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Abstract: Purely based on normal assumptions on consumer preferences and 

production technology, the literature has not established the existence of any 

equilibrium with imperfect competition beyond that of Negishi equilibrium. In a 

general equilibrium model with intermediate goods, one firm’s demand function 

cannot be determined unless we know its downstream firms’ demand functions. 

Hence even the existence of demand functions becomes problematic. We introduce 

generalized first-order equilibrium (GFE), where every firm perceives a linear 

demand curve, whose slope is bounded by the left and right limits of the objective 

demand derivatives. Given normal consumer preferences and technology, there 

always exists a GFE in a price setting economy with intermediate goods.   
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1. Introduction 

While the existence of a competitive general equilibrium has been established 

purely based on assumptions on consumer preference and technology, its counterpart 

with imperfect competition has to rely on ad hoc and unjustifiable assumptions (see 

Bonnano [1990]). For instance, the profit function is often assumed to be quasi-

concave (Arrow and Hahn [1971], Gabszewiz and Vial [1972], Fitzroy [1974], 

Nikaido [1975], Laffont and Laroque [1976], Benassy [1988]). Otherwise, as shown 

by Roberts and Sonnenschein (1977), standard assumptions on preference and 

technology cannot ensure the existence of a general equilibrium with imperfect 

competition, in the sense of a genuine Nash equilibrium. Later Bonnano (1988) 

showed that in a partial equilibrium duopoly model, even a local maximum 

equilibrium may fail to exist. Therefore, to obtain an existence result of some sort of 

general equilibrium with imperfect competition, one has to accept bounded rationality 

below the level of local profit maximization.  

Negishi (1961) first explored along this road and proved the existence of 

Cournot-Walras general equilibrium where every firm’s first-order condition for 

profit maximization holds subject to a perceived linear demand curve that predict the 

level of demand correctly in equilibrium. The weakness of his concept is lack of 

restrictions on the slopes of subjective demand curves, so that almost any output/price 

decision could be thought as “optimal”. A natural improvement is to require each firm 

estimate its slope correctly, so that its first-order condition for profit maximization 

actually holds in equilibrium. We call it “first-order equilibrium”. Silvestre (1977) 

and Gary-Bobo (1989) prove the existence of this type of general equilibrium with 
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price and quantity competition respectively. Their results rely on two assumptions: (i) 

the specific production technology or total absence of intermediate goods; (ii) 

downward sloping and differentiable demand curves.  

In spite of their crucial importance, intermediate goods have not been 

incorporated into imperfectly competitive general equilibrium models satisfactorily. 

In Gabszewicz and Vial (1972), Marshak and Selton (1974) and Gary-Bobo (1989), 

all inputs come from consumers’ endowments. Negishi (1961) and Fitzroy (1974) do 

not allow imperfectly competitive firms sell products to each other. Nikaido (1975) 

and Silvestre (1977) assume that all goods, including intermediate ones, to be 

produced by Leontief technology only, so that a firm’s input demand is proportional 

to its output, and the whole demand vector can be solved through an inverse matrix. 

Benassy (1988) incorporates intermediate goods with convex technology, which is 

more general and can approximate Leontief production functions. He assumes, 

however, downstream firms do not adjust their output prices to any input price 

change, which is not a rational behavior.  

The difficulty to incorporate intermediate goods arises when firms mutually 

demand for each other’s products. For example, a computer producer may need 

software and sell its product to the software producer as well. Its demand function 

depends on how the software firm adjusts its input demand to the computer price. 

While making such adjustment, the software firm should take into account of the 

reaction of the computer firm to the software price change. But the computer firm’s 

reaction to its input price depends on its output market. We are back to square one. In 
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sun a complex network or circles, we may not be able to find any firm’s demand 

function unless we get all firms’ demand functions.  

To overcome this difficulty, it seems necessary to limit firms’ demand 

knowledge to a liner function, which matches the true demand in its quantity level and 

the slope estimation. Hence intermediate goods actually increase the appeal of first-

order equilibrium. However, as we mentioned earlier, first-order equilibrium relies on 

the assumption of demand differentiability, and introducing intermediate goods 

actually intensifies the problem of this assumption. In an exchange economy, the 

differentiability can be justified by numerous small consumers so that the demand 

curve becomes smooth by aggregation1. But this argument is less convincing for 

firms’ input demand functions.   

Unfortunately, the assumption of demand differentiability is essential to first-

order equilibrium. In a partial equilibrium model, Bonanno and Zeeman (1985) show 

the existence of first-order equilibrium without assuming downward sloping demand 

curves but the demand differentiability is still assumed. In fact, without demand 

differentiability, first-order equilibrium may fail to exist. Bonanno (1988) provides a 

duopoly example consistent with standard utility maximization, which does not 

possess either Nash or local maximum equilibrium. At the only possible location for 

first-order equilibrium, one firm’s demand curve is not differentiable2. Hence no first-

                                             
1 Caplin and Nalebuff (1991) obtain an Bertrand equilibrium with strong conditions on the distribution  
of consumers and their preferences.   
2 Bonanno assumes D1 = -0.0014p 3

1  + 0.0748p 2
1  – 1.4796p1 + p2, D2 = 10.5 + 1.9p1 – 2p2 for p2 ≤ 

0.94p1 + 1/3, but D2 = 10 + 0.49p1 – 0.5p2 otherwise. The only possible first-order equilibrium occurs 
at the intersection of firm 1’s “reaction curve”, which satisfies its first-order condition and firm 2’s 
“reaction curve”, which coincides with the line p2 = 0.94p1 + 1/3, i.e., (12.7,12.3). Given Bonanno’s 
assumption, firm 2’s demand function is not differentiable at this point.   
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order equilibrium exists. Moreover, we can show in a simple duopoly case that first-

order equilibrium may not exist even though Nash equilibrium does3.  

