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The study starts with the product balance identity according to logical scheme [output 0 = intermediate input 
0 + final demand 0] for the base year 0. Written in free variables it generates a product balance equation, or a 
generalized demand-driven input–output model. Analytical properties and peculiarities of vector and matrix 
calibration of the generalized model are considered. 

Formal introducing unknown matrices of quantity and price indices leads to generalized nonlinear input–
output model with exogenous final demand. This model comprises an excessive number of  unknown quantity and 
price parameters and is not identifiable itself. 

Nevertheless, under simplifying assumption about diagonal form of unknown parameters matrices one can get 
still nonlinear demand-driven input–output model with exogenous final demand but written with usual matrix 
operations and so much more operational. In general, this model could be linearize in four ways: set the matrix of 
price indices equal to identity matrix (constant prices), allow the quantity parameters matrix being identity matrix 
(constant levels of production by industries), and, finally, use two variants of combined including price and quantity 
parameters into the model. 

Main attention in the study is paid to examining the analytical properties of four groups of  linearized input–
output models with various sets of price and quantity parameters. All the models turn out to be strictly identifiable 
under not so cumbersome technical assumptions and satisfy the vector and matrix calibration conditions. In 
particular, it is shown that the linear demand-driven price model could be appreciate as almost trivial whereas the 
linear demand-driven quantity model is in accordance with the formal pattern of product technology assumption 
widely known in input–output analysis. 

Other two groups of linear demand-driven models with combined using price and quantity parameters seem 
to be out of economic sense, mostly not mentioned in the special literature but some of their features are of 
theoretical interest and deserves further exploration. In particular, one of them is in accordance with the formal 
pattern of industry technology assumption widely known in input–output analysis. 

Keywords: product balance identity, generalized product balance equation, vector and matrix calibration of 
the model, linear vector-valued cost function, nonlinear demand-driven input–output model, relative price 
and quantity indices, demand-driven price and quantity models, demand-driven price/quantity and 
quantity/price models 
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1. Introduction: identity and equation of product balance 

The information for constructing input–output models in accordance with the main 

methodological recommendations of the UN Handbook on Supply, Use and Input–Output Tables 

with Extensions and Applications (United Nations, 2018, Сh.12) and the Eurostat Manual of 

Supply, Use and Input–Output Tables (Eurostat, 2008, Сh.11) includes the following components 

of supply and use tables: 

   supply table at basic prices, 

   use table at basic prices, 

   domestic use table at basic prices, 

   import use table at basic prices. 
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The initial informational and analytical premise for constructing input–output models with 

exogenous final demand is a product (material) balance identity in basic prices formed on the 

basis of the data from supply and use tables for the base year 0: 

000 yeZeX  MM                                                           (1) 

where XR0R

 and ZR0R

 are supply (production) matrix and use (intermediate consumption) matrix of 

the same dimension NM for the base year 0, N and M are the numbers of products and industries 

in the economy, respectively, Me  is M-dimensional summation column vector with unit 

elements, and yR0R is N-dimensional column vector of final demand in base year 0. Vector formula 

(1) describes the system of N scalar identities with production and intermediate consumption 

matrices given. 

In order to transform the product balance identity (1) into a mathematical model, one can 

formally write it in free variables X, Z and y. As a result, we obtain a generalized product 

balance equation, or a generalized demand-driven input–output model 

yZeXe  MM .                                                           (2) 

It is easy to see that this generalized model contains N linear equations with 2NM+N scalar 

variables – elements of the production and intermediate consumption matrices X, Z and 

components of the final demand vector y (or with 3N scalar variables – components of the 

vectors MM ZeXe ,  and y). Thus, the model (2) is unidentifiable at choosing the final demand 

vector as an exogenous variable (Motorin, 2017). 

2. The properties of a generalized product balance equation 

The linear input–output model with exogenous final demand (2) is written in a very common 

form, but nevertheless has a number of analytical properties that should be taken into account 

when choosing or constructing procedures for model identification. 

Property 1. Let a pair of matrices  yX  and  yZ  be some solution to the generalized 

product balance equation for a given final demand vector y. Then the diagonal matrix   MeyX  of 

order N with a vector   MeyX  on the main diagonal and the diagonal matrix   MeyZ  of order N 

with a vector   MeyZ  on the main diagonal also satisfy equation (2), since 

        yeyZeyXeeyZeeyX  
MMMMMM .                           (3) 

Property 2. Next, let S be an arbitrary matrix of dimensions NM. It is easy to verify that 

the matrices   SyX   and   SyZ   also form a solution to the generalized product balance 

equation (2) since 
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          yeyZeyXeSyZeSyX  
MMMM .                        (4) 

However, it is clear that the practical worth of such additive solution, true for any choice of 

matrix S, is relatively small because formula (4) exhibits obvious feature of mathematical 

tautology. 

