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1. Introduction

Recent years have witnessed the first publications of physical input-output tables

(Kratterl and Kratena, 1990; Kratena et al., 1992; Konijn et al., 1997; Stahmer et al.,

1997; Pedersen, 1999; Mäenpää, 2002; Hoekstra, 2003) and analyses thereof (Konijn et

al., 1997; Stahmer, 2000; Strassert, 2001). Whereas monetary input-output tables

(MIOTs) record all transactions in money terms, such as billion dollars, physical input-

output tables (PIOTs) measure all deliveries in physical units, such as million tons. PIOTs

seem to become an important tool in input-output analysis, in particular in fields where

material flows and their links are paramount, such as in environmental, resource and

energy economics.

In general, there is no simple conversion between an MIOT and a PIOT, even if

full information with respect to prices were available. The reason is that the sectors that

are distinguished in an input-output table consist themselves of many subsectors. Suppose

that the deliveries from sector i to sector j consist to a large extent of deliveries by

subsector i1. The price of the deliveries from i to j will then be determined primarily by

the price of product i1. If, in contrast, the deliveries from sector i to sector h largely

consist of deliveries by subsector i2, the price will be close to the price of product i2. So,

converting the monetary deliveries from i to j into physical units would require a different

price than converting the monetary deliveries from i to h. The simple conversion as based

on the average price in sector i is therefore inappropriate. Typically, information for

subsectors is not readily available. As a consequence, the production structure in physical

terms may be radically different from the structure in monetary terms. For example,

sector h might use (per billion dollars of its output) a large amount (in billion dollars) of

product i, whereas it uses only a small physical amount of product i per million tons of its

output, and for sector j this might well be exactly the other way. If we are interested in

the material flows involved in the national production processes, it thus seems that PIOTs

are more appropriate datasets than MIOTs are.

Another distinctive feature of PIOTs is that they provide detailed information on

the generation of waste and they do so in a consistent accounting framework. Appending
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all sorts of extraneous information (such as labor inputs, CO2 emissions, land use, and

also waste) to MIOTs has a long tradition. In PIOTs, however, waste is not appended but

is a central part of the accounting framework. This clearly is an advantage of a PIOT as a

dataset. At the same time, this implies that in a physical input-output analysis, the

treatment of waste becomes an important aspect. Very recently, this has led to an

interesting methodological debate triggered by Hubacek and Giljum (2003), with a

comment by Suh (2003) and a reply by Giljum et al. (2003), and a follow-up by Giljum

and Hubacek (2004).

The purpose of this note is to review the discussion, to provide some additional

insights, and to reconcile the suggested methods. This leads me to propose an alternative

approach. The plan of the paper is as follows. The next section presents the method for

waste treatment that was originally proposed in Hubacek and Giljum (HG, 2003) and the

adapted version in Giljum and Hubacek (GH, 2004). In Section 3, I will focus on issues

of production in input-output analysis and will arrive at the approach as proposed by Suh

(2003). Section 4 deals with the reply by Giljum et al. (GHS, 2003). Section 5 shows how

the approaches of GH and Suh can be reconciled and presents the alternative method.

Section 6 concludes the paper with an evaluation.

2. Waste treatment in Hubacek and Giljum (2003) and in Giljum and Hubacek

(2004)

The starting point is the PIOT as given in HG. In what follows I will adopt their notation

and also their empirical case for Germany. The PIOTs are given in Tables 1 and 2. The

nn × matrix Z denotes the intermediate deliveries of secondary inputs, d the vector of

domestic final demand, e the vector of foreign final demand, w the vector of waste, and x

the vector of (gross) output.1 The row vector of primary material inputs is given by r ′ .

