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Abstract 
Environmental Input-Output Analysis (EIOA) is a tool for environmental analysis of 
broad classes of sectoral activities, taking into account indirect effects in other sectors in 
the supply chain. The core of EIOA is an input-output table (IOT) and national 
accounting matrix including environmental accounts (NAMEA) for a fixed base-year. 
We evaluate the uncertainty in EIOA using a time series of current-price IOT and 
NAMEA for 13 years from 1990 to 2002. We find annual variations in the current-price 
IOT and NAMEA which may represent realistic changes in production or measurement 
error. We assume the changes are errors and apply a regression analysis to remove the 
trends from the underlying data and estimate the uncertainty in the raw IOT. We then 
calculate the emissions for various final users and sectors to estimate the uncertainties 
from typical EIOA investigations. Using Monte-Carlo analysis, we then investigate how 
well the variations in the current-price IOT and NAMEA over time may represent 
uncertainties. The IOT can be further converted into constant-price data for use in 
Structural Decomposition Analysis (SDA). We prepare three kinds of the constant 
price; raw constant-price data constructed from raw current price data, smooth constant-
price data constructed by smoothing the raw constant-price data, and smooth constant 
price data constructed from smooth current price data. By comparing the variations in 
these three sets of constant-price data we assess how errors in the current-price data may 
effect constant-price data and hence SDA. 

 

Keywords: Uncertainty, Constant prices, Structural Decomposition Analysis, Monte-
Carlo. 
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1. Introduction 
Environmental input-output analysis (EIOA) is a common methodology to evaluate the 
environmental repercussions of economic activity,  i.e: Shu and Kagawa (2005). Its 
extension to Structural Decomposition Analysis,  i.e: Hoekstra and van der Bergh 
(2002) allows the analysis of changes in emissions, economic structure, and final 
consumption over time. The core of an SDA is a time series of constant price input-
output tables (IOT) and national accounting matrix including environmental accounts 
(NAMEA). 
 
In EIOA it is rarely discussed how uncertainty in the data may lead to inaccurate 
analysis and policy recommendations. It is expected that the underlying data has some 
uncertainty, but this is rarely quantified, i.e: Lenzen (2001). Currently, we are not aware 
of any statistical offices that regularly publish the uncertainty in IOT or NAMEA. This 
is undoubtedly a key reason behind the lack of uncertainty analysis. 
 
The uncertainty in IOA does not solely depend on the underlying data. Other factors 
will greatly affect the outcome of an analysis such as the selection of the base-year, the 
level of aggregation, and so on i.e: Lenzen (2001). Little attention is given to how 
results may vary depending on the base-year---was it unusually hot or cold, oil-prices 
lower or higher than average, reduced demand due to economic downturn, and so on. In 
addition, SDA studies require constant price IOT which are generally constructed using 
time series of current price IOT. Uncertainty will propagate from the current price IOT 
through to the constant price IOT and onto any SDA results. Consequently, a simple 
measure of the uncertainty in a given entry in an IOT for a fixed base-year may not be 
adequate for a full evaluation of the uncertainty in EIOA. 
 
Uncertainty in the data may have several implications and even provide some 
opportunities. An initial question resulting from uncertain data is how it may affect the 
outcomes of analyses. For instance, will policy recommendations differ if the 2000 IOT 
is used instead of the 2001 data? What is the uncertainty in a particular result? Or will 
the randomness of errors throughout the data tend to cancel each other out, i.e. Peters 
(2007)? 
 
There are three aims in this study. First, we introduce various smoothing algorithms to 
analysis uncertainty in the current price data. Monte-Carlo analysis estimates the 
uncertainty in the underlying data based on the smooth data. Second, we compute raw 
constant price data constructed from raw current price data, raw-smooth constant price 
data constructed by smoothing the raw constant price data and smooth constant price 
data constructed from smooth current price data. Here we discuss differences of the 
constant price movements, difficulty to choose a base year and results by different base 
years. Finally, we compare the results of SDA constructed from three constant prices. 
We show variations of the three results and discuss a risk of the results computed from 
data with variations and the necessity of smoothing in the forepart. 

1.1 The Norwegian IOT 
 
Statistics Norway (SSB) provided input-output tables, energy and environmental flow 
tables for 13 years from 1990 to 2002. There are 64 industry sectors and five final 
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consumers---household, governments, capital formation, changes in stocks, and export. 
The IOT are constructed using the fixed product sales structure assumption (industry-
technology assumption with industry-by-industry tables). In this paper we denote by Z  
monetary value matrix ( 64 64×  matrix) and by y  final demand matrix ( 64 5×  matrix).  
The energy flow tables consist of 64 industry sectors and 16 fuel-types. Likewise, the 
environmental stressors cover 64 industry sectors. The current price data requires some 
manipulations to make the entire time series---from 1990 to 2002---consistent. Most 
manipulations are specific to the Norwegian IOT. 
 