Property 3. Finally, let XS  and ZS  be a pair of square right stochastic matrices of order M 

such that MMM eeSeS ZX  . Then the matrices   XSyX  and   ZSyZ  satisfy equation (2) for 

a given vector y since 

        yeyZeyXeSyZeSyX ZX  
MMMM .                           (5) 

It should be emphasized that the practical worth of such multiplicative solution is limited because 

in the general case it is quite difficult to give an economic meaning to a pair of arbitrary right 

stochastic matrices. Nevertheless, as it will be shown below, Property 3 plays an important 

technical role in transforming the unidentifiable generalized linear input–output model with 

exogenous final demand (2) into its various operational forms.  

The established analytical properties (3), (4) and (5) of the generalized product balance 

equation prove useful in further studying the conditions of exact identifiability of model (2) and 

its correct calibration at 0yy  . 

3. Vector and matrix calibrating a generalized demand-driven input–output model 

The endogenous variables in model (2) are either a pair of matrices and with 2NM unknown 

elements, or a pair of vectors and with 2N unknown components. The noted ambiguity of the 

choice of endogenous variables in the system of N linear equations (2) generates two different 

conditions for model calibrating with respect to the initial product balance identity (1). 

Vector calibration condition. At   MeZXyy 000  , the vector of product outputs by all 

industries  yXeM  and the vector of product intermediate consumption  yZeM  satisfy the 

requirements   MM eXyXe 00   and   MM eZyZe 00  , respectively. 

Matrix calibration condition. At   MeZXyy 000  , the production matrix  yX  and 

the intermediate consumption matrix  yZ  satisfy the requirements   00 XyX   and   00 ZyZ  , 

respectively. 

It is easy to see that fulfillment of the matrix calibration condition always entails the 

fulfillment of the vector calibration condition but the converse statement is obviously not true. 

Thus, the vector calibration condition is essentially a weakened version of model’s matrix 

calibration condition. 

Within the formal framework of vector calibrating, the generalized input–output model 
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with exogenous final demand (2) contains N linear equations with 2N unknowns. To make this 

model operational, it is sufficient to supplement it with an equation for the relationship between 

the output and intermediate consumption vectors, for example, in the form of a linear vector-

valued cost function 

MM XeCZe 0 ,                                                           (6) 

where 0C  is N-dimensional square matrix of so-called input–output coefficients, determined a 

priori on the basis of supply and use tables for the base year 0. Having formally resolved the 

system (2), (6) with respect to MXe , we obtain the following equation for the dependence of the 

product output vector on the final demand vector: 

  yCEXe 1
0

 NM                                                        (7) 

where NE  is the identity matrix of order N, and the matrix in parentheses is assumed to be non-

singular. This equation not only demonstrates a simple technique for reducing the number of 

unknowns in (2), but is also very useful analytically: if the spectral radius of  matrix 0C  is less 

than one, the inverse matrix in (7) can be expanded into a convergent power series that can serve 

as an effective analytical tool for a detailed study of inter-sectoral interactions in the economy 

(see, e.g., Miller and Blair, 2009). 

Relation (7) is widely used in input–output analysis as a universal way of transforming the 

product balance equation into various models with exogenous final demand for constructing 

product-by-product input–output tables. In authoritative international reference handbooks 

United Nations (2018) and Eurostat (2008) it is recommended using three types of 

transformations resembling (7) in the practice of input–output modeling, namely, based on the 

product technology assumption, the industry technology assumption, and the hybrid (mixed) 

technology assumption. 

3.1. Calibrating the product technology model 

The product technology pattern (or product technology model) in the accepted notation has the 

following form: 

1
000
 XZC                                                                (8) 

– see, e.g., Kop Jansen and ten Raa (1990); ten Raa and Rueda-Cantuche (2003), (2007); Rueda-

Cantuche (2011). 

This formula implicitly assumes that in the economy under consideration the number of 

products N coincides with the number of industries M, that is, M = N = K, and the square 

production matrix of order K is non-singular. It should be emphasized that in accordance with the 
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product technology assumption each product is produced in its own specific way, irrespective of 

the industry where it is produced (United Nations, 2018; Eurostat, 2008). 