All entries are given in million tons (mt). Often the input-output table is appended by

1 Matrices are indicated by bold, upright capital letters; vectors by bold, upright lower case letters, and
scalars by italicized lower case letters. Vectors are columns by definition, so that row vectors are obtained
by transposition, indicated by a prime (e.g. x′ ). A diagonal matrix with the elements of vector x on its
main diagonal and all other entries equal to zero is indicated by a circumflex (e.g. x̂ ).
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additional information, such as the input of labor (in worker years or in money terms) per

sector, the emission of CO2, the expenses for R&D, or the appropriation of land (as in

HG). The matrix of input coefficients is obtained as

1ˆ −= xZA (1)

where its typical element jijij xza /= indicates the input (in mt) from sector i per mt of

output in sector j. In the same way, the primary material input coefficients are given by

1ˆ −′=′ xrb with jjj xrb /= indicating the input of primary material per mt of output in

sector j. Using s for the vector of land appropriation (in hectares), we have for the land

appropriation coefficients

1ˆ −′=′ xsc (2)

INSERT TABLES 1 AND 2

From Table 1, it is easily seen that wedAxwed1Zx +++=+++= , where 1

indicates the summation vector consisting of ones and where we have used xAZ ˆ= . Its

solution is given by )()()( 1 wedMwedAIx ++=++−= − . Here,

1)( −−= AIM (3)

denotes the multiplier matrix. Its typical element ijm gives the extra output in sector i that

is (directly and indirectly) required to generate one mt of final demand or waste in sector

j. Using these multipliers we are able to determine, for example, how much primary

materials or land is used by the manufacturing sector to satisfy the domestic final demand

for services.2 The typical element (i, j) of the matrix Mĉ gives the use of land in sector i,

that is required to generate one mt of final demand or waste in sector j. Hence, the typical

2 Answering this question has recently led to some confusion, see Bicknell et al. (1998) and Ferng (2001).
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element (i, j) of the matrix dMc ˆˆ gives the use of land in sector i, that is required to

generate the actual domestic final demand in sector j (i.e. jd ). Using this matrix, two

frequently posed questions may be readily answered. First, how much land use takes

place in each sector and, second, how much land use can be imputed to each sectoral

domestic final demand. The jth element of the row vector of column sums (i.e.

dMcdMc1 ˆˆˆ ′=′ ) gives the total land use (i.e. in all sectors) required to satisfy domestic

final demand jd . The ith element of the column vector of row sums (i.e. Mdc1dMc ˆˆˆ = )

gives the land use in sector i required to satisfy all domestic final demands.

The sectoral land use necessary to satisfy the final demands (both domestic and

foreign) therefore equals )(ˆ edMc + . HG then argue that this answer yields a serious

underestimation of the “true” land use that should be imputed to the final demands. Note

that sxxsxcwedMc ===++ −1ˆˆˆ)(ˆ , i.e. the actual land appropriation (given in Table 1

as row vector). So, the actual land appropriation can be divided (by imputation) over

domestic final demand d, exports e, and waste w. It is thus obvious that the final demands

only, do not require all the actually appropriated land (because a substantial part can be

imputed to waste generation). Unlike satisfying domestic final demands or exports, the

generation of waste is not an aim of the production process. It is a consequence of

production and thus of satisfying final demands. Therefore it seems reasonable to

distribute the waste over domestic and foreign final demands. So, in imputing land use to

domestic final demand (or to exports) part of the land use involved in generating waste

should be included.

The distribution that HG propose is such that the total waste is distributed over

domestic and foreign final demand. First, they define the ratio of total waste to total

primary material inputs as )/( 1rw1 ′′=ρ . Next the primary material inputs that end up as

waste are given by the vector rr ′=′ ρ . Finally this vector is distributed over the two final

demand categories, according to their shares. This yields

i
ii

i
i

ext
i r

ed

d
dd

+
+= and i

ii

i
i

ext
i r

ed

e
ee

+
+= (4)
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We thus obtain the following procedure for waste treatment.

Approach of HG: Starting from Table 1, using the definitions in (1) – (3), let the extended

final demand vectors extd and exte be given by (4). The land use in sector i imputed to all

exports is given by the ith row sum of the matrix exteMc ˆˆ . The total land use imputed to

the exports of sector j are given by the jth column sum of exteMc ˆˆ .

