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1. INTRODUCTION 
 

A Social Accounting Matrix (SAM) is a square matrix, 
( )

1 ,ij i j n
X x

≤ ≤
= , whose columns and rows represent the expenditure and 

receipt accounts of economic sectors. The ( ),i j  element of this 

matrix, ijx , is the flow from column account j  to row account .i  A 

SAM verifies the balance equations, that is, every row sum must be 
equal to the associated column sum. The classic updating problem 
consists of finding a SAM ( )

1 ,

T T
ij i j n

X x
≤ ≤

= , corresponding to instant  

,t T=  such that its structure is in some sense similar to the structure 

of  the SAM observed in a previous instant  0t = , ( )0 0

1 ,ij i j n
X x

≤ ≤
= ,  taking 

into account the  known column totals at instant  .t T=   This problem 
can be formulated as follows: 

   

{ }

{ }

{ }

0

1

1

       min ( , )

, 1, 2,...,

, 1, 2,..., 1

     0, , 1, 2,...,

n

ij j
i
n

ij i
j

ij

D X X

x y j n

x y i n

x i j n

=

=

= ∈

= ∈ −

≥ ∈

∑

∑
                       (1) 

 
where the column sums, { }, 1,2, , ,jy j n∈ …  are given and ( )0,D X X  

denotes the disimilarity between the structures of X  and 0.X   
 

In this work, “similar structure” means that 00 0T
ij ijx x= ⇔ =  and 

0

0

T
ij ij
T
j j

x x
y y

≈ . That is, TX  and 0X  have the same set of null elements and 

similar column coefficients.  Function D  can be defined  according to 
different dissimilarity criteria, these dissimilarity functions can be 
classified into two groups, first group includes the functions  defined 
using  entropy measures and second group contains the distances 
defined as  pL  metrics.  Approaches as the RAS model (Stone and 

Brown, 1962), the biproportional estimation (Bacharach, 1965)  and 
the minimization of the sum of cross entropies  (MSCE) (Golan, Judge 
and Robinson, 1994; Robinson, Cattaneo and El-Said, 2001), belong 
to the first group.  Relations between these adjustment-updating 
approaches are shown in Macgill (1977, 1978) and McDougall (1999). 
Measures such as those used by Matuszewski, Pitts and Sawyer 
(1964) and Harrigan and Buchanan (1984), are  pL  metrics. 
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The assumption established in the classic updating problem 
according to which column totals are known, is not realistic. Most 
cases the knowledge of the column sums is partial, additionally some 
information about flows at instant t T= is available.  Sometimes the 
information about the economic transactions at instant t T=  is not 
compatible with the structure of the initial matrix, leading to 
unfeasible problems. This means that it is not possible to find a 
matrix adjusted to the known values with the same set of null flows 
than the initial SAM. This unfeasibility could be a consequence of 
errors in data, usually obtained from different sources, or it could 
represent a change in the structure of the SAM.  The feasibility 
conditions for the biproportional estimation of a SAM, given by 
Bacharach (1965), can be adapted as follows.  
 
 
 
Feasibility conditions 
 
Let  ( )

1 ,ij i j n
X x

≤ ≤
=  be a SAM and { }, 1,2, , ,jy j I J n∈ = = …  the column 

totals. 
 
Definiton 1.  A null set is a set 1 1I J I J× ⊆ × such that 

( ) 1 10, , .ijx i j I J= ∀ ∈ ×  

 
Definiton 2.  A null set 1 1I J×  is maximal if  

( )1 1 2 2 2 2,I J I J i j I J× ⊂ × ⇒ ∃ ∈ ×  such that 0.ijx ≠  

 
Assumption 1. Each maximal null set 1 1I J×  verifies 

1 1\
.i j

i I j J J
y y

∈ ∈

≤∑ ∑  

 
Proposition 1. Consider the updating problem of a SAM 0X  and their 
null sets, and let { }, 1,2, , ,T

j jy y j n= ∈ … the given column totals at instant 

.t T=  The RAS, biproportional and MSCE approaches,  verify the 
following results:  
 

1. A solution of problem (1) exists if and only if assumption 1 
holds. 

2. There exists a matrix TX  such hat 0 0 0T
ij ijx x= ⇒ =  if and only if 

assumption 1 holds. 
3. 0 0ijx > and 0T

ijx =  if and only if assumption 1 holds as equations 

for some null set. 
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Example 1. 
 