Substituting the product technology pattern (8) into (7) leads to the equation 

    yZXXyXZEXe 1
000

11
00

  KK                                     (9) 

provided that the square matrices of order K in parentheses are non-singular. In turn, substituting 

(8) and (9) into the formula for the linear vector-valued cost function (6) yields 

    yZXZyZXXXZXeXZZe 1
000

1
000

1
00

1
00

  KK .                  (10) 

It is easy to see that at   KeZXyy 000   equations (9) and (10) entails the statements 

  KK eXyXe 00   и   KK eZyZe 00  . Thus, the product technology pattern guarantees the 

fulfillment of the vector calibration condition formulated above. At the same time, it is clear that 

equations (9) and (10) do not allow us to uniquely identify the output and intermediate 

consumption matrices as functions of the exogenous vector of final demand, since, by virtue of 

Properties 1 and 3 of the generalized product balance equation, they have an infinite set of 

solutions with respect to X and Z. Consequently, the product technology assumption, generally 

speaking, does not ensure the fulfillment of the matrix calibration condition without involving 

any additional a priori information. 

3.2. Calibrating the industry technology model 

The industry technology pattern (or industry technology model) in the accepted notation has the 

following form: 

1
00

1
000

  MN eXXXeZC                                             (11) 

– see, e.g., Kop Jansen and ten Raa (1990); ten Raa and Rueda-Cantuche (2003), (2007); Rueda-

Cantuche (2011). 

It is clear that chosen form of the input–output coefficients matrix can be used for any 

combination of the number of products N and the number of industries M in the economy under 

consideration. It should be emphasized that according to the industry technology assumption each 

industry has its own specific way of production, irrespective of its product mix (United Nations, 

2018; Eurostat, 2008). 

Substituting the industry technology pattern (11) into (7) gives the equation 

  yeXXXeZEXe
11

00
1

00

  MNNM                                   (12) 

provided that the square matrix of order N in parentheses is non-singular. In turn, substituting 

(11) and (12) into the formula for the linear vector-valued cost function (6) yields 
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  yeXXXeZEeXXXeZXeCZe
11

00
1

00
1

00
1

000

  MNNMNMM .       (13) 

Let us prove that equation (12) generates the vector calibrating formula   MM eXyXe 00   at 

  MeZXyy 000  . Indeed, the equality 

    MMMNN eXeZXeXXXeZE 000

11
00

1
00 

  

can be transformed into 

    MMNNM eXeXXXeZEeZX 0
1

00
1

0000
   

from where after opening all circle brackets we get the identity 

MMMMNMMM eZeXeXeXXXeZeXeZeX 000
1

00
1

00000  
. 

This means that first requirement of the vector calibration condition is satisfied under the 

industry technology assumption. Moreover, as it follows from equation (13), fulfillment of first 

requirement entails the fulfillment of the second requirement since 

  MNNMMNM eZeXXeZeXeXXXeZyZe 00
1

000
1

00
1

000  
. 

It is important to emphasize that equation (12) and (13) have an infinite set of solutions 

with respect to X and Z as well as in previous case of product technology assumption. Therefore, 

the industry technology assumption, generally speaking, does not ensure the fulfillment of the 

matrix calibration condition without involving any additional a priori information. 

3.3. Calibrating the hybrid technology model 

The hybrid technology pattern (or hybrid technology model) in the accepted notation has the 

following form: 

  1
010200
 XXZC                                                     (14) 

– see, e.g., Kop Jansen and ten Raa (1990). Here 01X  and 02X  are the matrix terms of 

exogenous additive decomposition of the initial production matrix 02010 XXX  . 

The hybrid technology pattern could be considered as a combination of the product and 

industry technology models – see, e.g., Eurostat (2008). As in the case of the product technology 

assumption, formula (14) implicitly assumes that in the economy under consideration the number 

of products N coincides with the number of industries M, that is, M = N = K, and the square 

matrix 01X  of order K is non-singular. 

Substituting the hybrid technology pattern (14) into (7) leads to the equation 

       yZXXyXZXXyXXZEXe 1
0001

1
0200101

11
01020

  KK             (15) 

provided that the square matrices of order K in parentheses are non-singular. In turn, substituting 
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(14) and (15) into the formula for the linear vector-valued cost function (6) yields 

     yZXXZXeXXZZe 1
00020

1
01020

  KK .                        (16) 

At   MeZXyy 000  , the equations (15) and (16) can be transforms as follows: 

      KKKKKK eXeXeXeXeZXZXXyXe 00200100
1

00010   , 

       KKKKK eZeXeZeZXZXXZyZe 002000
1

000200   . 

