

HYDRO-ECONOMIC EQUILIBRIUM WITH CLIMATIC VARIABILITY IN A SUBREGIONAL INPUT-OUTPUT FRAMEWORK: THE CASE OF TUSCANY

Benedetto Rocchi Gino Sturla

Department of Economics and Management University of Florence

Renato Paniccià

Regional Institute for Economic Planning of Tuscany
IRPET - Florence

IIOA Conference Santiago de Chile 1-5 July 2024

The Idroregio project

m amte.SVI.REGISTRO UFFICIALE.INTERNA.Prot.0006930.25-07-2019

Ministero dell'Ambiente e della Tutela

del Territorio e del Mare

DIREZIONE GENERALE PER LO SVILUPPO SOSTENIBILE, PER IL DANNO AMBIENTALE E PER I RAPPORTI CON L'UNIONE EUROPEA E GLI ORGANISMI INTERNAZIONALI

università degli studi FIRENZE

DISEI

DIPARTIMENTO DI SCIENZE PER L'ECONOMIA E L'IMPRESA

Regione Toscana

Citation: Author (2024). Title. *Bio-based* and *Applied Economics* 13(2): 85-99. doi: 10.36253/bae-xxxxxx

Received: Month xx, Year Accepted: Month xx, Year Published: Month xx, Year

Data Availability Statement: All relevant data are within the paper and its Supporting Information files.

An input-output hydro-economic model to assess the economic pressure on water resources

BENEDETTO ROCCHI^{1,*}, MAURO VICCARO^{2,3}, GINO STURLA¹

- ¹ Department of Economics and Management, University of Florence, Italy
- ² School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Italy
- ³ Institute of Methodologies for Environmental Analysis-National Research Council of Italy (CNR-IMAA), Italy
- * Corresponding author. E-mail: benedetto.rocchi@unifi.it

Contents lists available at ScienceDirect

Ecological Indicators

journal homepage: www.elsevier.com/locate/ecolind

Natural and social scarcity in water Footprint: A multiregional input-output analysis for Italy

Gino Sturla*, Lorenzo Ciulla, Benedetto Rocchi

Department of Economics and Management, University of Florence (IT), Italy

Contents lists available at ScienceDirect

Sustainable Production and Consumption

journal homepage: www.elsevier.com/locate/spc

Estimating the global production and consumption-based water footprint of a regional economy

Gino Sturla*, Lorenzo Ciulla, Benedetto Rocchi

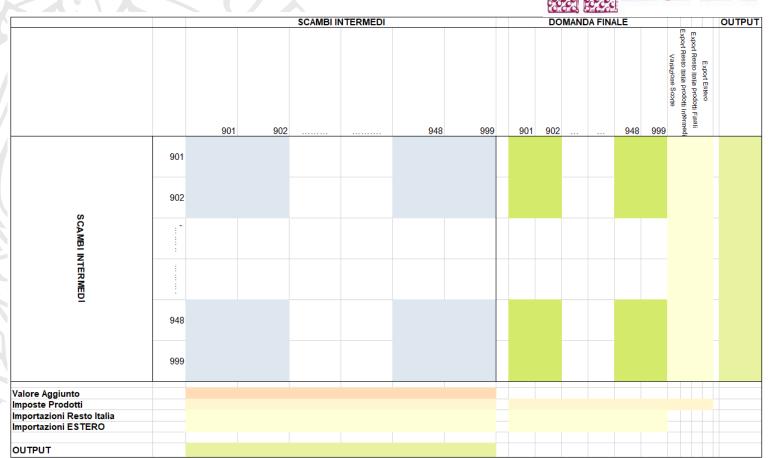
Dipartimento di Sciense per l'Economia e l'Impresa (DISEI), Università degli Studi di Firense, Via delle Pandette 9, 50127 Florence, Italy

Our approach

- A comprehensive accounting framework for water flows between economy and water bodies (water *use* as in the volumetric approach to WF)
- Uses are measured against availability to model water pressures (as in the LC approach to WF)
- The IO structure of the economy allows to model *implicit water flows* among sectors and regions
- We include the *natural variability* of the hydrological system