Unfortunately, this approach yields serious inconsistencies. Note that if we take the sum

of the vectors we have reded ρ++=+ extext , which – in general – will be different from

d + e + w. Only the total waste is distributed over domestic and foreign final demand, as

follows from )()()( wed1red1ed1 ++′=++′=+′ ρextext , because

w1r11rw1r1 ′=′′′=′ )/(ρ . Consider now sxcwedMc ==++ ˆ)(ˆ , which is the actual

land appropriation as recorded in the Tables 1 and 2. Because weded ++≠+ extext , it is

also likely that swedMcedMc =++≠+ )(ˆ)(ˆ extext . Therefore, applying the HG

approach, generally yields answers for the sectoral land use that do not sum to the

actually recorded land use. Even the total land use found by imputation may be different

from the actual total land use.

The results for the HG approach are given in Table 3. If the domestic final

demands and the exports are added to the distributed waste in columns (1) and (2), we

arrive at Table 11 in HG.3 Note that 24,901,392 million hectares of land are appropriated

according to the total in column (12), whereas in reality 24,484,142 million hectares are

used (the sum of land appropriation in Table 2). This is caused by the fact that the

distribution of waste in column (3) differs from the actual disposal to nature in Table 2,

only their totals (4,251.8) are the same.

INSERT TABLE 3

3 Note that small differences occur, because the PIOT was slightly adapted to make it internally consistent
(see also Suh, 2003).
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In GH, this inconsistency has been removed. The waste in sector i is distributed to

domestic and foreign final demand proportional to the size of each of the two categories.

The new vectors of extended domestic final demand ( extd ) and exports ( exte ) are given by

i
ii

i
i

ext
i w

ed

d
dd

+
+= and i

ii

i
i

ext
i w

ed

e
ee

+
+= (5)

The approach of GH may be summarized as follows.

Approach of GH: Starting from Table 1, using the definitions in (1) – (3), let the extended

final demand vectors extd and exte be given by (5). The land use in sector i imputed to all

exports is given by the ith row sum of the matrix exteMc ˆˆ . The total land use imputed to

the exports of sector j are given by the jth column sum of exteMc ˆˆ .

The results for the GH approach are given in Table 4. Note that columns (1) - (3)

show that the waste in each sector is distributed over domestic and foreign final demand.

Column (3) is the sum of columns (1) and (2) and equals the column with disposals to

nature in Table 2. As a consequence, the results are consistent now. That is, the sum – in

column (12) – of land used in sector i and imputed to domestic final demand – i.e.

column (7) – and land used in sector i and imputed to exports – i.e. column (11) – equals

the land appropriation as given in Table 2

INSERT TABLE 4

3. Waste treatment in Suh (2003)

Input-output tables were developed to describe the production structure of an economy.

The SNA (see CEC/IMF/OECD/UN/WB, 1993) gives a very explicit definition of

production: “All goods and services produced as outputs must be such that they can be

sold on markets or at least be capable of being provided by one unit to another, with or
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without charge. The System includes within the production boundary all production

actually destined for the market, whether for sale or barter.” (p. 4, par. 1.20). So

generating waste clearly does not belong to production, it is a consequence of production.

Therefore, waste is not an output, it is merely an outflow of the production process and

linked to productive activities. Doubling the production in a sector would double the

generation of waste.

Production aims at making usable outputs that are sold to other sectors to be used

in their production processes or that are sold to be used for final demand purposes (either

domestically or abroad). Waste is not a part of the usable output and should be treated as

a necessary “input” for production. Just like the production of a sector requires per unit of

output a certain amount of labor and land, it also requires that a certain amount of waste

is generated (in the same way as it requires that a certain amount of, for example, CO2 is

emitted).

Table 1 is entirely correct from a bookkeeping perspective. Each of the first n

rows describes how many mt come out of this sector. Part of this are the usable outputs,

which are sold to production sectors and sold for final demand purposes. The other part is

the outflow of waste, which is not accounted as production. For an analysis of

production, Table 1 is therefore somewhat misleading because only usable outputs belong

to production, waste is only a consequence of production. The possibility of generating

waste is thus a requirement for production. Input-output tables typically record the output

(i.e. production in the SNA sense) of each sector as the total of its deliveries. Tables 5

and 6 are obtained from Tables 1 and 2, by recording the sectoral waste as a negative

input instead of as an output. They thus seem to better reflect the production principle and

to be more appropriate for input-output analysis. The vector of usable output is denoted

by x . The material balance in each sector was given in Tables 1 and 2 by the rows, in