The expressions obtained serve as explicit manifestation of tautological Property 2 of the 

generalized product balance equation (2). Thus, the hybrid technology assumption, generally 

speaking, does not ensure the fulfillment of neither matrix calibration condition nor even vector 

calibration condition without involving any additional a priori information. 

4. Introducing price and quantity parameters into the product balance equation 

Purposeful varying the exogenous elements of final demand in the generalized demand-driven 

input–output model (2) changes the price and quantity proportions in the resulting (disturbed) 

supply-use table. The most general (and widely used in macroeconomic statistics) way of 

describing the influence of exogenous changes on production and intermediate consumption 

matrices X and Z is apparently using the following multiplicative patterns 

0XQPX XX  ,                0ZQPZ ZZ  ,                                     (17) 

0Bwhere XP  and ZP  are NM-dimensional matrices of the relative price indices for products in 

output and intermediate consumption, XQ  and ZQ  are NM matrices of the relative quantity 

(physical volume) indices for industries (producers and consumers), and the character “  ” 

denotes the Hadamard (element-wise) product of two matrices with the same dimensions. 

However, this method of transforming the production and intermediate consumption matrices 

cannot be considered as operational because it leads to increasing the number of variables in the 

generalized linear model (2) from N(2M+1) to N(4M+1). 

To make the patterns (17) more operational it is necessary to simplify the situation by 

introducing some additional restrictions. 

Simplifying assumption 1. Letting PPP ZX   and QQQ ZX  . 

Simplifying assumption 2. Letting MepP  , qeQ  N  where p is a column vector of 

the relative price indices on products with dimensions N1, q is a column vector of the relative 

quantity indices for industries with dimensions M1, and the character “  ” denotes the 

Kronecker product for two matrices. 

Under Simplifying assumptions 1 and 2, multiplicative patterns (17) in the usual matrix 
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notation take the following form: 

qXpX ˆˆ 0 ,                 qZpZ ˆˆ 0 ,                                              (18) 

where putting a “hat” over vector’s symbol (or angled bracketing around it, as earlier in Section 

2) denotes a diagonal matrix with the vector on its main diagonal and zeros elsewhere (see Miller 

and Blair, 2009, p. 697).  

Nonlinear multiplicative patterns (18) together with the generalized product balance 

equation (2) provide a combined quantity’n’price description of economy's response to changes 

of the final demand components in a generalized nonlinear demand-driven input–output model  

yqZpqXp  00 ˆˆ .                                                        (19) 

Note that the obvious properties of diagonal matrices qeq Mˆ  and pep Nˆ  were used while 

transiting from (18) to (19). 

It should be emphasized that in the nonlinear model (19) the vectors p and q cannot be 

identified unambiguously because the formulas (18) define hyperbolically homogeneous 

functions mnqp  since  

00 ˆˆ XqpqXpX  ,           00 ˆˆ ZqpqZpZ   

and cc qpqp   where c is an arbitrary nonzero scalar. At the same time, the generalized 

nonlinear model (19) can be easily linearized in four ways that seem to be formally feasible and 

operational. 

5. Classification of the linear demand-driven models with price and quantity parameters 

First simple way to convert the nonlinear demand-driven input–output model (19) into a linear 

form is setting the quantity parameters matrix equal to identity matrix of order M, i.e., MEq ˆ . 

As a result, nonlinear multiplicative patterns (18) become 

0ˆXpX  ,                  0ˆZpZ  ,                                              (20) 

and the following linear equation with vector of price parameters p arises: 

yeZpeXp  MM 00 ˆˆ .                                                      (21) 

It is quite natural to classify equation (21) as a linear demand-driven price model at constant 

production levels. (It is important to note that main difference between this model and the 

Leontief price model, which is well known in input–output analysis (see, e.g., Miller and Blair, 

2009), is manifested in their exogenous factors – final demand in the first case and value added 

coefficients in the second one.) 

Another simple way to transform the nonlinear demand-driven input–output model (19) 

into a linear form is setting the price parameters matrix equal to identity matrix of order N, i.e., 
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NEp ˆ . As a consequence, nonlinear multiplicative patterns (18) become 

qXX ˆ0 ,                 qZZ ˆ0 ,                                             (22) 

and the following linear equation with vector of quantity parameters q appears: 

yqZqX  00 .                                                        (23) 

One can consider equation (23) as a linear demand-driven quantity (or volume) model at constant 

prices on products (because Nep  ). 