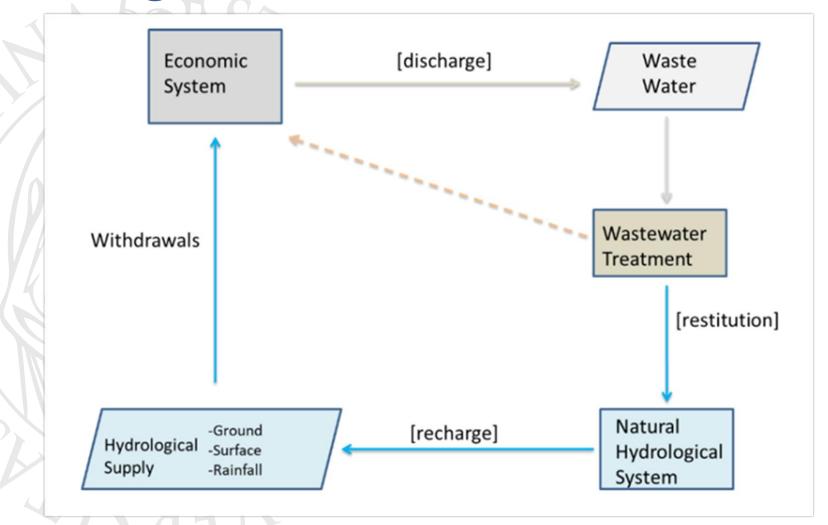
Innovative features

- Water demand of each economic activitiy includes quantities necessary to ensure the minimum quality of surface water bodies after discharges (grey water requirements: cfr. Guan and Hubaceck, 2008)
- The variability of water demand includes endogenous components (e.g. inverse relation of precipitations and water demand for irrigation)
- Water supply includes technical, institutional and environmental constraints (environmental relevance of water pressures as in the LC approach to WF)



MRIO multi-LMA table

53 industries, 49 LMA



The logical structure of the model

Research questions

- What is the average (yearly) level of pressure on water resources beyond which critical situations of water scarcity are likely to emerge?
- What are the conditions for a hydro-economic equilibrium in the region, given the structure of the economy and the endowment of water resources?
- What is the opportunity cost of such hydroeconomic equilibrium?

An «extended» water demand

- Some definitions
 - Net demand: withdrawals discharges
 - Extended demand: net demand + water for dilution
 - Reclassified demand: direct use of water implicit sales of water + implicit purchases of water
- This concepts are applied for each industry in each Local Market Area (LMA)

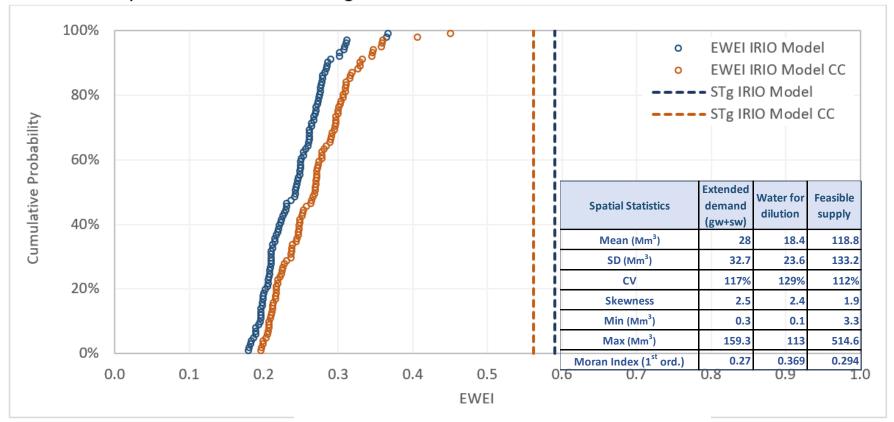
A «feasible» supply of water

 Considers environmental (ecological flow), technological (hydraulic works) and institutional (concessions) limitations to natural water supply

$$R_t^{feas} = \left\{ \begin{array}{ccc} R_t - E\bar{R} & if \ E\bar{R} < R_t < M\bar{R} + E\bar{R} \\ M\bar{R} & if \ R_t > M\bar{R} + E\bar{R} \\ 0 & if \ R_t < E\bar{R} \end{array} \right\}$$

$$I_t^{feas} = \begin{cases} & \bar{I}(1-B) \\ & \bar{I}(1+B) \\ & I_t \end{cases}$$

$$I_t^{feas} = \left\{ \begin{array}{ccc} \bar{I}(1-B) & & if \ I_t < \bar{I}(1-B) \\ \bar{I}(1+B) & & if \ I_t > \bar{I}(1+B) \\ I_t & & if \ I \in [\bar{I}(1-B), \bar{I}(1+B)] \end{array} \right\}$$



