts are noticeably mis-
estimated, it follows that interregional trade coincidentally derived using them must be even 
more conspicuously in error. 

In this piece, we identify a few approaches typically used by researchers worldwide 
to develop subnational interregional IO models. We start by consolidating all accounts of the 
27 member states for the year 2019, while maintaining sectoral detail, to produce a “national 
account”. We then apply (1) a unified approach that uses only regional populations, national 
direct requirements coefficients, geographic distances, jobs by regional industry to distribute 
all transactions. In the others, we assume that value added shares of output for each regional 
industry are known and apply additional information for the year 2019 for each region’s 
industries. In approach (2), we also “know” each regional industry’s supply/demand ratio to 
produce intraregional transactions. In (3), we estimate Flegg and Tohmo’s (2016) FLQ for 
each industry in each region to produce intraregional intermediate transactions. And in (4) 
we estimate econometric RPCs of the sort discussed in Lahr, Ferreira, and Többen (2020). 
Using this information, we construct interregional trade flows using a gravity model and 
RAS in all cases. We then test to see how well the approaches estimate interregional IO 
accounts of member states in the European Union (EU) as presented by the FIGARO 
database. We then apply the eight approaches—(1a), (1b), (2a), (2b), (3a), (3b), (4a) and 
(4b), where (a) denotes the full set of trade flows, (b) a diagonal set of trade flows only. We 
compare each to actual interregional accounts of EU member states published in FIGARO 
and, in turn, examine the benefits and trade-offs inherent to them. 
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1. Introduction 

Not too long after Leontief (1936, 1941) published the first input-output (IO) table 

thoughts ran toward generating such a table for subnational geographic units. Walter Isard 

(1951) was the first to formally propose one. He recognized the less-than-desirable nature 

of political regions for economic analysis, the lack of trade data at the subnational level, 

and the huge hurdle to applied interregional analyses that would arise from (then) 

computational limits. The story is told that Wassily Leontief was at least mildly appalled 

by Isard’s (1951) lack of empirics. 

Isard (1951) does not develop an interregional IO table since his proposal is 

hopelessly data intensive. It not only requires information on the origins and destinations 

of trade flows by both region and industry for all intermediate industry production but 

also for all types of final demands. It is no surprise, then, that subnational interregional 

IO (IRIO) tables of this genre have seldom been attempted. Japanese (1960-2005) and 

South Korean (2005) survey-based IRIO tables are notable exceptions (Miller & Blair, 

2022).1 A prime difficulty is collecting interregional commodity trade flows, a relatively 

easy task at an international level.2  

The trade data are critical at the subnational level since subnational trade across 

regions can be quite volatile, as producers and consumers alike seek better and more 

diverse supplies. Moreover, use of Leontief models assumes their coefficients are 

relatively stable. In Isard’s (1951) conceptual treatment, the 𝐀𝐀 matrices (the direct 

requirements matrices) for each region are likely nearly as stable as those for the nation 

(D. Batten & Martellato, 1985). But each is composed of intra-regional direct-

 
1 Oddly enough, above the national level, the set of international trade flows are likely of better quality than 
intranational interindustry shipments, which are roughly estimated (see, e.g., Planting & Guo, 2004; 
Dalgaard & Gysting, 2004). This is despite the well-known inconsistency of import and export flows 
between country trade pairs (Timmer et al., 2015)—the so-called “mirror puzzle of trade”; while irritating to 
analysts the “inconsistency” is typically relatively small in broader perspective, often simply relating to the 
accounting (or not) of logistical carrying costs. Moreover, Jackson, Israilevich, and Comer (1992) note that 
even when access to regional technology data is granted, estimating intraregional IO tables for all regions of 
a nation in a manner consistent with a published national table would undoubtedly create so many complex 
problems to render the problem intractable. At the national level, these authors reveal that issues arise 
simply matching changes national IO technology as revealed through census data to changes in IO 
technology available in balanced national accounts. 
2 At best nations undertake seasonal surveys at selected times of day, which yields biased results on freight 
flows (Lau, 1995). The survey action itself also can bias the responses of freight handlers. For example, it is 
well known in the U.S. that truckers communicate with each other when and where weigh stations are 
stopping vehicles to undertake such surveys, so they can avoid delays and fines (for carrying too much 
weight in their vehicle or for carrying goods they ought not be carrying). 
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requirements coefficients 𝑎𝑎𝑖𝑖𝑖𝑖𝑠𝑠 , final-demand deliveries 𝑓𝑓𝑖𝑖𝑟𝑟𝑠𝑠, and trade coefficients 𝑐𝑐𝑖𝑖𝑖𝑖𝑟𝑟𝑠𝑠, 

where 𝑟𝑟 and 𝑠𝑠, 

respectively, denote the origin and destination regions and 𝑖𝑖 and 𝑗𝑗, respectively, 

indicate the origin and destination industries and sectoral output is denoted. 

𝑥𝑥𝑖𝑖𝑟𝑟 = � ���(𝑎𝑎𝑖𝑖𝑖𝑖𝑠𝑠 𝑐𝑐𝑖𝑖𝑖𝑖𝑟𝑟𝑠𝑠𝑥𝑥𝑖𝑖𝑠𝑠)
𝑛𝑛

𝑖𝑖=1

� + �𝑓𝑓𝑖𝑖𝑖𝑖𝑟𝑟𝑠𝑠
𝑙𝑙

𝑖𝑖=1

�
𝑚𝑚

𝑠𝑠=1
 (1) 

for all 𝑟𝑟 and 𝑖𝑖. The temporal stability of trade coefficients for a given r-s pair for any given i-j 
flow is less tenable. 