The variety of methods for transforming the generalized nonlinear demand-driven input–

output model (19) to one or another linear form is not limited to constructing the price model 

(21), in which the role of unknown parameters is played by relative price indices, and the 

quantity model (23) with relative physical volume parameters for output and intermediate 

consumption. From formal viewpoint, there are two alternative variants of linearizing the 

generalized nonlinear input–output model (19) with a combined inclusion of price and volume 

parameters: the linear demand-driven model with price changes in the production matrix and 

volume changes in the intermediate consumption matrix 

yqZeXp  00ˆ M                                                     (24) 

based on linear multiplicative patterns 

0ˆXpX  ,                     qZZ ˆ0 ,                                         (25) 

and the linear demand-driven model with, vice versa, volume changes in the output matrix and 

price changes in the intermediate consumption matrix 

yeZpqX  M00 ˆ ,                                                    (26) 

based on linear multiplicative patterns 

qXX ˆ0 ,                     0ˆZpZ  .                                           (27) 

The listed above variants of linearizing the generalized nonlinear model (19) can be 

classified jointly as the linear demand-driven models with combined set of price and quantity 

parameters. However, the eclecticism of the economic interpretation of these two models is quite 

obvious, and both of them seem to be out of economic sense. 

Nevertheless, the linear models (24) and (26) as formal objects represent a certain 

theoretical interest and deserve further study. Based on the order of appearing the parameters p 

and q in the corresponding formulas, we will henceforth mention (24) with the patterns (25) as 

the linear combined price/quantity demand-driven model and (26) with the patterns (27) as the 

linear combined quantity/price demand-driven model. 
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6. The linear demand-driven price model 

As noted above, at constant levels of production and intermediate consumption in economy’s 

industries one can set MEq ˆ  and Meq  ; then nonlinear multiplicative patterns (18) are 

transformed into linear form (20) and besides the generalized nonlinear demand-driven input–

output model (19) becomes linear and can be written as (21). 

Formally, the model (21) contains N linear equations with N scalar unknowns p and, as one 

might expect, should be strictly identifiable with final demand as exogenous vector of dimensions 

N1. However, to make the situation more operational, it is necessary to move in equation (21) 

from the unknown diagonal matrix p̂  to the unknown vector of price parameters p and write it as 

follows: 

ypeZpeX  MM 00                                                    (28) 

where one has used an obvious property abba ˆˆ   that is satisfied for any pair of column vectors 

a and b of the same dimension and their diagonalizations.  

It should be emphasized again that model (21) and its transformed version (28) provide a 

description of economy's response to changes in the components of final demand exclusively in 

terms of relative prices on products. That is the reason why it can be called a linear demand-

driven price model, as it was done in a title of Section 6. 

The solution of equation (28) with respect to unknown vector p provides the following 

analytical representation for the vector of relative prices on products produced and consumed in 

the economy: 

  yPeXyeZeXp 11
0

1
00





  MMM                                   (29) 

where 
1

00


  MMN eXeZEP  is the non-singular square matrix of order N. Note that its inverse 

matrix is equal to 1
00

1 ˆ 
  yeXP M  since 0000 ŷeZeXeXP  MMM . 

It is not difficult to show that analytical representation (29) and linear multiplicative 

patterns (20) yields the following equations of linkages between vectors and matrices of output 

and intermediate consumption and the final demand vector: 

yPpeXeXpXe 1
00ˆ 

  MMM ,       yPeXeZpeZZe 11
000





  MMMM ; 

0
11

00ˆ XyPeXXpX 



  M ,                   0

11
00ˆ ZyPeXZpZ 




  M . 

These expressions indicate that linear vector-valued cost function (6) for demand-driven 

price model (21) is 

MMMM XeeXeZZe
1

00
  



11 
 
that is interesting to compare with correspondent formulas for the cases of commodity technology 

(8), industry technology (11) and hybrid technology (14). 

It is easy to see that at 0yy   the column vector of relative prices on products (29) 

becomes equal to 

  NMMM eyyeXeXyPeXyp  



 0

1
00

1
00

11
00 ˆ , 

from which it immediately follows that 

    MMM eXeXypyXe 0000 ˆ   ,               MMM eZypeZyZe 0000   ; 

    0000 ˆ XXypyX   ,               0000 ˆ ZZypyZ   . 

Thus, the linear demand-driven price model (21) ensures that vector and matrix calibration 

conditions are met. 

Nevertheless, it can be argued that linear demand-driven price model is almost trivial. In 

fact, the formula for calculating the N-dimensional vector of relative prices on products (29), as is 

easy to verify, is equivalent to an N-fold application of the scalar formula 

0

1

1 1

00

n

n
n

M

m

M

m
nmnmn

y

y
yzxp 












 
  ,         n = 1N , 

for each of the products produced and consumed in the economy. 