Tables 5 and 6 it is readily obtained from the columns. For example, in sector 3

(Services) it is seen that the production of usable outputs amounts to 160.8 mt, while

1000.4 mt of waste are generated due to the production activities in this sector. The total

amount of materials emanating from sector 3 is thus 1161.2 mt. Of course, wxx += .4

4 It should be stressed that the two alternative ways of recording waste is in one very important aspect
different from the two ways of recording imports in input-output tables (in contrast to what Giljum et al.,
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INSERT TABLES 5 AND 6

Suh’s approach is the input-output analysis as based on Tables 5 and 6. Define

1ˆ −= xZA , 1)( −−= AIM , and 1ˆ −′=′ xsc (6)

Suh’s approach: Starting from Table 5, using the definitions in (6), the land use in sector

i imputed to all exports is given by the ith row sum of the matrix eMc ˆˆ . The total land use

imputed to the exports of sector j are given by the jth column sum of eMc ˆˆ .

The results for Suh’s approach are given in Table 7. Note that just like GH’s

approach (and unlike HG’s approach), Suh’s approach is consistent. That is, the total land

use in each sector as given in column (9) equals the land appropriation in Table 2. When

Suh’s approach is compared to GH’s approach (neglecting HG’s approach because of its

inconsistency), the differences are striking. Very little land use is imputed to the final

demands of Agriculture in Suh’s approach (less than 10% of the imputed land use in

GH’s approach). In contrast, much more (more than twice as much) land use is imputed

to the final demands of Manufacturing by Suh than by GH. I will come back to this later.

INSERT TABLE 7

4. The reply by Giljum et al. (2003)

In this section, I will discuss the reply by Giljum et al. (GHS, 2003). First, GHS observe

that in Suh’s approach some elements in the matrix A of input coefficients are larger

than one. By no means, however, does this imply that the matrix A would be

inappropriate for an input-output analysis. A simple example may illustrate this. Consider

2003, suggest). The alternatives in the case of waste do affect the output, whereas the alternatives in the
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an arbitrary input-output table and suppose that the units of measurement are changed in

sector 1. That is, suppose that the outputs of sector 1 are measured in thousand tons

instead of in mt (or, for an MIOT, that they are measured in thousand dollars instead of

million dollars). As a consequence, the entire first (and only the first) row of the input-

output table is multiplied by 1000. The output, all intermediate deliveries and the final

demands in sector 1 become 1000 times as large as they were before the change. Note

that a simple summation within the columns of the input-output table no longer makes

sense, because the units of measurement are no longer the same this would imply adding

apples and oranges. The effects of this change on the input matrix are as follows. Element

(1, 1) remains the same, but elements (1, 2), …, (1, n) all become 1000 times larger, and

elements (2, 1), …, (n, 1) become 1000 times smaller. It may be expected that several

elements in the first row are now (much) larger than one. Still, we are dealing with

exactly the same economy. Really nothing has changed in the production structure,

except that – for one reason or another – we decided to measure the deliveries of product

1 in thousands of tons instead of in mt. Although this particular example of changing the

unit of measurement may be a silly exercise, it certainly is a valid exercise. The outcomes

of an input-output analysis remain the same (except that the findings for sector 1 will be

1000 times as large).

Although the misconception is not uncommon, it is not necessary that all input

coefficients are smaller than one for an input-output analysis to be viable. The only

requirements are that the model yields a non-negative output vector as a solution for any

given non-negative final demand vector. This is also known as the existence problem

(see, for example, Takayama, 1985, Chapter 4). Consider a numerically given input-

output table (no matter whether a PIOT or MIOT), as in Table 8. Here 0Z is the matrix of

intermediate deliveries, 0f the vector of final demands (i.e. d+e+w in case of Table 1 and

d+e in case of Table 5), 0v′ the row vector of primary inputs (i.e. r ′ for Table 1 and

wr ′−′ for Table 5), and 0x the output vector (i.e. x in Table 1 and x in Table 5). The

accounting equations yield 000 f1Zx += and 000 vZ1x ′+′=′ . The matrix of input

coefficients is given by 1
000 ˆ −= xZA . The first accounting equation then yields

case of imports yield the same output.
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0000 fxAx += . The input-output model assumes fixed coefficients and asks whether for

any arbitrary final demand vector f a solution x exists such that fxAx += 0 ?