One possible solution to restore firms’ first-order conditions is to assign 

certain slope estimations at non-differentiable points. It is easy to verify that in both 

of Bonanno’s and our examples, we can find particular slope estimations between the 

limits of demand derivatives such that firms’ first-order profit maximization condition 

hold4. In each of these cases, we can say that the slope estimation is reasonable, 

because it lies within two possible “correct” values. 

To establish the existence of some sort of equilibrium with intermediate goods 

and without any ad hoc assumptions on demand curves, we introduce “a generalized 

first-order equilibrium” (GFE), which is identical to a first-order equilibrium when 

demand is differentiable; otherwise, the slope of subjective demand must be bounded 

by the left and right limits of the derivatives of the objective demand. Purely based on 

assumptions regarding preference and technology, we will prove the existence of such 

a GFE in a price setting economy with intermediate goods.  

The next section of the paper introduces the model. Section three outlines the 

proof. Section four proves the existence and section five discusses its properties, 

which is followed by concluding remarks in the final section. 

                                             
3 Let U = m + x1 + x2 – 0.5(x 2

1 + x 2
2 + x1x2), where m is money.  Demand: xi = 2(1 – 2pi + pj)/3 for x1, 

x2 > 0, xi = 1 – pi if 1 – 2pi + pj > 0 and 1 – 2pj + pi ≤ 0.  Cost: c1 = 0.25, c2 = 0.8.   The Nash 
equilibrium: p1 = 0.6, p2 = 0.8, where the demand is not differentiable. No first-order equilibrium 
exists.   
 
4 In Bonanno’s example, point p1 = 12.7, p2 = 12.3 satisfies firm 2’s first-order condition if its slope 
estimation is -0.8217, which is between the two limits of derivatives of its true demand curve, –2 and –
0.5. In our example, the Nash equilibrium p1 = 0.6, p2 = 0.8, satisfies firm 1’s first-order condition if its 
slope estimation is -8/7, between the two limits of its demand curve derivatives, -4/3 and -1.  
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2. Model 

The economy consists of m price taking consumers, denoted by i = 1, 2, . . . m, 

and n price setting firms, denoted by k = 1, 2. .  n. Every firm k produces a single 

product. It employs hk amount of labor and purchases an input vector zk. Given hk and 

zk, firm k’s output fk is determined by a production function fk(zk,hk). A firm would 

not demand all goods in R
n

+
, in particular not its own product. We assume firm k only 

chooses zk from its input space Rk ⊆R
1−

+

n
.   

Let xik be consumer i‘s demand for firm k's product and let zjk (j ≠ k) be firm 

j's input demand for firm k’s product. The total demand for firm k's product is thus Dk 

= ∑ =

m
i ikx1 + ∑ =

n

j jkz
1

. Let w be the wage rate and p-k (which does not contain pk) be 

the price vector for zk. Firm k's profit πk = pkmin(fk,Dk) – p-k⋅zk – whk. Consumer i 

owns a fraction θik of firm k (0 ≤ θik ≤ 1). All firms are privately owned, i.e., 

∑=

m

i ik1
θ = 1 for every k. 

Given a fixed time endowment Li, every consumer i chooses a labor supply qi 

≤ Li, enjoying a leisure time li = Li – qi, and expecting a salary wqi. In addition she 

receives a dividend di = ∑ =

n

k kik1
πθ , and her total income is wqi + di. She purchases a 

consumption bundle xi, and obtains a utility ui(xi,li). We assume she chooses xi from 

her consumption space Ri⊆R
n

+
. Her labor supply, qi, can be negative, i.e., she may 

purchase domestic labor service to expand her leisure time beyond Li. Examples 
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include babysitting, cleaning, escorting etc. There is no satiation point, and no saving, 

so di + wqi = pi⋅xi, where pi is the price vector for xi.    

Every buyer, a consumer or firm, is non-strategic, i.e., she does not expect her 

purchase affects any price or her dividend. No firm appreciates the “Ford effect”, the 

impact of its price/sale on consumers’ income, and every firm perceives a linear 

demand curve for its own product.  

Now we describe our economy based on the primary data, i.e., firms’ 

production functions and consumers’ utility functions. 

Assumption 1: Every fk(zk,hk) has continuous and bounded first- and second-

order derivatives, is non-decreasing and strictly concave. The determinants of its 

Hessian matrix and bordered Hessian matrix are bounded away from zero.  

Assumption 2: Every ui(xi,li) has continuous and bounded first- and second-

order derivatives, is non-decreasing and strictly quasi-concave. The determinant of its 

bordered Hessian matrix is bounded away from zero.  

It is known that the existence of a general equilibrium with imperfect 

competition can be disturbed by arbitrary choices of price normalization (Dierker and 

Grodal [1986] and [1999], Boehm [1994]). Instead of leaving any price normalization 

possible as in a competitive economy, Nikaido (1975) and Silvestre (1977) use labor 

as the numeraire to normalize the wage rate to 1, giving labor a special status as 

classic economists do. We follow Nikaido (1975) and Silvestre (1977) and further 

assign labor some unique properties in the economy. 
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Assumption 3: (i) Labour is essential in production, i.e., fk(zk,0) = 0 for every 

k; (ii) The marginal product of labour, ∂fk/∂hk, is bounded above zero; (iii)  For every 

consumer i, her marginal utility of leisure, ∂ui/∂li, is bounded above zero.  

To justify part (i), we notice that virtually all firms use labor as input (we 

count self-employment as labor). Part (ii) implies that no other good is essential. Part 

(iii) can be partially justified by part (ii), i.e., labor can be potentially used to meet 

any possible demand. Since the marginal utility of leisure is bounded above zero, so 

must be the equilibrium wage rate. Thus we can use the wage rate as the price 

denominator. From now on prices are relative to the wage rate, and profits are 

measured in terms of units of labor. 