7. The linear demand-driven quantity model 

At constant prices on products it is natural to set NEp ˆ  and Nep  ; then nonlinear 

multiplicative patterns (18) are transformed into linear form (22) and besides the generalized 

nonlinear demand-driven input–output model (19) becomes linear and can be written as (23). 

From a formal viewpoint, system (23) contains N linear equations with M scalar variables q and 

have a unique solution only if in the economy under consideration the number of products N 

coincides with the number of industries M, i.e., if M = N = K.   

Model (23) provides a description of the reaction of economy's production system to 

changes in final demand components exclusively in terms of relative physical volumes of 

production and intermediate consumption in industries. That is the reason why it can be called a 

linear demand-driven quantity model. 

The solution of the vector equation (23) with respect to the vector q (provided that square 

matrix 00 ZX   of order K is invertible) gives the following analytical representation for the 

vector of the physical volumes of products produced and consumed in the economy: 

     yQXyXXZEyZXq 11
0

1

0
1

00
1

00




  K ,                          (30) 
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where 1
00


  XZEQ K  is the non-singular square matrix of order N. 

It is easy to show that analytical representation (30) and linear multiplicative patterns (22) 

brings the following equations of linkages between vectors and matrices of output and 

intermediate consumption and the final demand vector: 

yQqXXe 1
0


 K ,                      yQXZqZZe 11

000




 K ; 

yQXXqXX 11
000 ˆ 




  ,                yQXZqZZ 11
000 ˆ 




  . 

It should be noted that at 0yy   the column vector of relative quantity indices (30) 

becomes equal to 

        KK eeZXZXyZXyq  
 00

1
00

1
000 , 

from which it immediately follows that 

    KK eXyqXyXe 0000   ,               KK eZyqZyZe 0000   ; 

    0000 ˆ XyqXyX   ,               0000 ˆ ZyqZyZ   . 

Thus, the linear demand-driven quantity model (23) ensures that vector and matrix 

calibration conditions are met. 

The presented above formula for calculating the matrix QRR indicates that linear vector-

valued cost function (6) for demand-driven quantity model (23) is 

KK XeXZZe 1
00
 , 

and, moreover, its matrix of input–output coefficients exactly coincides with matrix (8) – a set of 

input–output coefficients considered within a framework of product technology assumption. As 

noted above, the linear demand-driven quantity model operates at constant prices, i.e., at NEp ˆ  

and Nep  . It is worth to mention here that this conclusion exactly corresponds to price 

invariance axiom fulfillment established by Kop Jansen and ten Raa (1990) for product 

technology pattern. 

Nevertheless, demand-driven quantity model (23) does fundamentally differ from the 

input–output model (7), (8) based on the product technology assumption. The formal premises for 

constructing model (23) are the generalized product balance equation (2) and a pair of nonlinear 

multiplicative patterns (19) together with the linearizing conditions NEp ˆ  and Nep  , whereas 

model (7), (8) is generated by the product balance equation (2) and the linear vector-valued cost 

function (6) with the matrix of input–output coefficients (8). An important consequence of these 

differences in the formal premises for constructing the models under consideration is the 

impossibility of unambiguous identifying the matrices of output and intermediate consumption of 

products as functions of the exogenous final demand vector in model (7), (8) that entails a 
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noncompliance with the matrix calibration condition. 

8. The linear combined price/quantity demand-driven model 

The formal framework for constructing the linear combined price/quantity model (24) is the 

multiplicative patterns (25). The model contains N linear equations with N+M scalar components 

of parameter vectors p and q and therefore requires involving some additional information to 

ensure its strict identifiability. As an instance, one can try to introduce the instrumental linkages 

between quantity and price parameters either in the form pRq 0  or in the form qSp 0  where 

RR0R is a matrix of dimension MN and SR0R is a matrix of dimension NM. Note that the matrices 

RR0R and SR0R should be based on initial data from the product balance identity (1). 

Substituting the first instrumental linkage into model (24) leads to the equation 

  ypRZeX  000 M .                                                 (31) 

In turn, substituting the second instrumental linkage yields 

  yqZSeX  000 M .                                                 (32) 

It is easy to see that square matrix in parentheses in (31) has order N, whereas the matrix in 

parentheses in (32) is rectangular and has dimension NM. Thus, equation (32) cannot be solved 

with respect to vector q and becomes operational only if in the economy under consideration the 

number of products N coincides with the number of industries M, i.e., provided that M = N = K.   