Mathematically the answer is affirmative, provided that the matrix )( 0AI − is non-

singular. In that case the solution is given by =−= − fAIx 1
0 )( fM 0 . However, the

solution must also be economically meaningful, which yields the existence problem. That

is, for any non-negative vector f ≥ 0, is there a non-negative vector x ≥ 0 such that

fxAx += 0 ? The answer to this existence problem is positive if 0M exists and is

positive.

INSERT TABLE 8

The existence problem and its solution have received a lot of attention in the early

days of input-output analysis when computing power was still very limited (see

Takayama, 1985, for an excellent overview of the mathematical aspects of input-output

analysis). I will not go into the details of this discussion and only present a sufficient

condition that is easily checked in practical cases. It turns out that if the analysis uses a

numerically given input-output table as its starting-point, existence can usually be

guaranteed.

Theorem 1. Consider Table 8 and suppose that 0Z is positive. If 0v′ is non-negative and

at least one of its elements is positive, then 0M exists and is positive. Also, if 0f is non-

negative and at least one of its elements is positive, then 0M exists and is positive.

Proof. See the Appendix.

The first statement in this theorem is well known and says that for no sector j its

intermediate inputs should exceed its output while for some sector it should be less. The

second statement is much less known and expresses that in no sector i its intermediate

outputs should exceed its total output while for some sector is should be less. Although
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the conditions in Theorem 1 are only sufficient conditions, it should be clear that they are

easily met in practical cases (i.e. working with real-life input-output tables).

Let us now return to the reply of GHS on Suh’s approach, namely that some input

coefficients are larger than one. Looking at Tables 5 and 6, it is obvious that the first

condition in Theorem 1 may well be violated. That is, wrv ′−′=′0 is likely to contain at

least some negative elements. The second condition, however, will be met because

edf +=0 may be expected to be non-negative and to include some positive elements.

The second point of reply in GHS is that the interpretation of the input

coefficients is problematic. In my view, however, the interpretation can remain as it was.

Let us consider the production in Services (sector 3, see Table 6). In order to produce

160.8 mt of usable output, sector 3 requires 336.2 mt inputs from sector 1, 206.2 mt from

sector 2, 50.9 mt from itself, and 567.9 mt of primary material inputs. In addition it is

required that 1000.4 mt of waste is generated. So, per mt of usable output in sector 3, the

requirements are 2.09 mt from sector 1, 1.28 mt from sector 2, 0.32 mt from sector 3

itself, 3.53 mt of primary materials and 6.22 mt of waste is generated. Because so much

waste is generated per mt of usable output in sector 3, it is not surprising that huge

amounts of inputs are required, otherwise the material balance would be violated. The

production in this sector is such that a large part of the inputs is transformed into waste

and only a minor part into usable output.

The third point in GHS’s reply to Suh is that in a more detailed (i.e. with more

sectors) PIOT for Germany, it was found that some sectors had usable outputs close to

zero or even negative. Looking at the rows in Table 5, it is clear that a negative value can

occur only if the total final demand (i.e. domestic plus foreign) in such a sector is

negative, which would be extremely difficult to interpret in physical units. From the

columns in Table 5, it follows that the generation of waste in this sector must be larger

than the sum of all its inputs. In Stahmer’s (2000) PIOT with twelve sectors, negative

values for the usable outputs do not occur. There is, however, a single sector for which

the usable output is close to zero. This sector (“Environmental protection services”) has a

usable output of 13.2 mt, generates 4442.8 mt of waste, and uses 4456 mt of inputs (of

which 9.8 mt primary materials and 0.2 imports). Of the output of this sector, 11.1 mt are

delivered to other sectors and 2.1 is exported. It turns out that the environmental
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protection services merely transform the waste of the other sectors (which are given as

inputs into this sector) into another type of waste that is less damaging for nature. In

principle, it is well possible that for this sector of environmental protection services the

usable output becomes zero. In that case, however, the sector can easily be removed from

the system without affecting the results.