Consider the initial matrix 0

0 0 25.14 30.50 0.15
0 0 12.46 72.14 77.68

1.58 13.42 0 20.12 2.48
7.24 98.86 0 86.72 16.66
47.01 50 0 0 0

X

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. The  

 
 
column totals are 0 0 0 0 0

1 2 3 4 555.83, 162.28, 37.60, 209.48, 97.01.y y y y y= = = = =  

The maximal null sets are 
{ } { } { } { } { } { }1 1 2 2 3 31, 2 1, 2 , 3, 4,5 3  and  5 3, 4,5 .I J I J I J× = × × = × × = × The feasibility 

conditions are: 
 

1 2 3 4 5

3 1 2

5 1 2

y y y y y
y y y
y y y

+ ≤ + +
≤ +
≤ +

 

 
The following two sets of column totals,  

1 2 3 4 560, 200, 38, 210, 100,y y y y y= = = = =  and 

1 2 3 4 560, 288, 38, 210, 100,y y y y y= = = = =  are feasible. The case 

1 2 3 4 560, 408, 38, 210, 100,y y y y y= = = = =  is unfeasible. For the feasible 

values, the matrix TX  is  
 
 

0 0 25.07 34.74 0.19
0 0 12.92 102.05 85.02

1.86 19.31 0 14.83 1.99
8.33 130.49 0 58.38 12.80
49.81 50.19 0 0 0

TX

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
and  
 
 

0 0 24.27 35.55 0.19
0 0 13.73 174.44 85.02

2.02 35.97 0 0 0
8.76 201.24 0 0 0
49.21 50.78 0 0 0

TX

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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respectively. In the second case, the null value for initial nonzero 
flows is a consequence of the equalities in the feasibility conditions 
for the final column sums. In contrast to the entropy measures, the 

2L  metric produces new null flows for certain column totals which 

satisfy the feasibility conditions as inequalities. For example, for  

1 2 3 4 557, 312, 36, 245, 104,y y y y y= = = = =  the final matrices TX  obtained 

using the entropy and 2L  measures are:  

 
 

0 0 22.97 33.87 0.16
0 0 13.03 200.90 98.06

1.80 31.47 0 1.97 0.76
8.20 223.52 0 8.25 5.02
46.99 57.00 0 0 0

TX

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
and 
 

0 0 22.09 34.70 0.20
0 0 13.91 202.19 95.90

.1.62 23.92 0 8.10 2.36
7.68 231.78 0 0 5.54
47.70 56.30 0 0 0

TX

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
respectively. 
 
 
 
 We now consider different situations: 
 

1. The updating problem is feasible. 
 
2. The updating problem is unfeasible. 
 

(a) According to the decision maker’s knowledge the 
structure has not changed, the unfeasibility is produced 
by errors in the information used or in the equations 
incorporated in the model.   

 
(b) The structure of the SAM has changed. The new null sets 

must be identified. 
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     If the problem is unfeasible but the structure of the new SAM is 
assumed to be equal to the initial matrix, the information available 
must be revised in order to find errors and correct them. If we admit 
that a new structure exists, we must determine the null sets for the 
final SAM. The following linear program allows us to identify the 
critical  flows (Möhr, Crown and Polenske (1987)): 
 

 

{ }

{ }

{ }

, 1

1

1

        min

, 1,2,...,

, 1,2,..., 1

, , 1,2,...,

n

ij ij
i j

n

ij j
i

n

ij i
j

ij ij

c x

x y j n

x y i n

x c i j nε

=

=

=

= ∈

= ∈ −

≥ ∈

∑

∑

∑
 

 
 
 
where 1ijc =  if  0,ijx >  0ijc =  if 0,ijx =  and ε  is a small positive number. 