It is interesting to note that the original price/quantity model (24) characterizes the reaction 

of economy's production system to varying the final demand components in terms of price 

changes in the output matrix and volume changes in the intermediate consumption matrix, while 

the transformed model (31) essentially turns out to be a price model and transformed model (32) 

is actually a quantity model. The noted metamorphoses seem to be direct consequence of 

introducing two instrumental linkages between quantity and price parameters into the original 

model in order to ensure its identifiability. 

Clearly, the transformed models (31) and (32) satisfy both calibration conditions if and 

only if   Neyp 0  and   Keyq 0 . For model (31), we have 

  NMNMMM eRZeXeRZeXeZeXy 000000000   

from where one can derive the requirement MN eeR 0 , i.e., matrix RR0R should be right 

stochastic. In turn, for model (32) at M = N = K  we get 

  KKKKKKK eZeSeXeZSeXeZeXy 000000000   

from where it follows the resembling requirement KK eeS 0 . 

Thus, the linear combined price/quantity model (24) with the instrumental linkages 
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between quantity and price parameters generates two (price and quantity) families of input–

output models (31) and (32) on a set of right stochastic matrices RR0R и SR0R. A variety of these 

models is defined by practical possibilities of choosing the linking matrices based on initial data 

from the product balance identity (1). 

Two examples of constructing the linear combined price/quantity model (24) with two 

specifications of the linking right stochastic matrices are given below. 

8.1. The example: RR0R is the transpose of MN product mix matrix 

Model: the linear combined price/quantity demand-driven model (24), version (31) 

Dimensions: MN  

Instrumental linkage specification: the transpose of the product mix matrix 0
1

00 XeXR  
N  

Derivation of the formulas: 

0ˆXpX  ,        qZZ ˆ0 ,            pRq 0 ; 

yqZeXp  00ˆ M ,     ypRZpeX  000 M ; 

ypXeXZpeX  
0

1
000 NM ; 

  yPeXyeXXeXZEeXp 11
0

11
00

1
00

1
0

   MMNNM ; 

yPeXXeXpRq 11
00

1
00

   MN ; 

yPpeXeXpXe 1
00ˆ   MMM ,      yPeXXeXZqZZe 11

00
1

000
   MNM ; 

0
11

00ˆ XyPeXXpX   K ,          yPeXXeXZqZZ 11
00

1
000 ˆ    MN  

Calibration: the solution satisfies both vector and matrix conditions 

Input–output coefficients:   
1

00
1

000
  MN eXXeXZC  

Conclusion: input–output coefficients matrix coincides with the industry technology pattern (11) 

8.2. The example: SR0R is the inverse of KK market shares matrix 

Model: the linear combined price/quantity demand-driven model (24), version (32) 

Dimensions: KK  

Instrumental linkage specification: the inverse of the market shares matrix KeXXS 0
1

00
  

Derivation of the formulas: 

0ˆXpX  ,        qZZ ˆ0 ,            qSp 0 ; 

yqZeXp  00ˆ K ,       yqZqSeX  000 K ; 
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yqZqeXXeX 
00

1
00 KK ; 

  yQeXXeXyeXXeXZEeXXeXq 11
00

1
0

11
00

1
00

1
00

1
0

   KKKKKKK ; 

yQeXqSp 11
00

  K ; 

yQpeXeXpXe 1
00ˆ   KKK ,      yQeXXeXZqZZe 11

00
1

000
  KKK ; 

0
11

00ˆ XyQeXXpX   K ,       yQeXXeXZqZZ 11
00

1
000 ˆ   KK  

Calibration: the solution satisfies both vector and matrix conditions 

Input–output coefficients:   
1

00
1

000
 KK eXXeXZC  

Conclusion: the model is not mentioned in the special literature apparently 

9. The linear combined quantity/price demand-driven model 

The formal framework for constructing the linear combined quantity/price model (26) is the 

multiplicative patterns (27). The model contains N linear equations with M+N scalar components 

of parameter vectors q and p and therefore requires involving some additional information to 

ensure its strict identifiability. As in previous case, one can try to introduce the instrumental 

linkages between quantity and price parameters either in the form pRq 0  or in the form 

qSp 0  where RR0R is a matrix of dimension MN and SR0R is a matrix of dimension NM. Recall 

that the matrices RR0R and SR0R should be based on initial data from the product balance identity (1). 