Batten and Martellato (1985, p. 4) classify interregional IO models “[i]n order of 

increasing generality and difficulty to implement… (1) Leontief, (2) Leontief and Strout, 

(3) Chenery-Moses, (4) Riefler-Tiebout, and (5) Isard.” Table 1 briefly reviews these 

classical approaches. Subsequent paragraphs discuss data requirements and the set of 

hypotheses in relation to trade coefficients with respect to recent best practice in 

subnational multiregional IO (MRIO) table estimation techniques.3  

The implementation of global MRIO models assumes the availability and verity of 

underlying national IO tables. Official subnational equivalents tend not to be readily 

available.4 In fact, regional IO tables are seldom published. When they are, they typically 

rely more heavily on non-survey data than on survey data5 or contain only estimated 

blocks predicated upon primary data. There has been literature on hybrid methods for 

producing regional IO tables, and much of centers on finding the right balance between 

insertion of direct information and nonsurvey estimates (e.g., Lahr, 2001). We do not 

intend to replicate here an exhaustive literature review of these methods, which can be 

found, for instance, in Miller and Blair (2022). Rather we focus on more recent 

contributions that have been tested for their accuracy, particularly relating to the two main 

issues involved in MRIO table construction: 1) estimation of intraregional flows and 2) 

estimation of interregional trade flows. 

 
3 For a complete description of these models, please refer to Miller and Blair (2022). 
4 For a matter of clarification, we herein refer to MRIO systems that deal with subnational units. In the 
recent years, some integrated systems of national IO tables – such as WIOD or EORA - have been built 
using the same multiregional IO modelling principles. These are sometimes called MRIO models, although 
they incorporate and link national IO tables. 
5 e.g., the series of tables produced for the State of Washington. 
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 Table 1. Classical approaches in interregional IO models – summary table. 

Interregional IO modelling approach Data requirements Hypotheses regarding trade 
rs coefficients (tij ) 

Main limitation 

(1) Leontief (1953) • Distinction between “regional” and “national” 
commodities” 

• Regional outputs and regional final demands for 
both types of commodities 

• Proxies (only) of market share of “national” 
production yield estimates of regional production 

Market share of each region in providing 
each “national” product is a constant 
proportion of the national output of the 
same product 

It relies on the use of net trade flows across regions, which 
underestimates interregional feedback effects 

(2) Leontief and Strout (1963) • Regional supply (supply pool) for each product 
• Regional demand (demand pool) for each product 
• Some measure of impedance (for instance, related to 

distance) between region origin-destination pairs 

Import proportionality assumption: the 
same trade coefficient applies to all uses 
(both intermediate and final) in the 
destination region. 

Prior information on interregional trade flows is required to 
estimate the gravity model parameters. 

 
Import proportionality assumption: in fact, different 
industries and final users have different import propensities 

(3) Chenery (1953)-Moses (1955) • Origin-destination matrix depicts intra- and 
interregional shipments of each commodity’s 
output 

• Interindustry flow matrix for each region, in which 
the generic element considers all geographic origins 
of input i, except for international imports 

• Each commodity in final demand is specified by 
each source region 

• Regional output for each commodity 

Import proportionality assumption: the 
same trade coefficient applies to all uses 
(both intermediate and final) in the 
destination region. 

Import proportionality assumption: in fact, different 
industries and final users have different import propensities 

(4) Riefler and Tiebout (1970) • Import matrix and export matrix needed for each 
region 

• Interregional trade statistics by commodity 
• Each commodity in final demand is specified by 

each source region 
• Regional output for each commodity 

Trade coefficients’ stability, i.e., when a 
shift in final demand occurs, trade 
patterns are unaltered 

Demands data that are rarely available, e.g., import and 
export matrices for each region. 

(5) Isard (1951) • Regional production of each product 
• Final demand of each product satisfied by regional 

production 
• Intermediate consumption flows, distinguishing by 

industry of origin and region of origin (the same or 
each of the others) 

• International imports used as intermediate 
consumption 

Trade coefficients’ stability, i.e., when a 
shift in final demand occurs, trade 
patterns are unaltered 

Very high demand of seldom available data 

Source: Authors’ elaboration. 
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2. Research Approach 

We follow Sargento’s (2009) three dimensions of subnational IO models which classifies them 

as i) the number of regions considered: single- or many-region models, i.e., the recognition (or 

not) of interregional linkages; ii) the way in which regional direct requirements matrices are 

estimated, and iii) the extent to which interregional trade flows are detailed. A good deal of recent 

work has focused on (ii) above in the single region case—the estimation of single regional direct 

requirement matrices. So, we limit the focus of the present paper to the coalescence of all three 

dimensions in the many-region case only; we, thus, exclude all models that cannot account for 

interregional spillover and feedback effects. 

2.1. Intraregional shipments 

On the matter of producing subnational IO tables, Miller and Blair (2022, p. 65) note that as 

early as Isard and Kuenne (1953) and Miller (1957) used “national technical coefficients… in 

conjunction with an adjustment procedure… to capture some of the characteristics of the 

regional economies”. The adjustments have been called both “regional supply percentages” and 

“regional purchase coefficients” (RPCs). They were defined as the shares of local demands that 

are fulfilled by local supplies—and naturally were applied row wise to the direct requirements 

matrix A.6  

Garhart and Giarratani (1987) were probably the first to formally declare that regionalists 

could do better, at least from a conceptual perspective if not a pragmatic one. That is, they note 

that the RPCs were each row’s average regional supply share; the regional supply share for each 

element in the row undoubtedly varies from that average. Thus, in reality a full matrix of RPCs 

is the ideal, and the diagonalized matrix of the vector of RPCs was imprecise, albeit 

approximately correct. Strictly RAS-based studies of regionalization in which a region’s 

industry totals for intermediate inputs and intermediate outputs are perfectly known confirm 

Garhart and Giarratani’s (1987) assertions (see, e.g., Malizia & Bond, 1974; McMenamin & 

Haring, 1974). Unfortunately, we are aware of no real-world instances in which such totals are 

available. 