The set of new nonzero flows identifies a sufficient completion of 0.X  
 

In this work we consider feasible problems and present a 
procedure to obtain updated matrices taking into account the 
existence of very dissimilar changes between the different the new 
given values to be used in the updating process, with respect to the 
initial SAM. We analyse the effect of this dispersion on the solution to 
the updating problem. 
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2. UPDATING A SAM IN THE PRESENCE OF 

DISPERSION 
 

Consider an updating problem where ( )0 0

1 ,ij i j n
X x

≤ ≤
=  is the initial matrix 

and ( ){ }ˆ : ,T
T ij TX x i j S= ∈  is the set of strictly positive given values for the 

flows in  ,TS I J⊂ ×  being { }1, 2, , .I J n= = …  Since matrices 0 ,kX k +∈\  

have the same structure than 0 ,X  we can interpret the quotients   

( )0

ˆ
, , ,

T
ij

T
ij

x
i j S

x
∈   as an indicator of the  differences between the initial 

and final structures. It seems reasonable to assume that similar 

quotients 0

ˆ
,

T
ij

ij

x
k

x
≈  are associated to 0kX  and dispersed values increase 

the separation from the initial structure.  
 
 
Taking into account that a few flows with isolated quotients can affect 
the updating process, we analyse the effect of using subsets of TS  in 

the objective function of the optimization problem. These subsets can 
be selected by means of cluster analysis. Additionally, we could have 
applied some allowed deviation from the given values. 
 
 
Updating approach (feasible problems) 
 

1. Calculate the quotients ( )0

ˆ
, , .

T
ij

T
ij

x
i j S

x
∈  

Obtain a sequence 1T Tp TS S S⊂ ⊂ ⊂…   such that  

 
( ) ( ) ( ) ( ),1 , 1 ,T T p T p TS S S Sρ ρ ρ ρ−< < < =…  

 
where ( ),T qSρ  represents a dispersion measure of the 

quotients ( ) ,0

ˆ
, , ,

T
ij

T q
ij

x
i j S

x
∈  and , .T p TS S=  

 
Set  1.q =  
 
 
2. For ,T qS S=  solve the updating problem  
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{ }

{ }

( )
( )

{ }

0
/

1

1

0

       min ( , )

, 1, 2,...,

, 1, 2,..., 1

ˆ     , ,

     0,  ,

     0, , 1, 2,...,

S
n

ij j
i
n

ij i
j

T
ij ij T

ij

ij

D X X

x y j n

x y i n

x x i j S

x i j S

x i j n

=

=

= ∈

= ∈ −

= ∈

= ∈

≥ ∈

∑

∑
 

 
 
 
 
where / SD is the objective function restricted to set ,S  and  

 
( ){ }0

0 , : 0 .ijS i j x= =  Let ( )
1 ,

T T
q ijq i j n

X x
≤ ≤

=  be the solution obtained.  

 
 
 
 
3. Set 1.q q= +  If 1q p= +  finish the loop, 4 else go to step 2. 
 
 
 
 
During this process, we can use different strategies to define 
the starting points of the sequence of updating problems solved 
in step 2. We could also use the column totals obtained as 
solutions to previous updating steps in order to obtain new 
solutions to a certain adjustment problem, assuming that 
column sums are known.   
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3.- AN APPLICATION 
 
 

In order to illustrate our argumentation we present an example 
using a 32 32×  regional accounting matrix for the Canary Islands 
constructed starting from its 1992 Input Output Table.  

 

Both Table 1 and Figure 1 show the ratios ( )0

ˆ
, ,

T
ij

T
ij

x
i j S

x
∈   in 

increasing order. Figure 2 shows the different groups obtained using 
cluster analysis (leaving out the two highest values of these ratios for 
graph scaling reasons).  
 