We give our definition of a generalized first-order general equilibrium in a 

price setting economy with intermediate goods, in terms of prices, consumption, labor 

supply, input demand, labour demand, and firms’ slope estimations.   

Definition 1: We say a point (p*,x*,z*,h*,q*,s*) is a generalized first-order 

general equilibrium if it satisfies the following conditions: 

(I) Every consumption bundle x *
i  and labor supply q *

i  maximize the utility 

ui(xi,Li-qi) given p *
i , and d *

i  = ∑ =

n
k ik1
θ [p *

k fk(z
*
k ,h *

k ) - p *
k− ⋅z *

k  - h *
k ], i.e.,  

ui(x
*
i ,Li - q

*
i ) ≥ ui(xi,Li - qi) for any (xi,qi) such that p*⋅xi - qi ≤ d *

i . 

(II) (i) Given p *
k−  for any firm k, if D *

k  = ∑ =

m

i ikx
1

* + ∑ =

n

j jkz
1

*  > 0, we have 

(p *
k ,z *

k ,h *
k ) maximizes profit, pkmin.[fk(zk,hk),D

*
k  + s *

k (pk - p
*
k )] – p *

k− ⋅zk – hk, i.e.,  
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p *
k D *

k  - p *
k− ⋅z *

k  - h *
k  ≥ pkmin[D *

k  + s *
k (pk - p

*
k ),fk(zk,hk)] - p

*
k− ⋅zk - hk  

where s *
k  ∈[∂D *

k /∂pk|+0,∂D *
k /∂pk|-0];  

(ii) If D *
k  = 0, then p *

k fk(zk,hk) – p-k⋅zk – hk ≤ 0, and Dk = 0 for any pk ≥ p *
k .  

(III) The labor market clears, i.e., ∑ =

m
i iq1

*  = ∑ =

n
k kh1

* . 

Condition (II.ii) rules out a trivial equilibrium, where some firm sets a price 

too high to have any positive demand, while a positive profit can be made if it lowers 

its price sufficiently, but not by a small margin. In evaluating ∂D *
k /∂pk, we require 

that each ∂x *
ik /∂pk to be consistent with (I) for each consumer i, and z *

jk /∂pk to be 

consistent with (II) for firm j. Thus, as firm k perceives a linear demand curve, its 

slope estimation is justified by its downstream firms’ responses, which depend on 

their linear demand perceptions for their products, which are justified by their 

downstream firms’ reactions and so forth. In equilibrium every firm maximizes its 

profit subject to its slope estimation, which is consistent with other firms’ profit 

maximization subject to their slope estimations and so forth.  

3. Proof outline 

Our existence proof of GFE follows several steps, each of them is explained 

here and the formal proof will be presented in the next section.  

(i) Consumer demand: We show that any consumer i’s demand for firm k’s 

product xik is a continuous function. It is differentiable except for finite “switching 

points”. The same property holds for the aggregate consumer demand function.   
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(ii) Input demand: We introduce an internal price ck for any firm k. With such 

a ck, the profit maximization could be viewed as being delegated to two managers, in 

charge of production and price setting respectively. The production manager chooses 

input and labor demand to maximize profit, taking ck as the output price.  

(iii) Bounded demand: Combining all firms’ input demand with the aggregate 

consumer demand, we get the total demand for firm k’s product. We will show that 

every firm k’s demand, its price and internal price are all bounded.  

(iv) Price setting: We then turn to firms’ price setting by marketing managers, 

who perceives a linear demand curve and chooses a price pk to maximize profit taking 

the internal price ck as the marginal cost. We will show such a price can be defined as 

an upper hemi-continuous correspondence. Given this price, the expected demand 

level will be determined.   

(v) Internal price: To match firm k’s marketing manager’s expected demand 

with the production manager’s output decision, we need to adjust the internal price, 

ck. From this requirement, ck can be determined as a continuous function. 

(vi) Slope of demand curve: In evaluating the slope of firm k’s demand curve, 

we allow its input demanders adjust not only their inputs, but also their outputs and 

hence their output prices, which depend on the slope estimations of their own demand 

curves. We show the slope of firm k’s demand curve is always bounded and upper-

hemi-continuous.   

(vii) Fixed point: We will show that, all firms’ demands, prices, internal prices 

and slope estimations form an upper hemi-continuous correspondence from a compact 

set to itself, and hence have a fixed point.  



10 

(ix) Equilibrium existence: We will show the fixed point satisfies all 

conditions (I) – (III) in our equilibrium definition, hence a GFE exists in our price 

setting economy with intermediate goods.   

4. Existence proof 

In this section we will prove the following: 

Theorem: Given our Assumptions 1 - 3, there is a generalized first-order 

equilibrium satisfying conditions (I) – (III) of Definition 1. 

(i) Consumer demand: We start with consumer i’s choice of qi and xi.  

Definition 2: Given pi and di, qi and xi maximize the utility function ui(xi,Li-qi) 

subject to pi⋅xi = di + qi, and are written as  

  qi = qi(pi,di)         (1) 

 xik = xik(pi,di)         (2) 

The solution must be unique since ui(xi,li) is strictly quasi-concave. If there 

were two equally desirable consumption and leisure choices, any linear combination 

of them would yield a strictly higher utility and still satisfy the budget constraint. This 

leads to a contradiction. As ui(xi,li) is continuous, (xi,qi) is continuous in (pi,di).  