 
6 Note, the difference between a technical or technology matrix and a direct requirements matrix is the 
treatment of imports, particularly noncompetitive international imports, which are not separated out distinctly 
in a “true” technology matrix. In a regional setting the implication is that such imports are used by all regions 
in the same proportion and allocated with output. This is, of course, a rather strong assumption, particularly 
for large countries with rather large economies, like Russia, China, Canada, United States, Brazil, India, 
Mexico, Indonesia, Australia, and Japan. In such cases, more remote and interior regions are less apt to 
import goods from abroad than are core and coastal regions. 
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As a result, we test three basic ways to estimate the intra-regional direct requirement 

matrices. We bypass some of the most sophisticated approaches in this piece. We purposely opt 

not to employ mathematical programming (Flegg et al., 2021) or artificial intelligence 

techniques (Pakizeh & Kashani, 2022), at least for now. The idea is not to use approaches 

methodologically more advanced than those typically used by statistical agencies (see, e.g., 

Dalgaard & Gysting, 2004; Planting & Guo, 2004; Valderas-Jaramillo et al., 2019, 2021). Still, 

all three basic approaches assume that information exchange is free and perfect, i.e., that national 

industry technology is the same everywhere in a nation. 

2.1.1. The integrated approach 

The first of the three (1) is the simplest. It is what Boero, Edwards, and Rivera (2018) call “an 

integrated approach” and derives directly from Leontief (1953) except for the way industry 

outputs and demands are allocated across regions.7 In this instance, we start by assuming that 

minimal data are available for regions. So, the approach assigns national output to regions via 

each region’s shares of national labor use by industry,8 assumes total productivity is the same 

nationwide (value added’s share of output is spatially constant) and each region’s share of final 

uses by sector is estimated well by the region’s share of the nation’s population (c.f., Treyz & 

Stevens, 1985). Knowing output for each sector in each region, we then estimate intermediate 

output by each sector in each region by post-multiplying 𝐀𝐀 by the diagonalized vector of 

regional output 𝐱𝐱�𝑠𝑠 and summing across of the resulting matrix, i.e., 𝐀𝐀𝐱𝐱�𝐢𝐢 where 𝐢𝐢 is a summation 

vector (a vector of 1s of appropriate length, in this case n). Thus, we obtain total output and total 

demand by industry for each region, which (more likely than not) is unbalanced. Moreover, we 

are assured that the sum across all regions of both output and demand sum to the nation’s totals. 

In this case, note, however, that we have not yet identified the set of intra-regional trade flows; 

This is done later, simultaneously with estimating interregional trade flows. 

2.1.2. Other regionalization approaches  

Again, many approaches have been applied. One thing that recent publications have done is 

winnow out the chaff; that is, recent tests have tended to show some of the many approaches 

 
7 Over time, a long list of MRIO table builders have used this general approach, including Sargento, Ramos, 
and Hewings (2012), Haddad (2014) and Elshahawany, Haddad, and Lahr (2017). In many cases, however, 
authors make rather strong assumptions about intra-regional intermediate transactions as a region’s share of 
all transactions for a particular industry. 
8 Note, rather shares of jobs, that compensation or value-added shares ought to produce better allocations of 
national output across regions since they should better account for productivity differences. 
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are clearly inferior. Thus, we ignore those known inferior approaches except for a 

supply/demand ratio truncated at values below 1.0 à la Haddad (2014). The two approaches we 

selected are parametric; and as such, at least at present, use information on intraregional trade 

by industry to set the parameters. Because of this, we treat the remaining two alternatives 

equally and as if much more information is “known”. Both also account for possible commodity 

cross-hauling. In all cases, we assume information is available for at least three components of 

value added (labor compensation, indirect business taxes, and other value added) by industry as 

well as for all final demand by industry. The reason we do so is because most of such 

information is available for states within the US as well as for NUTS2 regions in the EU.9 

2.1.2.1. The supply/demand ratio 

The first and simplest of the three alternatives is one used by Haddad (2014). He lays out the 

groundwork for use of a supply/demand ratio (S/D) that is censored so that its maximum value 

is 1.0 when producing all regional direct requirements matrices for an MRIO model of Lebanon 

(Haddad, 2014, Equation 2). He modifies the S/D further by using what we can only assume is 

an expert-based “fudge factor,” a parameter F(c) that articulates “the extent of tradability of a 

given commodity” (p. 17).10 Including the F(c) Haddad then applies the resulting vector 

rowwise to national flows to obtain estimates of intraregional shipments by industry for each 

region. 

2.1.2.2. FLQs 

Flegg and Tohomo (2019) test a family of methods called FLQs. The most recent and accurate 

of them, according to the tests, consists of parametric transformations of cross-industry location 

quotients (CILQs) and accounts for the relative economic size of a region. They are further 

modified by a parameter δ that adjusts for the degree of inherent cross-hauling. Empirical work 

 
9 We understand that not all final demand data are, in fact available, by NUTS2 region or U.S. state. 
10 For basic goods, Haddad (2014) set F(c) to 0.9, while for export-base goods he set it to 0.5. He assumed no 
interregional trade at all for public administration. This basically reflects Leontief’s (1953) suggestion to split 
on base/nonbase production. Note, however, that both Stevens, Treyz, and Lahr (1989) and Jahn, Flegg and 
Tohmo (2020) suggest a value closer to 0.3 is probably more appropriate than 0.5 for modifying location 
quotients or S/D.  

In their FORTRAN program, Treyz and Stevens (1985) used 0.95 rather than 0.9 as a top value for 
basic goods, although they also applied an algorithm using the untruncated LQ or S/D value to allow the 
top value to asymptotically approach 1.0. They also set the ratio for the lodging industry to 0.5, figuring it 
tended to be an export-based industry because, except for overly interesting cases, locals tend not to use 
local-area hotels. 

We further note that Fournier Gabela (2020, fn 15) applies a strictly algorithmic approach to estimate 
trade for “not easily tradeable” commodities, although he provides no economic intuition to support it. 
Because of this missing element, we used Haddad’s brute-force approach instead. That is, it could be that 
Fournier Gabela’s algorithm yields “better” results.  
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is required to identify the proper value of δ. Jahn, Flegg, and Tohmo (2020) note that a series 

of empirical tests carried out in different geographies using FLQs suggest that δ = 0.3± 0.1. Thus, 

Flegg et al. (2021, p. 2) note that “the choice of a suitable value of δ … has limited the practical 

use of the FLQ.” Its lack of economic content is another. 