5. A reconciliation of approaches

The approach in GH distributes the waste over the two final demand categories, using

each category’s share in total final demand as weight. In this section, I suggest to adapt

the weighting scheme. If the generation of waste depends on production, then it seems

more appropriate to distribute the waste according to how much waste is generated in the

production necessary to satisfy domestic final demands, respectively exports. Using the

model in Section 3 and viewing the generation of waste as a necessary requirement for

producing usable outputs yields the following. First define the waste input coefficients as

1ˆ −′=′ xwq (7)

Then, the waste generation required directly and indirectly to produce domestic final

demand and exports is given by the matrices

dMqW ˆˆ=d and eMqW ˆˆ=e (8)

Element (i, j) of matrix eW , for example, indicates the amount of waste generated in

sector i and required for the production of the exports in sector j. So, if we are interested

in the amount of land use imputed to the exports j, we should include the land use

necessary for the waste that is attributed to the exports of sector j. That is, the jth column

of eW . Note that the matrices dW and eW distribute all waste over the two final

demand categories. Adding the ith row sums of both matrices exactly yields the waste in
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sector i. That is, wxqedMq1W1W ==+=+ ˆ)(ˆed as follows from

)( edMedxAx +=++= and from the definition in equation (7).

Recall that GH used the extended export vector as given by (5) after which the

land use imputed to the exports of sector j is given by the jth column sum of the matrix

exteMc ˆˆ . The distribution of the waste that I suggest is to use matrices extE and extD

instead of the diagonal matrices extê and extd̂ , with

dext WdD += ˆ and eext WeE += ˆ (9)

Note that the jth column of matrix extE gives the exports in sector j and the waste (which

is generated in each of the sectors) imputed to the exports in sector j. This yields the

following approach.

Approach 4. Using the definitions in (7) – (9), let the diagonal matrices extê and extd̂ with

the extended final demand vectors in GH’s approach be replaced by the matrices extE and

extD . The land use in sector i imputed to all exports is given by the ith row sum of the

matrix extMEĉ . The total land use imputed to the exports of sector j are given by the jth

column sum of extMEĉ .

The Appendix shows that Approach 4, which is an adapted form of the approach of GH,

yields the same result as Suh’s approach.

At first sight it may seem as if Approach 4 differs largely from GH’s procedure.

Closer inspection, however, shows that if we are interested only in the land use in each

sector (i.e. the row sums of extMEĉ ) both approaches are fairly similar. In that case we

can use GH’s formula based on exteMc ˆˆ , which gives extMeĉ for its row sums. The only

difference with Approach 4, is that the latter uses eext wee += (with 1Ww ee = , the row

sums of eW ) instead of (5).

Table 9 gives the results for the waste distribution in Approach 4. The most

striking outcome is that satisfying the final demands (both domestic and foreign) of
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Manufacturing generates huge amounts of waste in Agriculture. This explains why Suh’s

approach (which yields the same results as Approach 4 for the land use) finds that so

much land use in Agriculture must be attributed to the final demands of Manufacturing.

Table 9 indicates that a large part of this is due to the waste in Agriculture that is imputed

to the final demands of Manufacturing. At the same time this explains why GH’s

approach finds that much agricultural land use should be attributed to the final demands

of Agriculture. In distributing the waste, all waste in the sector Agriculture is in GH

divided between (and therefore implicitly attributed to) the two final demand categories

of the same sector. In Approach 4, however, most of the waste in Agriculture is attributed

to the final demands of Manufacturing.

INSERT TABLE 9

Further details on land use are given in Table 10. Note that if the waste part is

added to the non-waste part, Table 7 for Suh’s approach is obtained. Observe that more

than 80% of the overall land use falls in the waste part. So, the largest part of the land use

is attributed to the waste that is generated in order to satisfy the final demands. Therefore

it is of crucial importance that waste is properly treated in analyses of this type. It turns

out that no less than 45% of all the appropriated land is used in Agriculture and can be

attributed to the waste that is necessary for the domestic final demand in Manufacturing.

This is in sharp contrast to the findings from GH’s approach. This is because, in GH, the

waste generated in Agriculture is attributed to the final demands (domestic and foreign)

of Agriculture, and not to the final demands of Manufcaturing.