Substituting the first instrumental linkage into model (26) leads to the equation 

  ypeZRX  M000 .                                                 (33) 

In turn, substituting the second instrumental linkage yields 

  yqSeZX  000 M .                                                 (34) 

It is easy to see that square matrix in parentheses in (33) has order N, whereas the matrix in 

parentheses in (34) is rectangular and has dimension NM. Thus, equation (34) cannot be solved 

with respect to vector q and becomes operational only if in the economy under consideration the 

number of products N coincides with the number of industries M, i.e., provided that M = N = K.   

It is interesting to note that the original quantity/price (26) characterizes the reaction of 

economy's production system to varying the final demand components in terms of volume 

changes in the output matrix and price changes in the intermediate consumption matrix, while the 

transformed model (33) actually represent a price model and transformed model (34) is 

essentially a quantity model. The noted metamorphoses seem to be direct consequence of 

introducing two instrumental linkages between quantity and price parameters into the original 
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model in order to ensure its identifiability. 

Clearly, the transformed models (33) and (34) satisfy both calibration conditions if and 

only if   Neyp 0  and   Keyq 0 . For model (33), we have 

  MNNMMM eZeRXeeZRXeZeXy 000000000   

from where one can derive the requirement MN eeR 0 , i.e., matrix RR0R should be right 

stochastic, as earlier. In turn, for model (34) at M = N = K  we get 

  KKKKKKK eSeZeXeSeZXeZeXy 000000000   

from where it follows the resembling requirement KK eeS 0 . 

Thus, the linear combined quantity/price model (26) with the instrumental linkages 

between quantity and price parameters generates two (price and quantity) families of input–

output models (33) and (34) on a set of right stochastic matrices RR0R и SR0R. A variety of these 

models is defined by practical possibilities of choosing the linking matrices based on initial data 

from the product balance identity (1). 

Two examples of constructing the linear combined quantity/price model (26) with two 

specifications of the linking right stochastic matrices are given below. 

9.1. The example: RR0R is the inverse of KK market shares matrix 

Model: the linear combined quantity/price demand-driven model (26), version (33) 

Dimensions: KK  

Instrumental linkage specification: the inverse of the market shares matrix KeXXR 0
1

00
  

Derivation of the formulas: 

qXX ˆ0 ,        0ˆZpZ  ,            pRq 0 ; 

yeZpqX  K00 ˆ ,      ypeZpRX  K000 ,      ypeZpeX  KK 00 ; 

  yPeXyeXeZEeXp 11
0

11
00

1
0





  KKKKK ,       yPXpRq 11

00




  ; 

yPyPXXqXXe 111
000








 K ,         yPeXeZpeZZe 11

000




  KKKK ; 

yPXXqXX 11
000 ˆ 




  ,         0
11

00ˆ ZyPeXZpZ 



  K  

Calibration: the solution satisfies both vector and matrix conditions 

Input–output coefficients:   
1

000
 KK eXeZC  

Conclusion: the model has the same input–output coefficients matrix  

as the linear demand-driven price model (21) 
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9.2. The example: SR0R is the inverse & transpose of KK product mix matrix 

Model: the linear combined quantity/price demand-driven model (26), version (34) 

Dimensions: KK  

Instrumental linkage specification: the inverse & transpose of 

the product mix matrix   KeXXS 0
1

00    

Derivation of the formulas: 

qXX ˆ0 ,        0ˆZpZ  ,            qSp 0 ; 

yeZpqX  K00 ˆ ,      yqSeZqX  000 K ,        yqeXXeZqX  
KK 0

1
000 ; 

   yQXyXeXXeZEXq 11
0

11
00

1
00

1
0





  KKK ,      yQXeXXqSp 11

00
1

00




  K ; 

yQyQXXqXXe 111
000








 K ,       yQXeXXeZpeZZe 11

00
1

000




  KKKK ; 

yQXXqXX 11
000 ˆ 




  ,          0
11

00
1

00ˆ ZyQXeXXZpZ 



  K  

Calibration: the solution satisfies both vector and matrix conditions 

Input–output coefficients:     1
00

1
000

  XeXXeZC KK  

Conclusion: the model is not mentioned in the special literature apparently 

10. Concluding remarks 

The proposed approach to constructing demand-driven input-output models by direct introducing 

quantity and price parameters appears to be a useful analytical toolbox for further study of 

theoretical and applied aspects of input–output modeling. Its main advantage is the universality 

and flexibility of describing a wide class of input–output models with exogenous final demand 

including those apparently not mentioned in the special literature. 

The idea of introducing the instrumental linkages between quantity and price parameters 

can be extended to cases of double sets of quantity or price indices that could expand the 

analytical possibilities of sensitivity analysis and implementing scenario calculations. 
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