Following Flegg et al. (2016), Flegg et al. (2021, eq. 48) estimate any given element of the 

regional direct requirement matrix (their latest FLQ): 

𝑎𝑎𝑖𝑖𝑖𝑖𝑟𝑟 = 𝑎𝑎𝑛𝑛𝜇𝜇𝑖𝑖𝑖𝑖𝑟𝑟 𝜆𝜆𝑖𝑖 (2) 

where 𝜇𝜇𝑖𝑖𝑖𝑖𝑟𝑟 = �
𝐶𝐶𝐶𝐶𝐶𝐶𝑄𝑄𝑖𝑖𝑖𝑖𝑟𝑟 if 𝑖𝑖 ≠ 𝑗𝑗
𝑆𝑆𝐶𝐶𝑄𝑄𝑖𝑖𝑟𝑟 if 𝑖𝑖 = 𝑗𝑗 

 and 𝜆𝜆𝑖𝑖 = log2 �1 + 𝑥𝑥𝑖𝑖
𝑟𝑟

𝑥𝑥𝑖𝑖
𝑛𝑛�

𝛿𝛿𝑖𝑖
. The parameter 𝛿𝛿𝑖𝑖 is estimated 

via a transformed version of (2) (Flegg et al., 2021, eq. 49): 

ln�
𝑎𝑎𝑖𝑖𝑖𝑖𝑟𝑟

𝑎𝑎𝑖𝑖𝑖𝑖𝑛𝑛 𝜇𝜇𝑖𝑖𝑖𝑖𝑟𝑟
� = 𝛿𝛿𝑖𝑖𝜆𝜆𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 (3) 

This approach transforms national technology coefficients to regional direct coefficients 

by applying the region’s cross-industry location quotient (CILQ) to off-diagonal elements of 

the national direct requirements matrix or by applying the industry supply location quotient 

(SLQ) to its diagonal elements and, then, multiplying the results by the log base 2 of the sum 

of unity added and the industry’s national output share contained within the region. Flegg et al. 

(2016, 2021) report that 𝜆𝜆 adjusts for region size in terms of output, but do not reveal rationales 

for taking the log base 2 of the industry output share, why unity is added to it, or why that sum 

must be modified by δ. Presumably, these various assertions simply assure the CILQs and SLQs 

fit better. Note that the use of CILQs enables a full matrix of RPCs as extolled by Garhart and 

Giarratani (1987). 

2.1.2.3. Econometric RPCs 

The second is a location theory-based econometric approach originated by Treyz and Stevens 

(1985) for U.S. states, revisited by Stevens, Treyz, and Lahr (1989), and formalized by Lahr, 

Ferreira, and Többen (LFT, 2020), who formulated it for the European Union. Their quasi-

binomial estimates of RPCs are rows-only adjustments to A that estimate intraregional trade by 

industry. That is, LFT estimate RPCs (regional purchase coefficients or regional supply 

percentages), the regions’ propensities to use local production. Leaning on Treyz and Stevens 

(1985), LFT estimate RPCs as a function of regional geographic size, total demand per sector, 

supply-demand ratio, hotel room- nights per capita, and other sectoral and regional variables. LFT 

treat EU member states as “regions” of an amalgamated EU “nation” and find their approach is 
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relatively more accurate (contrasted to the nations’ true RPCs) vis-à-vis conventional rows-only 

trade-adjusting approaches, such as the S/D, SLQ, an older rendition of the FLQ (Flegg & Tohmo, 

2013) that does not use CILQs, and Többen and Kronenberg’s (2015) CHARM approach.  

2.2. Interregional trade flows 

Estimating interregional trade flows has received less attention of late at the subnational level than 

have intraregional direct requirements matrices. This is because much of the focus of the latter 

has been on single region IO models. Data on interregional trade between firms at the subnational 

level are rarely available (Hewings & Jensen, 1986). When they are available, they are 

complicated by logistical transfer points, i.e., the tendency of final users to buy from wholesalers 

and warehouses, which need not be near the location at which the commodity is ultimately used. 

Recall, “the aim is to estimate a set of flows among several origins and several destinations, 

separated in space” (Sargento et al., 2012, p. 174). 

Over time, an accumulation of approaches has amassed to estimate interregional trade flows 

(Sargento et al., 2012). Despite the diversity of their theoretical foundations, however, Batten and 

Boyce (1986, p. 357) conclude that “are more notable for their similarities than for their 

differences.” Ultimately, all apply a gravity model of some sort. Considering this, we point the 

reader to the two above review resources and move forward with a focus on approaches that use 

gravity models, the full family of which has been reviewed by Sen and Smith (1995), and Isard 

(1998) provides a primer. 

Again, we chose to ignore mathematical programming approaches, at least now in this 

exercise. We made this choice knowing that models like Cai’s (2021) doubly constrained gravity 

model should yield greater precision. Instead, we chose to work with a gravity model + RAS 

approach. 

How the approach is effected depends on whether regional direct requirements matrices 

exist for the regions or not. If they do, then the gravity model operates on each region’s excess 

supplies and excess demands by industry as in Yamada (2015), Fournier Gabela (2020), and Fei 

(2020). If not, it operates on each region’s shares of national supplies and demands by industry as 

in Leontief (1953), Sargento, Ramos, and Hewings (SRH, 2012), Boero, Edwards, and Rivera 

(2018), and others. In addition to information on supplies and demands by commodity, the gravity 

model uses shipping costs between region pairs, or their proxies—travel times, or distances. Some 

analysts (e.g., Fei, 2020) have also broken out shipping costs that depend upon the transport mode 
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used for the commodity.11 While some survey information of this sort is available in some 

countries, it is typically tough to apply to regional work due to small, seasonal samples applied in 

the survey work. 