Suppose, for a moment, that none of the product demanded by the consumer 

switches between 0 and a positive amount. Then, since the bordered Hessian of 

ui(xi,qi) is non-singular, (2) is differentiable, in particular, ∂xik/∂pk exits when xik > 0 

(see Katzner 1968). Moreover, as the bordered Hessian has its elements all bounded, 

and its determinant bounded away from zero, ∂xik/∂pk must be bounded.   
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However, if consumer i‘s demand for any product, not necessarily good k, 

switches around zero, the demand function for good k may not be differentiable. For 

instance, in our earlier duopoly example, when the representative consumer’s demand 

for one firm’s product drops to zero, both firms’ demand functions become non-

differentiable. Nevertheless, the left and right limits of the derivative do exist, 

corresponding to the situations before the switch and afterwards. Therefore, we still 

have ∂xik/∂pk|+0 and ∂xik/∂pk|-0, and they are bounded.   

Let d be the m×1 vector of consumer dividends. As every xik is continuous in 

(pi,di), the aggregate consumer demand for firm k's product, ∑ =

m
i ikx1  ≡ Xk, must be 

continuous in (p,d). Furthermore, if no consumer switches her consumption on any 

good around zero, Xk is differentiable. As for a single consumer, at all switching 

points, the derivative of the aggregate consumer demand function still has the left and 

right limits, ∂Xk/∂pk|+0 and ∂Xk/∂pk|-0, and they are bounded. These switching points 

must be finite given finite consumers and goods.     

(ii) Input demand: To consider firm k’s input choice, we let its production 

manager choose (zk,hk) to maximize the production profit taking ck as the output 

price.  

Definition 3: Given ck and p-k, firm k’s input (zk,hk) maximizes profit 

ckfk(zk,hk) - p-k ⋅zk – hk, and are written as: 

  hk = hk(p-k,ck)        (3) 

 zkj = zkj(p-k,ck)     (j ≠ k)   (4) 
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As fk(zk,hk) is strictly concave, the solution of (zk,hk) is unique. Otherwise, any 

convex combination of two “optimal” points would give a higher profit. The unique 

solution must be a continuous function of the internal and input prices.   

Conversely to (4), any firm j’s demand for firm k’s product, zjk, can be written 

as a function of (p-j,cj). Let c-k be an (n - 1)×1 vector without ck. The total input 

demand for firm k's product, ∑ =

n

j jkz
1

 ≡ Zk, must be a continuous function of (p,c-k).  

(iii) Bounded demand: As we showed earlier that Xk is continuous in (p,d) 

and Zk is continuous in (p,c-k), the aggregate demand for firm k's product, ∑ =

m
i ikx1 + 

∑ =

n

j jkz
1

 must be a continuous function of (p,d,c-k), and can be written as Dk(p,d,c-k). 

To show that any firm k’s demand is bounded, we first need to prove its price and 

internal price are bounded.  

Lemma 1: For any k, there exist positive Pk and Ck such that if pk ≥ Pk, 

Dk(p,d,c-k) = 0; if ck ≤ Ck, fk(zk,hk) = 0 (see Appendix A for the proof). 

From now on we define every internal price ck and a firm’s price pk in a closed 

and bounded interval [Ck,Pk]. 

Then, we let ck = Pk, and pj = Cj for all j ≠ k, and solve firm k’s input and labor 

demand from (3) and (4). Denote the solution hk(C-k,Pk) by h k, and zkj(C-k,Pk) by z kj. 

Substituting them into the production function, we have fk( z k, h k) ≡ f k. This is firm 

k’s output given the highest possible output price and the lowest possible input prices. 

Since firm k will never produce more than this level of output in equilibrium, we can 

confine firm’s demand in a closed and bounded interval [0, f k], and write it as:   
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 Dk(p,d,c-k) = min.[Dk(p,d,c-k), f k]     (5) 

(iv) Price setting: Given Dk, pk and a slope estimation sk, the marketing 

manager perceives a linear demand function:  

Yk(Dk,pk,sk, p k) = max.[0, Dk + sk(pk – pk)]    (6) 

Taking ck as the constant marginal cost, the marketing manager then sets a 

price pk to maximize the marketing profit. 

Definition 4: Firm k’s price pk ∈ [Ck,Pk] is chosen to maximize Yk(pk – ck). 

We write this mapping from (Dk,pk,ck,sk) into interval [Ck,Pk] as: 

pk: φk(Dk,pk,ck,sk)       (7) 

Lemma 2: (7) is an upper hemi-continuous correspondence (see Appendix B).   

Substituting pk back to (6), we get firm k’s perceived demand Yk as a function 

of (Dk,pk,ck,sk). Denote it by Yk(Dk,pk,ck,sk). As (7) gives a unique value for pk except 

for the case sk = 0, Yk is a continuous function in its all arguments.    

(v) Internal price: To equalize firm k’s expected demand, Yk(Dk,pk,ck,sk), with 

the output chosen by its production manager, we need to adjust the internal price ck. 

As (3) and (4) are continuous in p-k and ck, we substitute hk(p-k,ck) and zk(p-k,ck) into 

fk(zk,hk), and obtain a continuous function fk[zk(p-k,ck),hk(p-k,ck)] = fk(p-k,ck).  

Definition 5: We choose ck ∈ [Ck,Pk] to make Yk(Dk,pk,ck,sk) = fk(p-k,ck); if Yk = 

fk = 0, we choose ck at the switching point between fk = 0 and fk > 0; if Yk > fk when ck 

= Pk, we let ck = Pk. We write this mapping from (Dk,p,sk) to interval [Ck,Pk] as  
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 ck = χk(Dk,p,sk)       (8) 

Lemma 3: (8) is a continuous function (see Appendix C).   

(vi) Slope of demand curve: At this moment, we can say nothing about the 

differentiability of Dk(p,d,c-k), although we know its component of Xk is differentiable 

except for switching points. As Zk is concerned, we need to consider each firm j’s 

input demand response to firm k’s price, ∂zjk/∂pk. If we keep cj constant, as the 

bordered Hessian of fj(zj,hj) is non-singular, by the implicit function theorem, we 

know ∂zjk/∂pk exists and is bounded except for switching points. Unfortunately, such 

a ∂zjk/∂pk would not be optimal as cj is kept fixed. Instead, firm j should adjust zj, hj 

and pj (through cj) together so that its new marginal cost matches its new marginal 

revenue and its new output matches its new subjective demand. We need to find the 

value of ∂zjk/∂pk taking into account such optimal adjustment of both inputs and 

outputs. 