INSERT TABLE 10

6. Evaluation

In this paper I have introduced a fourth method for the treatment of waste in a physical

input-output analysis. This Approach 4 was in its construction similar to the approach of
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GH (namely by distributing the waste), whereas its results were exactly the same as those

of Suh’s approach. Should the major conclusion now be that I have shown my own

proposal to be redundant? The answer is negative, because in my view Approach 4

enables us to derive additional information that cannot be obtained from Suh’s method.

Recall that the motivation for GH (and its predecessor HG) to come up with their

suggestion was that the conventional way of imputation led to misleading results. The

land use multiplier matrices dMc ˆˆ and eMc ˆˆ , cover only a part of the story, because also

waste has to be taken into account. Clearly, this applies to an analysis of a PIOT, which

explicitly includes the generation of waste into its accounting framework. So, in order to

find the “true” amounts of land imputed to exports, for example, one has to somehow

deal with waste. GH’s approach was to distribute the waste over domestic and foreign

final demand. Suh’s approach was to consider only usable outputs and therefore did not

have to treat waste explicitly.

In my view it is also relevant to know explicitly how much land can be attributed

to the waste that is imputed to for example the exports. Of the four approaches described

in this paper, only Approach 4 allows us to do so. As an example, suppose that we would

like to know the effects on land use if the exports of services were to expand by 1 mt

(which is 5% of the exports in 1990). Define the vector )1,0,0( ′=∆e . The waste

involved in producing this extra final demand equals )(ˆ eMq ∆ , which – in this case – is

the third column of the matrix )ˆ(ˆ eMq ∆ . For the land use required to satisfy the extra

exports, two parts may be distinguished. First, the land use in each sector that is attributed

strictly to the exports (i.e. the non-waste part) amounts to )(ˆ eMc ∆ , the third column of

)ˆ(ˆ eMc ∆ .5 Second, the land use in each sector attributed to the waste that was imputed to

the exports, which equals )(ˆˆ eMqMc ∆ .

Many exercises of the type above can be carried out. For example, if the export

change in sector 3 had been 2.2 instead of 1, the results should simply be multiplied by

2.2. Exercises that involve unit changes in exports of sector 1 (or 2) are based on the first

(respectively second) column of the matrices Mĉ and MqMc ˆˆ . So, any exogenously

5 Note that this equals the third column of matrix Mĉ , because the exports have changed by one unit.
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specified change in domestic or foreign final demands can be easily dealt with by using

these multiplier matrices. The matrix Mĉ reflects the non-waste part and its element (i, j)

gives the (extra) land use in sector i attributed to one mt of (extra) final demand (either

domestic or foreign) in sector j. Similarly, the waste part is given by matrix MqMc ˆˆ ,

whose element (i, j) gives the (extra) land use in sector i attributed to the waste involved

in satisfying one mt of (extra) final demand in sector j.

Using Suh’s approach, the distinction between the non-waste and the waste part

cannot be made, because only their sums are obtained. In GH’s approach, such a

distinction would be possible, but would be based on the assumption that a 10% increase

in the exports in sector j, for example, would raise ext
je - which includes the distribution

of waste to sector j according to (5) – by 10%. In the previous section, however, it was

shown that increasing the exports of sector j also increases the waste generation in any

other sector i.

Table 11 reports the land use multipliers. These can be readily used to analyze the

effects of exogenously specified changes in the final demand components. Note that also

Table 10 may be obtained straightforwardly from Table 11. Multiplying the column A

(either in the non-waste or in the waste part) in Table 11 by the domestic final demand of

46.8 (see Table 2) gives the figures in the columns A in the upper part of Table 10.

Multiplying by the agricultural exports value of 36.7, yields the outcomes in the lower

part of Table 10. In the same way, the columns M should be multiplied by 552.5

(domestic final demand) and by 155.9 (exports), to obtain columns M in the upper,

respectively lower, part of Table 10. For columns S we have 16.3 and 20.0.