Extended Water Exploitation Index

Figure 1. EWEI cumulative probability distribution and Scarcity threshold

Whole Tuscany - Base and Climate Change scenario

Source: own elaborations

$$EWEI = \frac{i\sum_{k=1}^{2} (\widehat{f}_k - \widehat{r}_k + \widehat{w}_k)' (I - A_d)^{-1} y}{I^{feas} + R^{feas}}$$

Intra-annual EWEI

$$EWEI_i^s = \frac{(1 - \alpha^s) + \alpha^s a_i^s}{(1 - \beta^s)c_i^s + \beta^s b_i^s} EWEI^s$$

$$\alpha^s = \frac{ED_{Var}^s}{ED^s}$$

is the share of the extended demand corresponding to industries with intra-annual variability

$$\beta^s = \frac{FS_{sw}^s}{FS^s}$$

is the share of surface water feasible supply

$$a_i^s = \frac{ED_{Var,i}^s}{ED_{Var}^s/12}$$

is the intra-annual distribution coefficient of the extended demand from industries with intra-annual variability for month \underline{i}

$$b_i^s = \frac{FS_{sw,i}^s}{FS_{sw}^s/12}$$

is the intra-annual distribution coefficient of surface water feasible supply for month \underline{i}

$$c_i^s = \frac{FS_{gw,i}^s}{FS_{gw}^s/12}$$

is the intra-annual distribution coefficient of groundwater feasible supply for month \underline{i}

Endogenous scarcity thresholds

$$ST^s = \min_{i} \frac{(1 - \beta^s)c_i^s + \beta^r b_i^s}{(1 - \alpha^s) + \alpha^s a_i^s}$$

The sub-regional scarcity threshold corresponds to the annual EWEI ensuring that the EWEI will be equal to 1 in the critical month, i.e. the month with the smaller difference between supply and demand, and less or equal than 1 for the other months.

Hydro-economic equilibrium

$$\max_{\phi} e' \cdot L \cdot \hat{\phi} \cdot d$$

$$s.t.$$

$$\frac{(v_{blue}^s + v_{grey}^s)^T \cdot L^s \cdot \hat{\phi} \cdot d}{FS^s} \leq ST^s \quad , \quad \forall r$$

$$\phi^s \in [0,1] \quad , \quad \forall s \in \Gamma$$

where e is a (mn) vector of ones and Γ is the set of subregions with scarcity conditions.

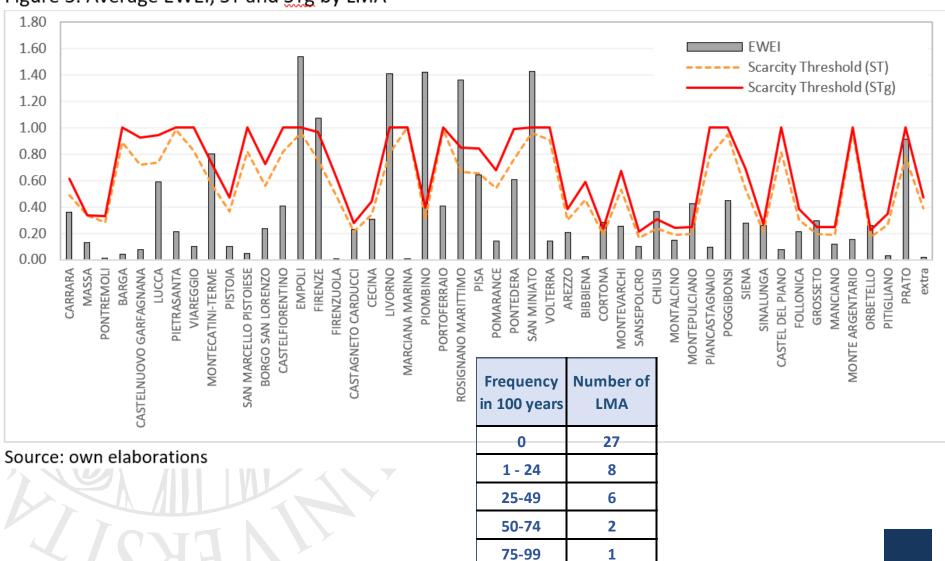
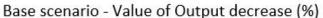
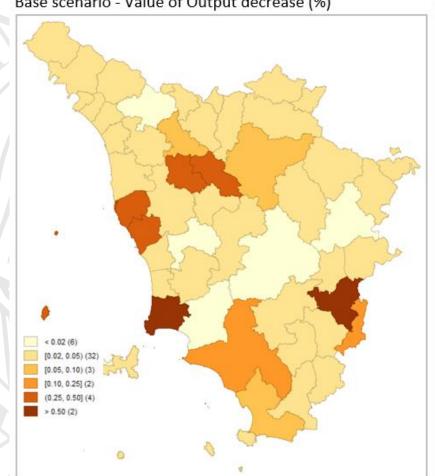