Lemma 4: If zjk > 0, and no switch occurs, there exists ∂zjk/∂pk, where (zj,hj) 

satisfies (3) and (4) and cj satisfies (8). It is always negative, bounded, and continuous 

in all its arguments (see Appendix D). 

When no switch occurs, we can sum ∂zjk/∂pk‘s for all j and ∂xik/∂pk‘s for all i 

to get ∂Dk/∂pk. It must be non-positive, continuous and bounded. When switches 

occur, the slope does not exist, but its left and right limits, ∂Dk/∂pk|+0 and ∂Dk/∂pk|-0, 

do and must be bounded. Let S k and S k be the lower and upper bounds of ∂Dk/∂pk|-0 

and ∂Dk/∂pk|+0. As Dk in (5) is a function of (p,d,c-k), and cj in (8) is a function of 

(Dj,p,sj), the derivatives depend on (D-k,p,d,c-k,s-k).  
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Moreover, we refine our definition of firm k’s slope estimation according to 

Dk = 0 or Dk > 0, also whether the switching price is higher, equal or lower than the 

internal cost ck. Thus we have a mapping from (D,p,d,c,s-k) to interval [ S k, S k]. 

Definition 6: Given (D,p,d,c,s-k), (i) If Dk > 0, then sk ∈ [∂Dk/∂pk|+0,∂Dk/∂pk|-0]; 

(ii) If Dk = 0, (ii.a) if the switching price is higher than ck, sk = ∂Dk/∂pk|-0 evaluated at 

the switching point; (ii.b) if the switching price = ck, sk ∈ [0,∂Dk/∂pk|-0]; (ii.c) if no 

switching point exists or it is below ck, sk = 0. We write this correspondence as:  

  sk: σk(D,p,d,c,s-k)       (9) 

Lemma 5: Correspondence (9) is upper hemi-continuous and gives a negative 

value bounded away from zero in case (ii.a) of Definition 6 (see Appendix E). 

(viii) Fixed point: Now we will establish a fixed point. Before applying the 

fixed-point theorem, we can simplify some of our earlier expressions. Equations (5) 

and (9) contain the vector of consumer dividends d. Consumer i receives a dividend di 

= ∑ =

n
k kik1 πθ , where πk = pkfk(zk,hk) – p-k⋅zk - hk. Using (3) and (4) we can write πk as 

a functions of p and ck, and di as a continuous function di = di(p,c). Substituting di into 

(5) and (9), we write demand function (5) as a new function τk(p,c), and slope 

correspondence (9) as ωk(D,p,c,s-k). Finally, we obtain the following upper hemi-

continuous correspondences: 

Dk = τk(p,c)        (5’) 

pk: φk(Dk,pk,ck,sk)       (7) 
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ck = χk(Dk,p,sk)       (8) 

sk: ωk(D,p,c,s-k)       (9’) 

(5’), (7), (8), (9’) together form an upper hemi-continuous correspondence 

mapping from a compact and convex set K ≡ [(D,p,c,s) ∈ R4n|0 ≤ Dk ≤ f k, Ck ≤ pk ≤ 

Pk, Ck ≤ ck ≤ Pk, S k ≤ sk ≤ S k, for all k} into itself. By Kakutani's fixed-point theorem, 

there exists a point (D*,p*,c*,s*) such that for every k, D *
k  = τk(p*,c*), p *

k  = 

φk(D
*
k ,p *

k ,c *
k ,s *

k ), c *
k  = χk(D

*
k ,p*,s *

k ), and s *
k  ∈ ωk(D*,p*,c*,s *

k− ).     

(ix) Equilibrium existence: Finally, we will show that the fixed point satisfies 

conditions (I) – (III) in our equilibrium Definition 1. As (2) is derived from consumer 

utility maximization, condition (I) holds. 

At the fixed point, (7) implies Y *
k  = D *

k . If c *
k  = χk(D

*
k ,p*,s *

k ) < Pk, we know 

Y *
k  = f *

k . So D *
k  = f *

k  ≤ f k, and D *
k  = D *

k . If c *
k  = Pk, we have p *

k  ≥ Pk, so D *
k  = 0. 

Then we have D *
k  = 0, Y *

k  = 0 and f *
k  = 0. Thus, every firm k’s output, f *

k , its 

expected demand, Y *
k , and actual demand, D *

k , are all equal.   

As consumers spend all income, the total income equals the total expenditure,  

  )( *
1

*
i

m
i i qd +∑ =

= p*⋅∑ =

m
i ix1

*       (10) 

The total dividend equals the total profit, which is ∑ =

n
k kk Dp

1
**  - p*∑ =

n

k kz
1

*  -

∑ =

n
k kh1

* . As ∑ =

n
k kk Dp1

**  - p*∑ =

n

k kz
1

*  = p*⋅∑ =

m
i ix1

* , (10) implies ∑ =

m
i iq1

*  = 
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∑ =

n
k kh1

* , and the labor market is clear, as dictated by Walras law. Hence condition 

(III) holds. 

To prove the fixed point satisfies condition (II), we need (see Appendix F): 

Lemma 6: (i) If f *
k  > 0, p *

k  maximizes (pk – c *
k )(D *

k  - s *
k p *

k  + s *
k pk); (ii) If f

*
k  

= 0, p *
k fk(zk,hk) – p *

k− ⋅zk - hk ≤ 0 for any (zk, hk), and Dk ≤ 0 for any pk > p *
k .  