Isard (1960), Leontief and Strout (1963), Isard (1998), and Yamada (2015) apply the same 

basic gravity model. It is: 

𝑡𝑡𝑖𝑖𝑟𝑟𝑠𝑠 = 𝑘𝑘𝑖𝑖
(𝑡𝑡𝑖𝑖𝑟𝑟•)𝛼𝛼𝑖𝑖(𝑡𝑡𝑖𝑖•𝑠𝑠)𝛽𝛽𝑖𝑖

(𝑡𝑡𝑡𝑡𝑖𝑖𝑟𝑟𝑠𝑠)𝛾𝛾𝑖𝑖  (4) 

where 𝑡𝑡𝑖𝑖𝑟𝑟• is region 𝑟𝑟’s excess supply, 𝑡𝑡𝑖𝑖•𝑠𝑠 is region 𝑠𝑠’s excess demand for 𝑖𝑖, 𝑡𝑡𝑡𝑡𝑖𝑖𝑟𝑟𝑠𝑠 is the shipping 

cost from r to s of commodity 𝑖𝑖, 𝑘𝑘𝑖𝑖 is a gravity coefficient that appropriately scales the gravity 

relationship for commodity 𝑖𝑖, and 𝛼𝛼𝑖𝑖, 𝛽𝛽𝑖𝑖, and 𝛾𝛾𝑖𝑖 are estimated parameters for commodity 𝑖𝑖 that are 

sometimes borrowed from prior studies. 

3. Data: FIGARO 
To test the various approached we decided to use FIGARO, a GMRIO data set focused on Europe 

(Remond-Tiedrez & Rueda Cantuche, 2019). We believe it has a good balance of country and 

industry detail for all European Union (EU-27) countries. FIGARO also has recent data compared 

with other GMRIOs available with fully comparable accounts from 2010 through 2020 (Piñero 

et al., 2022). We use the 2019 product-by-product model data as a benchmark. 

All national FIGARO commodity-by-industry tables have 𝑛𝑛 = 64 commodities. The 

database includes 𝑔𝑔 = 45 countries plus a “rest of the World” region (FIG, according to FIGARO 

codes). Final demand matrices 𝐅𝐅𝑟𝑟𝑠𝑠 have 𝑙𝑙 = 5 columns: (i) household consumption, (ii) collective 

consumption, (iii) government spending, (iv) gross fixed capital formation and (v) inventory 

variations. National value-added matrices 𝐖𝐖𝑠𝑠 have 𝑝𝑝 = 3 different rows: (a) compensation of 

employees, (b) gross operating surplus and (c) other net taxes on production. 

For the sake of the gravity model, we assume road transportation as the default option. We 

set the locations of every country in their capital cities and use Google Maps travel times.12 When 

road transportation is not possible, maritime transportation is our second option. In this case, we 

 
11 Clearly, bulk products like grains and minerals cost less to ship as they tend to be transported by slower, 
less expensive modes like water transport and rail, rather than truck. On the opposite end of the spectrum, 
when freight carrying costs—breakage, insurance, and storage (including time in transit)— make up 
relatively high shares of transportation costs, faster, more expensive modes of transport (e.g., air freight) are 
likely engaged. 
12 We assume truckers expense highway tolls and use the fastest routes. 
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calculate distances based on each country´s biggest freight port. We calculate the shortest path 

between ports and assume an average speed of 40 km/h (21.60 nautical knots per hour). 

Recently, de la Torre Cuevas and Lahr (2023) estimated the gravity equation (4) for some 

small and large EU countries and found that 𝛼𝛼 ≅ 1, 𝛽𝛽 ≅ 1, and 𝛾𝛾 ≅ 0.5 on average across shipped 

commodities, which are close to those found by Yamada (2015). Using a broader set of countries 

or regions others have found all parameters are close to 1 (Chaney, 2018; Hillberry & Hummels, 

2003; Martínez San Román et al., 2012). After some minor testing, we decided to let 𝛼𝛼 =  𝛽𝛽 =

 𝛾𝛾 = 1.13 

Following the logic of Lahr, Ferreira and Többen (2020), we aggregate all EU-27 countries 

to form a “national” model. That is, we sum up the 27 tables cell by cell to form a single 64×64 

set of commodity accounts that depicts interindustry shipments for the entire EU. Using these 

data, we then fabricate EU MRIO tables in the four different ways described in Section 2.1. In all 

cases, we approximate regional industry output using regions’ shares of national industry 

employment. Industry demand is estimated via the product of the national direct requirements 

coefficients matrix, for both intermediate and final uses, and outputs, where outputs of final 

demand are estimated using regions’ shares of the nation’s population. 

In one case of the four—the integrated approach, we apply a gravity model and estimate all 

trade flows simultaneously using a supply-demand pool approach. We use an internal distance 

measure applied by Keeble et al. (1982), among others, and assume an internal average travel 

speed of 90 km/h: 

𝑑𝑑𝑟𝑟𝑟𝑟 = 1/90�𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎𝑟𝑟/𝜋𝜋 . (5)        

In the others, we estimate intraregional shipments and use a four-step process. The three 

other estimating techniques differ only in the way intraregional shipments are estimated in Step 1 

and as described in Subsection 2.1.1. That is, we estimate the intraregional blocks in which 𝑜𝑜 =

𝑑𝑑. Recall, the three alternative approaches are Haddad’s S/D, CILQ-based FLQs,14 and 

econometric RPCs. In Step 2, we use each region’s intermediate industry excess supplies (local 

 
13 We tested both 0.5 and 1.0, and the difference was quite small between the two sets of resulting estimates. In fact, 
the difference between “actual” and “estimate” was very slightly lower the set of all EU countries with γ =1. 
14 We have not yet “optimized” the FLQ approach on δ. For the time being, we simply applied the rough value of 
0.3, the midpoint value suggested by Jahn, Flegg, and Tohmo (2016). We understand from Flegg and Tohmo (2016, 
2019) and Flegg et al. (2023) that this lack of present diligence could result findings biased against the FLQ+. Of 
course, the point of any FLQ is to keep things simple, otherwise a full econometric approach to estimating any sort 
of trade intra- or inter-regional should yield superior results.  
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industry-wise outputs not used locally) and excess demands (the region’s industry-wise demands 

not fulfilled by local producers). In essence, from total industry supplies and demands by region, 

net out the row/column sums of our intraregional estimates. We then apply a gravity model to 

allocate the excess supplies and demands across the other regions. In Step 3, we perform a similar 

supply-demand pool allocation for final demands. In Step 4, we balance all flows generated in 

Step 2 and Step 3 using GRAS (Junius & Oosterhaven, 2003). Then after the GRAS adjustment, 

we enter the intraregional trade estimates into the main diagonal blocks for each region.  