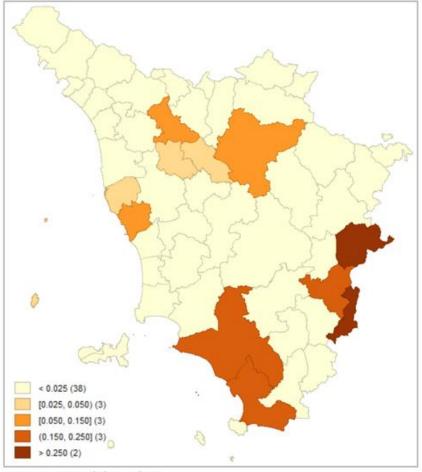
Figure 3. Average EWEI, ST and STg by LMA

100

5







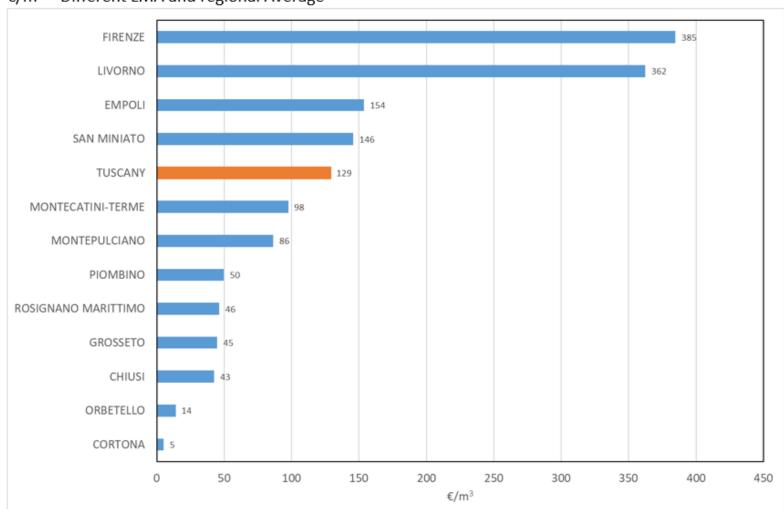
Cost of hydro-economic equilibrium

Impact of climate change on HEEC (% variation)

Source: own elaborations

Source: own elaborations

Figure 7
Unitary cost of <u>hydroeconomic</u> equilibrium
€/m³ – Different LMA and regional Average



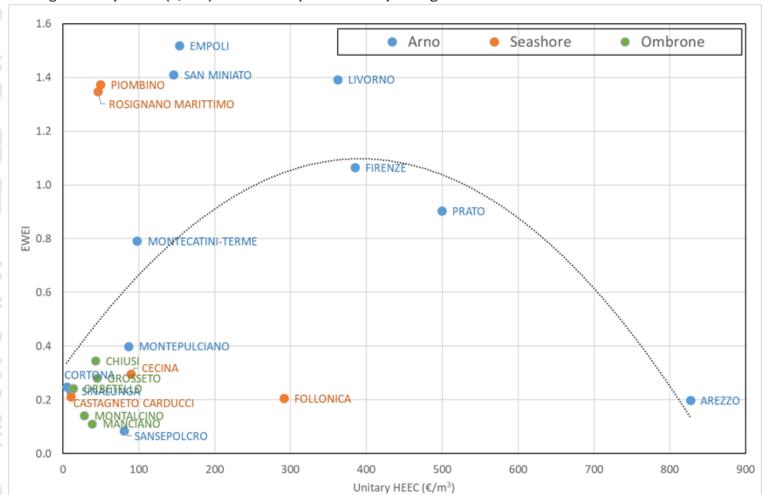


Figure 8
Water exploitation at the <u>subregional</u> level
Average unitary HEEC (€/m3) and EWEI by LMA and hydrological basin

Source: own elaborations

Concluding remarks

- Going beyond average annual values
- The scale of analysis is essential
- The management of water scarcity is a local issue (but inter regional interdependencies matter)
- HEEC concept useful in assessing investments for water regulations
- Looking forward: including ecosystem services in the model