Finally, we check the consistency between the production manager’s decision 

and that of the marketing manager. Equations (3) and (4) imply that every firm k’s 

inputs and labor demand maximize its profit given input prices and taking c *
k  as its 

output price. This implies ∆Ck/∆fk- ≤ c *
k  ≤ ∆Ck/∆fk+, where ∆Ck/∆fk- and ∆Ck/∆fk+ are 

the left and right limits of the derivative of firm k’s cost with respect to its output. On 

the other hand, Lemma 6 implies c *
k  is equal to the perceived marginal revenue, MRk. 

So, we have ∆Ck/∆fk- ≤ MRk ≤ ∆Ck/∆fk+. The first inequality implies a profit fall if 

firm k reduces its output, while the second inequality implies a profit fall if firm k 

increases its output. If the marginal cost exists, i.e., ∆Ck/∆fk+ = ∆Ck/∆fk-, we get MCk 

= MRk. Overall the profit maximization condition (II) is achieved. Therefore, the 

fixed point is indeed generalized first-order equilibrium. 

5. Equilibrium properties 

Our model does not assume downward sloping demand curves. As shown in 

Appendix B, however, if s *
k  > 0, we must have D *

k  = 0. Thus, f *
k  > 0 implies s *

k  < 0. 

Upward sloping demand or perfectly inelastic demand never appears in equilibrium.  

Property 1: Every active firm faces a downward sloping demand curve.   
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As we mentioned earlier, one of disadvantages of first-order equilibrium is 

that it may not contain Nash equilibrium or a local maximum equilibrium. One reason 

to introduce the generalized first-order equilibrium is to include any local maximum 

equilibrium. At a local maximum equilibrium, if a firm’s demand is differentiable, 

obviously we can let the slope to be equal to the slope estimation and the equilibrium 

is also GFE. If the demand is not differentiable, we know that a price change in either 

direction will result in a decline in the profit. Then we can always find a slope 

estimation between the two limits of the demand derivatives such that a marginal 

price change will not increase the profit. Furthermore, if the cost is differentiable, we 

must have the equality between the marginal cost and perceived marginal revenue. 

The specific value of the marginal revenue then dictates a unique value of the slope 

estimation suitable for GFE. For instance, in both early examples of Bonnano and 

ours, there is a unique slope estimation under which GFE exists.  

Property 2: A local maximum equilibrium is always a GFE. Moreover, if a 

firm’s cost is differentiable, its slope estimation in the GFE is uniquely determined. 

On the other hand, any GFE must be a Negishi equilibrium (1961), which does 

not impose any restriction on slope estimations. Hence our existence result implies the 

existence of Negishi equilibrium. An unsolved issue, however, is whether Negishi 

equilibrium exists with arbitrary slope estimations. More precisely, if we assign a 

negative and arbitrary number for each firm’s slope estimation, will the previous 

equilibrium conditions (I) – (III) still hold, with “given s *
k  < 0” replacing “s *

k  ∈ 

[∂D *
k /∂pk|+0,∂D *

k /∂pk|-0]”? The answer is affirmative. 
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Property 3: Given any sk < 0 for every firm k, there always exists a 

corresponding Negishi equilibrium (see Appendix G). 

Since Negishi equilibrium exists not only for some slope estimations, but also 

for any negative estimations, the set of such equilibrium is obviously too large to bear 

any prediction regarding the sate of the economy. 

Our model allows monopoly, oligopoly and monopolistically competitive 

markets the economy. We rule out perfect competition because homogeneous goods 

would violate the assumption of strictly quasi-concave utility and concave production 

functions. However, even with product differentiation, firms may have little market 

power when differentiated products are close substitutes. A robust test of our model 

would be to see if the equilibrium converges to that of perfect competition when 

product differentiation approaches zero.  

In fact, if the products of two firm k and j are very similar, the derivatives of 

utility and production functions with respect to these products will almost be the 

same. The corresponding Hessian and boarded Hessian matrices will have two almost 

identical rows/columns. Their determinants will be close to zero.  This implies a very 

large absolute value of the slope, s *
k . In equilibrium, if f *

k  > 0, we have p *
k  - c *

k  = -

D *
k /s *

k . As s *
k  is close to infinity, the price margin has to diminish. 

Property 4: If firm k’s product has at least one close substitute goods, its 

equilibrium output will approach the efficient level where price equals marginal cost. 

If every firm has at least one rival producing close substitute goods, no firm 

would enjoy significant market power, and marginal cost pricing will prevail. 
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Furthermore, one can assume that every firm’s slope estimation to be extremely large 

regardless of the true slope. Obviously, this will lead to marginal cost pricing and the 

economy approximates Arrow-Debreu’s general equilibrium model with perfect 

competition, and almost reaches a Pareto efficient outcome.  

5. Concluding remarks 

Based on standard assumptions on consumer preference and technology, no 

equilibrium existence can be established in a general equilibrium model with 

imperfect competition and intermediate goods, except for possibly Negishi 

equilibrium. We introduce a generalized first-order equilibrium concept and have 

shown its existence based on assumptions of utility and production functions.   

Needless to say, one short coming of this equilibrium is that some firms may 

not maximize their profits, locally or globally, despite their first-order condition for 

profit maximization hold. Unfortunately this embarrassment cannot be avoided when 

imperfect competition is involved. Our result shows how much one can obtain from 

the standard assumptions comparable to the general equilibrium model with perfect 

competition. Since Bonanno’s example shows the equilibrium existence with higher 

level rationality is impossible, we have to accept the bounded rationality necessary for 

obtaining equilibrium in imperfect competition. 
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Appendix A: (i) By Assumption 1, ∂fj/∂zjk, is bounded and ∂fj/∂hj is bounded above 

zero. If zjk > 0, we have cj∂fj/∂zjk = pk. By Assumption 3(i), we also have hj > 0, so 

cj∂fj/∂hj = 1. If pk > sup.[(∂fj/∂zjk)/(∂fj/∂hj)], we get zjk = 0.    