The above is performed in a way that permits the full population of cells in the interregional 

trade blocks (𝐓𝐓𝑜𝑜≠𝑑𝑑). Of course, even nations do not typically track which industries demand 

imports; that is, trade data are typically only available by commodity and only sometimes by the 

origin or shipping industry of exporting establishments. Rarely are the receiving (or destination) 

industries known. Depictions in GMRIOs like FIGARO of off-diagonal international trade arise 

during consolations of commodity trade accounts. Thus, in addition to full interregional trade 

matrices, we also opted to generate trade estimates that strictly populate the main diagonal of each 

trade block. In the case of final demand, we consolidate trade flows into a single column of 

interregional exports for each region. To conclude, international exports are shared out according 

to employment data in all models.  

Figure 1. Description of a symmetric MRIO model 

 Intermediate transactions Final demand  

1 ⋯ m Regional Foreign Σ 

1 𝐓𝐓11 ⋯ 𝐓𝐓1𝑚𝑚 𝐅𝐅1 𝐞𝐞1 𝐱𝐱1 

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ 

m 𝐓𝐓𝑚𝑚1 ⋯ 𝐓𝐓𝑚𝑚𝑚𝑚 𝐅𝐅𝑚𝑚 𝐞𝐞𝒎𝒎 𝐱𝐱𝑚𝑚 

m 𝐦𝐦1 ⋯ 𝐦𝐦𝑚𝑚 𝐦𝐦𝑓𝑓 − 𝐦𝐦• 

GVA 𝐰𝐰1 ⋯ 𝐰𝐰𝑚𝑚 − − 𝐰𝐰• 

𝛴𝛴 𝐱𝐱1 ⋯ 𝐱𝐱𝑚𝑚 𝐟𝐟••   

Source: author´s elaboration. 

The structure of our model is depicted in Figure 1. For the sake of simplicity, we restrict 

trade in final demand. Matrix 𝐅𝐅 only contains two columns of interregional and international 

exports instead of a full trade pattern as in 𝐓𝐓. We also sum value-added components into value-

added vectors 𝐰𝐰. Finally, we account for international imports and exports in a specific row (𝐦𝐦) 

and column (𝐞𝐞). Imports include those shipped to final demand. 
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4. Provisional Outcomes 

We examine seven different sets of subnational MRIO accounts. Recall the seven sets are 

the simple gravity model (SGM) approach plus two each for Haddad’s (2014) S/D pool 

approach, the CILQ-based approach by Flegg and others (FLQ+), and an econometrically 

estimated RPC approach (see Appendix A for a description). Estimated RPCs for service 

industries in the RPC approach followed those applied in Haddad’s S/D pool approach (see 

footnote 10). As mentioned earlier, we set the FLQ+ δ parameter to .3. The two versions of the 

MRIOs for each of the S/D, FLQ+, and econometric RPC approaches differ only in how 

interregional trade is estimated. That is, we retain the intraregional trade (on-diagonal) matrix 

partitions. But rather than assume one can estimate the full-set of interregional trade in the off-

diagonal matrix partitions, we instead assume that we can at best only know only the industry 

disposition of imports at the destination region by the industry that exports them at the region 

of origin, and so force interregional trade to be on the diagonal only of the off-diagonal 

partitions.  

We probe the veracity of these seven approaches using four different perspectives: output 

multipliers, value-added multipliers, the Leontief inverse (L), and the direct requirements 

matrix A. Recall that SGM is at a disadvantage in that its regional A matrices are not 

productivity-adjusted to reflect local-area value-added shares; the A matrices for the other three 

approaches have been so adjusted.  

To explore these four perspectives, we calculated four different distance measures: mean 

absolute deviation (MAD), weighted absolute deviation (WAD), mean absolute percentage 

error (MAPE), and weighted absolute percentage area (WMAPE). But we only report two 

here—MAPE and WMAPE. We do so because they are easier to interpret since they report 

percentages; also, it turns out, at least in our reams of results, that the WMAPE tends to mimic 

rankings across counties and even magnitudes of distance as measured by MAD and WAD. 

Multiplier WMAPEs are weighted using regions’ industry output values and as suggested by 

Oosterhaven (1981), we subtract 1.0 (the direct effects) from the output multiplier so the 

distance measures focus on the multiplier effects rather than the relative size of the direct effects. 

Weights for A and L are cell-specific; that is, each cell of the interregional T matrix is divided 

by its column total. In summary, big industries in big countries get bigger weights. 

 Table 2 shows the performance of all four approaches with a full T on output multipliers 

(minus 1.0—the direct effects) are very close but tend all to be off target on the order of 23% 

to 30%. The econometric RPC approach is marginally best and, for different reasons, SGM (it 
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wins more best-in-country awards) and S/D are close seconds. The FLQ+ yields results that are 

apparently least accurate, on average, but likely difficult to identify as much different from the 

other three alternatives. Note that all approaches fail to do well for Finland, Ireland, and The 

Netherlands, and perform much better for Germany, France, Poland and Romania. In any case, 

given its minimal data requirements (no value-added information, just jobs), the SGM performs 

extraordinarily well. 