 
 

Table 1 
 

CELL 
ROW        

COLUMN 

 
RATIO XT/ X0 

 
GROUP 

13 7 0.253 1 
10 13 0.640 1 
10 11 0.938 1 
19 15 1.340 2 
15 21 1.342 2 
6 13 1.480 2 
11 10 1.507 2 
1 32 1.531 2 
11 4 1.566 2 
13 5 1.821 2 
23 15 2.013 2 
13 10 2.136 3 
32 1 2.151 3 
11 3 2.223 3 
17 22 2.230 3 
1 31 2.380 3 
31 32 2.380 3 
17 18 2.467 3 
28 25 2.621 3 
19 16 2.764 3 
30 25 3.442 4 
22 17 3.548 4 
19 17 4.548 5 
17 19 4.634 5 
22 15 5.562 6 
15 22 5.998 6 
18 17 11.781 7 
32 17 21.171 8 
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 Table 2 shows the dispersion measure (diameter) values for the 
different groups previously identified. 
 
 

Table 2 
 
 

GROUP 
NUMBER OF 
ELEMENTS 

n 

DIAMETER 
D D/n3/2 

G1 3 0.685 0.131 
G2 8 0.673 0.029 
G3 9 0.628 0.023 
G4 2 0.106 0.037 
G5 2 0.086 0.030 
G6 2 0.436 0.154 
G7 1 0 0 
G8 1 0 0 

 
 
 

As the minimum value of  3/ 2

D
n

 is reached by group 3,G  we set 1 3.S G=  

We calculate the distances ( ) ( ){ }1 1, max , : ,i iD S G d x y x S y G= ∈ ∈  for 3,i ≠  

and determine iG  such that ( ) ( )1 13
, min , .i kk

D S G D S G
≠

=  Then 2 1 .iS S G= ∪  

The rest of the sets in the sequence are obtained similarly.  The sets 
selected in each of the steps are shaded in grey in table 3.    
 
 
 

Table 3 
 

GROUP G1 G2 G3 G4 G5 G6 G7 G8 
S1 2.511 1.424  1.412 2.498 3.862 9.645 19.038 
S2 3.295 2.208   2.498 3.862 9.645 19.038 
S3 3.295    3.294 4.650 10.441 19.834 
S4 4.381     4.650 10.441 19.834 
S5      5.745 11.528 20.921 
S6       11.528 20.921 
S7        20.921 
S8         
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During this process, we used three different strategies to define 
the starting points of the sequence of updating problems solved 
in the different steps described in the previous section. These 
strategies consisted, first, in using the previous solution as the 
starting point of each of the steps. The second and third 
strategies used the average and the median of all the previous 
solutions, respectively. The first of the steps in each of the 
strategies used always the initial values of the SAM as a 
starting point. Table 4 shows the value of the objective function 
obtained in each of the steps, for the different strategies used. 
 
 
 

Table 4 
 

STEP 
Previous 
Solution 

Average Median 

1 4,01 4,01 4,01 
2 9,05 4,09 4,27 
3 9,14 4,16 4,34 
4 7,61 4,84 4,55 
5 10,02 4,52 4,44 
6 10,07 4,29 4,73 
7 8,71 6,11 4,67 
8 11,69 5,38 4,68 

 
 
 
 It can be easily observed that the last two strategies are 
sensibly better than the first one, being the median strategy the 
one that shows the best optimal values. We can also observe a 
sequence of values for each of the strategies that is not very 
consistent. Since each of the steps includes extra restrictions, 
the optimal values should increase, what is not always the case. 
This result is due to the fact that the solver gets “stuck” in local 
optimums.  
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 4.- CONCLUSIONS 
 
When we know the new column totals, the adjustment problem 
can be formulated as a convex program with linear restrictions. 
In this case the local optimums are global ones. When, on the 
contrary, the new column totals are not known, the restrictions 
are still linear but the objective function gets more complicated 
and the solution becomes very sensible to the values used as 
starting points in the optimization process. In fact, the solver 
gets “stuck” in local optimums. It is therefore necessary to 
somehow “direct” the search in order to obtain god solutions. 
 
A way to proceed could consist in considering different column 
totals selected following a certain criteria. One of those criteria 
could use the different column totals obtained from the original 
problem by taking different starting points. 
 
We hope to be able to undertake in the near future the study  
of the properties of this optimization problem with the aim of 
obtaining some theoretical results in connection with the 
solutions and the sensitivity analysis.  
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