Similarly, by Assumption 2, ∂ui/∂xik is bounded and ∂ui/∂li is bounded above 

zero. If xik > 0, we have ∂ui/∂xik = λipk. The optimal qi requires ∂ui/∂li = λi. If pk > 

sup.[(∂ui/∂xik)/(∂ui/∂li)], we get xik = 0.    

So, if pk > Pk = sup.[(∂fj/∂zjk)/(∂fj/∂hj),(∂ui/∂xik)/(∂ui/∂li)] for all j and i, Dk = 0. 

(ii) For any fk(zk,hk) > 0, we have ck(∂fk/∂hk) = 1.  As ∂fk/∂hk is bounded, we 

let Ck = inf.(1/∂fk/∂hk).  For ck ≤ Ck, ck(∂fk/∂hk) ≤ 1 for any hk. As ∂2fk/∂hk
2 < 0, we 

must have hk = 0, and hence fk(zk,hk) = 0. 

 

Appendix B: We consider all possible cases. (i) sk > 0, we solve pk = Pk;  (ii) sk = 0. 

(ii.a) Dk > 0, again we have pk = Pk; (ii.b) Dk = 0, we get an interval [ck,Pk].   

(iii) Suppose sk < 0.  (iii.a) Dk + sk(ck – pk) < 0, we obtain pk = ck; (iii.b) Dk + 

sk(ck – pk) ≥ 0 and Dk + sk(2Pk - pk - ck) < 0, we solve pk = 0.5(pk + ck - Dk/sk); (iii.c) 

Dk + sk(2Pk - pk - ck) ≥ 0, again we get pk = Pk.   

In all of these cases, mapping (7) is either uniquely determined and continuous 

in (Dk,pk,ck,sk), or becomes an interval [ck,Pk] in case (ii.b), where Dk = sk = 0.  

Apparently correspondence (7) is upper hemi-continuous.   

 

Appendix C: In Appendix B we see Yk is only affected by ck in (iii.b), where it 

decreases in ck. So Yk is non-increasing in ck. We now show fk is strictly increasing in 

ck for fk > 0. Let fk be the optimal output associated with ck, and suppose for ∆ck > 0, 

the optimal ∆fk < 0. Then we must have (ck+∆ck)(fk+∆fk) – ck(fk+∆fk) ≥ (ck+∆ck)fk – 

ck(fk), where ck(fk) is the cost associated with fk. As ∆ck∆fk < 0, we get ck(fk+∆fk) – 

ck(fk+∆fk) > ckfk – ck(fk), so fk could not be the optimal output given ck, a contradiction. 

Now suppose the optimal ∆fk = 0. The strict concavity of f(zk,hk) implies there is no 
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change in (zk,hk). Then (ck+∆ck)∂fk/∂hk = 1 could not hold if ck∂fk/∂hk = 1 does. Hence 

we have ∆fk < 0, if fk > 0 and ∆ck > 0. As fk is strictly increasing in ck, so is  Yk - fk.  

From Lemma 1, we know fk(p-k,Ck) = 0. If Yk = 0 at Ck, we have a unique 

solution for Yk – fk = 0 by Definition 5. If Yk > 0 at Ck, we start with Yk - fk > 0. As this 

function strictly increases in ck, there is a unique solution of ck either in (Ck,Pk) or 

equal to Pk. Function (8) must be continuous in (Dk,p,sk) because Yk is continuous in 

(Dk,pk,sk) and fk is continuous in p-k.   

 

Appendix D: (i) Prove ∂zkj/∂pj exists and is bounded: For convenience, we switch 

index k with j such that firm k is the input demander. Firm k’s first-order condition 

for (zk,hk) is ck(∂fk/∂zk) = p-k, and ck(∂fk/∂hk) = 1. Let wk = (zk,hk). We have 

ck(∂fk/∂wk) = (p-k,1)’. Without loss of generality, we let pj be the j-th element of p-k. 

Differentiate these equations with respect to pj, we get: 

ck(∂
2fk/∂wk

2)(∂wk/∂pj) + (∂ck/∂pj)(∂fk/∂wk) = τ   (D1) 

where vector τ has the same dimension as wk, its j-th element is 1 and the rest zero.  

Differentiate firm k’s demand and supply balance condition Yk(Dk,pk,ck,sk) - 

fk[zk(p-k,ck),hk(p-k,ck)] = 0, with respect to pj.  We have: 

(∂Yk/∂ck)(∂ck/∂pj) – (fk/∂w)⋅(wk/∂pj) = 0    (D2)   

We can write (D1) and (D2) together in a system of equations, whose total 

number is the dimension of τ plus 1. 
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 As a partitioned matrix on the left-hand side of (D3), its determinant is equal 

to ck⎢∂
2fk/∂wk

2⎢⎢-∂Yk/∂ck – (∂fk/∂wk)’(ck∂
2fk/∂wk

2)-1(∂fk/∂wk)⎢. From Appendix B we 

know ∂Yk/∂ck = 0 in all cases except for (iii.b), where ∂Yk/∂ck = 0.5sk < 0.  

When ∂Yk/∂ck = 0, the determinant is equal to the determinant of the bordered 

Hessian matrix of fk(zk,hk) multiplied by ck. We know ck is bounded away from zero. 

Then Assumption 1 ensures the determinant is bounded away from zero.  

Now suppose ∂Yk/∂ck = 0.5sk < 0. As matrix (∂2fk/∂wk
2)-1 is negative definite, 

and ∂fk/∂wk has non-zero element, ∂fk/∂hk > 0, so (∂fk/∂wk)’(∂
2fk/∂wk

2)-1(∂fk/∂wk) < 0. 