Table 2. The relative accuracy of output multipliers (minus 1.0) by country 
(bold-faced font denotes country’s lowest-valued MAPE or WMAPE) 

 SGM  S/D  FLQ+  Econometric 

 MAPE WMAPE  MAPE WMAPE  MAPE WMAPE  MAPE WMAPE 
AT 29.6 25.1  28.8 25.9  33.6 28.3  28.3 25.5 
BE 22.1 16.9  24.2 20.3  24.3 18.4  23.7 20.0 
BG 19.5 17.5  23.2 20.1  21.0 18.3  22.6 19.6 
CY 37.5 37.2  28.3 23.8  36.4 35.5  29.5 24.4 
CZ 25.3 21.7  24.7 22.2  28.1 23.8  23.8 21.5 
DE 20.0 17.8  18.9 17.7  17.9 16.0  19.2 18.1 
DK 25.0 21.6  27.2 23.6  28.7 24.6  26.3 22.7 
EE 22.6 22.6  19.4 18.4  20.6 20.1  19.6 18.8 
ES 22.5 17.1  22.3 16.3  22.3 18.6  22.3 15.8 
FI 55.6 57.2  33.2 34.1  51.9 53.5  33.9 34.7 
FR 17.6 14.2  16.1 13.4  16.2 13.2  15.7 13.1 
GR 38.9 40.0  30.0 23.1  37.4 37.1  29.9 23.0 
HR 25.8 20.4  28.7 23.0  29.2 23.1  27.6 22.0 
HU 31.9 24.8  32.0 25.8  35.9 28.0  31.1 25.1 
IE 64.6 35.5  85.2 44.0  68.9 37.6  83.8 43.9 
IT 21.8 19.9  19.8 17.0  23.1 21.9  19.8 16.7 
LT 29.6 26.2  36.6 32.5  33.6 29.6  35.5 31.4 
LU 27.6 22.7  27.6 22.8  29.9 23.7  27.1 22.5 
LV 21.0 19.4  23.0 19.6  22.1 19.3  22.1 19.1 
MT 23.0 25.9  25.8 29.1  30.0 33.2  26.2 29.5 
NL 43.9 37.3  46.2 40.8  46.3 39.3  45.8 40.5 
PL 19.0 15.9  18.7 15.2  19.0 15.7  18.3 14.9 
PT 20.7 19.6  20.3 16.6  20.7 18.9  20.2 16.6 
RO 19.1 18.5  17.3 15.9  18.9 18.1  17.5 16.3 
SE 25.9 26.0  19.9 18.8  23.4 23.1  19.8 18.6 
SI 32.7 28.3  34.2 30.2  37.1 31.4  33.0 29.2 
SK 27.9 24.1  26.3 23.3  31.2 26.6  25.3 22.5 
mean 28.5 24.9  28.1 23.5  29.9 25.8  27.7 23.2 

On other economic measures (value-added multipliers, L, and A), however, econometric 

RPCs and S/D yield half the error on average of SGM and FLQ+ (see Table 3). This speaks well 

for all but FLQ+, which is the worst and yet has data requirements verging on those of the 
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econometric approach. RPC approach is best for most counties and at worst ranked second for 

those for which it is not.  

Table 3. Mean error by subnational MRIO table production approach 
(bold-faced font denotes lowest-valued MAPE or WMAPE in the row) 

 SGM S/D FLQ+ Econometric 
 MAPE WMAPE MAPE WMAPE MAPE WMAPE MAPE WMAPE 
Full IRIO          
 Output multipliers  28.5 24.9 28.1  23.5 29.9  25.8  27.7  23.2  
 Value added multipliers  26.3  21.1  25.0  19.3  26.9  21.8  24.7  19.0  
 Leontief inverse  156.7  1.0  1,303.3  0.7  99.1  1.1  1,007.2  0.7  
 Direct requirements  415.1  2.7  1,503.8  2.0  104.2  2.8  1,462.0  1.9  
 Diagonal IRIO          
 Output multipliers  67.4  57.4  54.5  42.7  94.9  77.5  64.4  50.0  
 Value added multipliers  67.4  60.8  30.1  23.1  94.3  84.8  64.4  55.3  
 Leontief inverse  109.3  1.0  1,303.8  0.7  97.0  1.1  1,460.8  0.7  
 Direct requirements  204.4  2.7  1,503.8  2.0  104.2  2.8  1,537.4  2.0  

When we permit trade only on the main diagonal—a reality rather than a practicality—

accuracy gets worse as might be expected (see lower half of Table 3). For output multipliers, 

they worsen least for RPCs and most for FLQ+, for which error nearly triples in the average 

WMAPE (~27%=> 78%). The others less than double in the average WMAPE (~25%=>~50%). 

Again, SGM appears to be the big winner because of its minimal data requirements. 

In value-added multipliers, S/D appears to be the best by far. Its errors are almost the same 

as for its full-fledged interregional equivalent. Accuracy findings for the other three appear to 

echo equivalents for output multipliers. That is, those for FLQ+ remain by far worst.  

For L and A things do not change much with a move to just diagonal flows, which is 

surprising and yet good news. It is evident from differences between MAPE and WMAPE that 

S/D and RPC approaches tend to match up with larger-valued cells better than do the other two. 

But they also really fail to get smaller values right. In this regard, FLQ+ is downright non-

discriminatory on cell values, where average MAPE errors across countries range from just 

94.7% to 126.0%. in S/D and RPC the range is more like 56% to 18,000% and SGM is 75.6% 

to 331.7%. 