INSERT TABLE 11
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Appendix

Proof of Theorem 1

Note that, because 0Z is positive, also the outputs 0x are positive. This immediately

follows from 000 vZ1x ′+′=′ , with 0v′ non-negative. Therefore also 1
000 ˆ −= xZA is

positive. Using that 0v′ is non-negative and at least one of its elements is positive, yields

that no column sum of 0A is larger than one while at least one is smaller then one. This

implies that matrix 0A satisfies the so-called Brauer-Solow condition. As a consequence,

the matrix )( 0AI − is non-singular and its inverse 0M is positive. This proves the first

statement of the theorem.

Define a new matrix of so-called allocation coefficients as 0
1

00 ˆ ZxB −= . Its

elements 000 / iijij xzb = indicate the percentage of the output in sector i that is delivered to

sector j. The accounting equation 000 f1Zx += shows that the outputs are positive

because 0Z is positive and 0f is non-negative. Using that 0f is non-negative and at least

one of its elements is positive, yields that no row sum of 0B is larger than one while at

least one is smaller then one. This implies that matrix 0B satisfies the Brauer-Solow

condition. As a consequence, the matrix )( 0BI − is non-singular and its inverse

1
0 )( −− BI is positive. Next, note that 00000 ˆˆ BxxAZ == so that 1

0000 ˆˆ −= xBxA . Hence,

1
0

1
00

11
000

1
00

11
000

1
00 ˆ)(ˆ)ˆˆˆˆ()ˆˆ()( −−−−−−−− −=−=−=−= xBIxxBxxxxBxIAIM , which is

positive because 1
0 )( −− BI and 0x are positive. This proves the second statement in the

theorem.6

6 I have tried to keep the mathematical details as simple as possible. As a consequence, the results in
Theorem 1 can be further strengthened. For example, it is not necessary that all intermediate deliveries in

0Z are positive, many of them may even be zero. Such refinements are easily obtained using the
mathematical exposition in Takayama (1985).
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Proof of equivalence of Approach 4 and Suh’s approach

Take Approach 4 as a starting point and consider extMEĉ with eMqeE ˆˆˆ +=ext . Using

the definitions of c, M, q and M we have

]ˆ)(ˆˆˆ[)(ˆˆˆ 1111 eAIxweAIxsMEc −−−− −+−=ext (A1)

Note that 1111 )ˆ(]ˆ)[()(ˆ −−−− −=−=− ZxxAIAIx and, similarly, 111 )ˆ()(ˆ −−− −=− ZxAIx .

So, (A1) equals

]ˆ)ˆ(ˆˆ[)ˆˆ(ˆ]ˆ)ˆ(ˆˆ[)ˆ(ˆ 1111 eZxweZwxseZxweZxs −−−− −+−+=−+− (A2)

where wxx += was used. Writing eZxZx ˆ)ˆ)(ˆ( 1−−− for ê gives

=−+−−−+ −−− ]ˆ)ˆ(ˆˆ)ˆ)(ˆ[()ˆˆ(ˆ 111 eZxweZxZxZwxs

eZxseZxwZxZwxs ˆ)ˆ(ˆˆ)ˆ](ˆ)ˆ[()ˆˆ(ˆ 111 −−− −=−+−−+ (A3)

Writing MxAIxZx 1111 ˆ)(ˆ)ˆ( −−−− =−=− yields for (A3)

eMceMxs ˆˆˆˆˆ 1 =− (A4)

which is the result in Suh’s approach.
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Table 1. A simplified PIOT
Supply Use

Sectors
(1,…,n)

Final demand Disposal
to nature

Total
output

Domestic Exports
Sectors (1,…,n)
Primary material inputs
(domestic extraction and imports)
Total input

Z
r ′

x′

d e w x

Land appropriation s′
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Table 5. A PIOT with waste as negative “input”
Supply Use

Sectors
(1,…,n)

Final demand Total
output

Domestic Exports
Sectors (1,…,n)
Primary material inputs
(domestic extraction and imports)
Disposal to nature
Total input

Z
r ′

w′−
x′

d e x

Land appropriation s′
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Table 8. A simplified input-output table
Supply Use

Sectors
(1,…,n)

Final
demand

Total
output

Sectors (1,…,n)

Primary inputs

Total input

0Z

0v′

0x′

0f 0x
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