Hence the absolute value of the determinant is larger than it is when ∂Yk/∂ck = 0, and 

must be bounded away from zero. The inverse of the matrix on the left hand side of 

(D3) exists. The solution of wk/∂pj, in particular, ∂zkj/∂pj, exists, and is bounded. 

(ii) Prove ∂zkj/∂pj < 0 and is bounded away from zero: As fk is concave, the 

leading principal minors of its Hessian matrix, ∂2fk/wk
2, have alternating signs. We 

notice that the determinant of the matrix in (D3) has an opposite sign to ⎢∂2fk/wk
2⎢. 

Thus this matrix must be negative semi-definite. We know ∂zkj/∂pj is equal to the j-th 

diagonal element of its inverse matrix.  

For a non-singular negative semi-definite matrix, the product of any of its non-

zero diagonal element and its counterpart in the inverse matrix is not less than 1, i.e., 

ck(∂
2fk/zkj

2)(∂zkj/∂pj) ≥ 1. As ck(∂
2fk/zkj

2) < 0 and is bounded, ∂zkj/∂pj must be negative 

and bounded away from zero.  

(iii) If no switch occurs for any input, and also no switch for Yk/∂ck between 

zero and 0.5sk, ∂zkj/∂pj is continuous in arguments of ck∂
2fk/∂wk

2, ∂fk/∂wk and Yk/∂ck. 

 

Appendix E: (i) We first show that (9) gives a negative value bounded away from 

zero in case (ii.a). Since we showed in Appendix D that every ∂zjk/∂pk is negative and 

bounded away from zero, it suffices to consider any consumer’s demand, ∂xik/∂pk. As 
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Dk = 0, the income effect is nil, ∂xik/∂pk is equal to the slope of the Hicksian demand 

curve, ∂x
h

ik
/∂pk, which is negative (see Barten and Boehm 1982).  

To show ∂x
h

ik
/∂pk is bounded away from zero, we notice it is the k-th diagonal 

element of the inverse matrix of the bordered Hessian of ui(xi,li) (Barten and Boehm). 

Since ui(xi,li) is quasi-concave, its leading principle minors must have alternative 

signs (with weak inequalities), including its determinant. As the product of the 

determinant of a matrix and that of its inverse is always equal to 1, they must have the 

same sign. Since the determinant of the bordered Hessian is bounded away from zero, 

the sign of the determinant of the inverse of the bordered Hessian of ui(xi,li) satisfies 

the requirement of a negative semi-definite matrix (with a strict inequality).  

On the other hand, the remaining leading principle minors of this inverse 

matrix are exactly those from the Slutsky matrix ∂x
h

/∂p, which is negative semi-

definite. Therefore, the inverse of the bordered Hessian of ui(xi,li) is negative semi-

definite. Finally, the product of its k’s diagonal element and its counterpart in the 

bordered Hessian is no less than 1, i.e., (∂2ui/xik
2)(∂x

h

ik
/∂pk) ≥ 1. As ∂2ui/xik

2 < 0 and is 

bounded, ∂x
h

ik
/∂pk must be bounded away from zero.  

(ii) Now we prove that in case of (ii.a), the switching point is unique. Suppose 

the opposite is true, i.e., there are two prices, pk1 < pk2, such that Dk = 0 at both prices, 

and Dk > 0 for any pk ∈(pk1,pk2). At pk1, we must have ∂Dk/∂pk|-0 < 0 as just shown 

above. By continuity, for the demand curve to reach another switching point pk2, we 

must have some Dk > 0 at the same price pk1. Then, the demand is not unique at pk1, 

violating the assumption of the strictly quasi-concave utility function and strictly 

concave production function.   

(iii) Then, we show (9) is upper-hemi-continuous. In case (i) of Definition 6, 

(9) gives a single value if no switch occurs, and an interval otherwise; in (ii.a) we 

have a single value; in (ii.b) an interval; and in (ii.c) a single value. Since ∂Dk/∂pk is 
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continuous except for at switching points, (9) must be a hemi-continuous 

correspondence throughout all cases.  

 

Appendix F: (i) As shown in Appendix B, p *
k  may not maximize the profit function 

(pk–c *
k )(D *

k -s *
k p *

k +s *
k pk) only when p *

k  equals Pk, as in case (iii.c). But if p *
k  = Pk, we 

must have D *
k  = 0, a contradiction for f *

k  > 0. When f *
k  > 0, c *

k  equals the marginal 

cost, which is higher than the average cost given a strictly concave production 

function. On the other hand, c *
k  equals the marginal revenue, which is less than p *

k  as 

s *
k  < 0. So p *

k  is higher than the average cost, firm k’s profit is positive. 

(ii) In case of (ii.a) of Definition 6, we have s *
k  < 0. Correspondence (7) 

should yield a price lower than p *
k . So p *

k  can be in the fixed point only in cases of 

(ii.b) and (ii.c), which means Dk = 0 if pk ≥ c *
k . As the switching point is unique, we 

must have Dk = 0 for any pk > p *
k .   

 

Appendix G: Our argument up to equation (6) in the text remains valid. Since sk < 0, 

we need not consider cases (i) and (ii) in Appendix B. In case (iii), it has been shown 

that pk always has a single value. In this case mapping (7) is a continuous function. 

Also, Lemma 3 applies to (8).  

Given vector s, we have continuous functions (5’), (7) and (8): Dk = τk(p,c), pk 

= φk(Dk,pk,ck), ck = χk(Dk,p). They together form a continuous function from a 

compact and convex set [(D,p,c)∈ R n3
+ |0 ≤ Dk ≤ f k, Ck ≤ pk ≤ Pk, Ck ≤ ck ≤ Pk} into 

itself. By Brouwer's fixed-point theorem, a fixed-point (D*,p*,c*) exists. Both Lemma 

6 and equation (10) are valid, hence Negishi equilibrium exists for any negative 

vector s. 