5. Conclusions 
Herein, we analyze the relative accuracy of basic techniques typically used nowadays to 

estimate subnational MRIO models. For now, we purposely bypass techniques that employ 

mathematical programming (optimization) techniques. We do so by seeing how well different 

fundamental approaches can replicate intra- and inter-regional interindustry trade flows in the EU-

27. The simplest of them (the simple gravity model, SGM) uses only employment information for 



16  

each industry in each region and estimates of shipping distances within a region and between 

region pairs. In others, we assume that a superior estimate of intraregional interindustry trade 

flows can be constructed; to do so, we use Haddad’s (2014) supply/demand (S/D) pool approach, 

the FLQ+ approach (Flegg & Tohomo, 2016), and an econometrically estimated RPC approach 

that employs a binomial beta regression. In effecting these three approaches, we assure the 

regional direct requirements are also productivity-adjusted by column-wise re-estimating national 

direct requirements, so they reflect each region’s industry value-added shares. For each, we first 

assume that officials know the sectors that import interregional shipments and use a gravity model 

and RAS to populate a full interregional trade matrix. We create a second set of MRIOs to reflect 

the actual case—regional officials at best know the extent to which industries in their region 

export. In this case, we limit interregional shipments so that receiving industries in destination 

regions are the same as the origin industries of the regions that shipped them. We estimate these 

MRIOs for the EU-27 in 2019 by aggregating the 27 national accounts into a single 64-commodity 

by 64-commodity meta-account. This account effectively forms the “national” transactions 

matrix, a fundamental requirement for producing subnational input-output tables: one that 

assumes knowledge transfers freely across geographic space. 

We compare all eight alternatives to FIGARO GMRIO accounts of the EU-27. To 

compare, we rely on the weighted mean absolute percentage error (WMAPE) measure informed 

by the mean absolute percentage error (MAPE) measure. We find that SGM performs relatively 

well despite its very limited data requirements. The FLQ+ performs worst (often 50% worse) 

via several perspectives; the RPC econometric approach tends to perform best, as expected due 

to its steeper set of data requirements.  

Limiting interregional trade to the diagonal of off-diagonal partitions induces substantial 

error. This is no surprise since one must compare zero-valued cells in the estimated table to 

cells with nonzero values in the actual (2019 FIGARO) table. This point deserves more 

exploration since imports by using industry are not typically known, even in global and 

international accounts. Note WIOD and FIGARO report them as if they are known, but at best 

their fully population interregional trade matrices result from industry aggregation of import 

accounts for which only the commodity code of the shipment is known.  

We must note that better approaches than those that we test here likely exist—e.g., doubly 

constrained gravity models—since we limited our set of tests to approaches that use simple 

algorithms. Also, while RAS likely heals all sore spots, it also can possibly enable error to 

exaggerate and fester. 
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Appendix A 

For the research reported here, we opted for beta binomial regression (Cribari-Neto & Zeileis, 

2010) instead of the quasi-binomial regression approach employed by Lahr, Ferreira, and Tobben 

(LFT, 2020). The beta binomial is quite similar to the quasi-binomial but estimates parameters 

using maximum likelihood (ML) approach as opposed to a generalized linear model (GLM) 

(McCullagh & Nelder, 1989). Limiting values to lie between 0 and 1, these two formulations 

follow the same restrictions as the functional form employed by Treyz and Stevens (1985). 

Cribari-Neto and Zeileis (2010) explain that the beta binomial yield beta-distributed parameters 

depend on a mean and an estimated precision parameter. As in GLMs, a variable’s mean is linked 

to the responses through a link function and a linear predictor. Additionally, the beta distribution’s 

precision parameter is linked to another (potentially overlapping) set of regressors through a 

second link function, resulting in a model with variable dispersion. The approach has been used 

previously in analyses of trade (Bajzik et al., 2020; Benkovskis et al., 2020) among other 

applications in economics. 

Table A.1. Beta Binomial Regression Estimates for RPCs  
of Goods-producing Industries in the EU 27 in 201915 

Variables Coefficients p-value 

Constant -3.866 < 2e-16 *** 

ln(land area)  0.095 9.84e-06 *** 

ln(hotel room nights)  0.099 0.000379 *** 
Location quotient (max = 1)  0.072 0.002809 ** 
S/D (max =1)  2.234 < 2e-16 *** 
weight/value of good  0.052 3.70e-05 *** 
Agriculture and mining  1.037 < 2e-16 *** 
Food, beverage, & tobacco  0.551 2.62e-05 *** 
Textiles -0.493 0.000621 *** 
Printing  1.609 < 2e-16 *** 
Chemicals -0.459 7.05e-06 *** 
Electrical components and machinery -0.617 3.39e-12 *** 
R2  .646  

 

Table A.1 above and Table 3 in LFT use the same set of variables from the same and 

explain similar amounts of variance in the actual RPCs (R2 is quite similar). This is even though 

FIGARO’s data are more recent (2019 rather than 2016) and have a few more goods-producing 

sectors. An employment LQ replaces the supply LQ in LFT. Its direction of influence (sign) is 

expected to be the same, however. The bigger the LQ is, bigger the RPC value should be. The 

direction of influence remains for all other nonbinary independent variables. The greater the 

 
15 The R algorithm that we used is available at https://cran.utstat.utoronto.ca/web/packages/betareg/  

https://cran.utstat.utoronto.ca/web/packages/betareg/
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region’s land area, the more overnights spent by tourists, the higher the weight/value ratio of the 

commodity (the more commoditized the good is), and the larger the S/D, then the more likely it 

is to satisfy a greater share of the region’s local intermediate industry and final demands. Further, 

binary variables of some industries reveal regional preferences to consume locally produced 

products: primary industries, Food, beverage, and tobacco manufacturing, and the printing 

industry (note their positive coefficients point to higher-valued RPCs). Other sectors tend to be 

more involved in global value chains: textiles, chemicals, and electrical components and 

machinery industry, and, thus, are more apt to have lower-valued RPCs, i.e., local intermediate 

industry and final demands are more likely to be satisfied by suppliers from abroad and to fulfill 

demands of other regions. That is, they are industries in which cross-hauling is more likely to be 

the rule than the exception. 

The sectoral distribution of errors in our binomial beta regression is displayed in Figure 

A.1. Their distribution across countries is displayed in Figure A.2. Note with a few exceptions 

that means tend to be close to zero and the dispersion of errors is generally limited. 

Figure A.1. Error by sector using binomial beta regression 
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Figure A.2 - Error by country using binomial beta regression. 
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