An initial analysis of the time-series data provided by SSB shows that considerable 
variation exists in some data points over time. Some of the variations may represent 
realistic changes in structure, but it is also likely that noise plays a role. It is natural that 
noise appears in observed data due to inaccurate reporting, poor data quality, 
measurement error, human error, and so on. In the case of the energy data we could not 
find correlations between different fuel-types; for example, substitution between 
different fuel-types due to price variations. Some of the variations may also relate to 
changes in reporting definitions. Overall, an initial analysis of the data suggests that 
uncertainty is a significant cause in the annual variations in data. 

2. Smoothing Algorithms 
 
To understand the uncertainty in the reported IOT using time-series we smooth the IOT 
using regression to determine variations about the expected values. Removing noise in 
this way also makes it easier to reveal trends. 
 
To analyze a series of data, we assume that it may be represented by a trend plus noise: 

i i iy ax b ε= + +   (2.0) 

where iy  is the measured variable, ix  are the independent variables, time in this study, 
a  and b  are constants, and iε  are independent and randomly distributed “errors”. 
Depending on the structure of the data, we sometimes use piecewise linear trends. 
Before smoothing, we classify the data into various types depending on the structure.  
In this paper, we call raw data and values calculated from the underlying data “ raw 
data” and the results obtained from the smoothing algorithm “smooth data”. This is 
often described as ( )smooth z  or ( )smooth y . 

2.1 Theory 
 
In this study, we apply a regression analysis to clear noise from the underlying data.  
The method of least squares is the most common linear regression analysis, which has 
an objective function, 

2
( ) ( )min . ( ( ))t t

t
J x f x= −∑  (2.1.1) 

The objective minimizes the total square error between observing x  and predicting 
( )f x  and consequently it is sensitive to outliers. We use robust regression to reduce the 

importance of outliers in the regression analysis, i.e: Fischler (1981) and Torr (1997). 
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Although the data is smoothed with robust regression, the smoothed data can still have 
problems. In particular, the data may have structures which are not detected by the 
robust regression and the regression may produce negative numbers when in IOT ijz  
and iky  are non-negative (except for “changes in stocks”'). The underlying data often 
has various structures that should remain in the smoothed data, fig 3-1-1. For instance, 
sudden changes may occur due to economic shocks, technology innovation, or even 
new reporting procedures or definitions. If we apply robust regression analysis in these 
cases the regression functions do not sufficiently represent the features of the data. 
Therefore, before performing the regressions we classify the data according to three 
distinct structures. 

2.1.1 Classification 0: Standard robust regression 
 
The least squares method minimizes the total square error and may be inefficient and 
biased in some cases. The least squares method is influenced to a higher degree by a 
few outliers. With a robust regression, less weight is placed on outliers, producing quite 
a different trend to the least squares method. Since many of our data set has large 
outliers, our standard method is a robust regression.  

2.1.2 Classification 1: Piecewise linear fit 
 
If the data does not satisfy classification 0, we next assess whether a piecewise linear fit 
is better. Since we only have a maximum of  13M =  data points in our time-series, we 
only consider two segments. We partition the data into two parts to represent the 
features using the following procedures: 
1)  Divide the data into two segments from 1 to t  and from 1t +  to M  ( 2 2t M≤ ≤ − ) 
and calculate total correlation as 

(1) ( ) ( 1) ( )( : ) ( : )t t Mcorrel x x correl x x++   (2.1.2) 

where (1) ( )( : )tcorrel x x  represents a correlation of a series of x  from i  to k . There are 
3M −  possible combinations. 

2)  Find a combination (max)correl  which maximizes eq.(2.1.2). 
3)  Partition the data with (max)correl  as the border. 
4)  Apply the robust regression analysis to each cluster. 

2.1.3 Classification 2 
 
Classification 1 is a method to divide data to maximize the total correlation. If we have 
data as dotted data in fig 3-1-1 left, then classification 1 would not divide the first 3 data 
from the last 10 data as solid line in the figure. Classification 1 does not catch sight of 
the features of the data as the correlation is small. Typically, this structure applies when 
there is a change in definition in the IOT. Therefore we propose the second 
classification as follows: 
 
1)  Find the maximum distance maxd in ( ) ( 1) (2 )t td x x t M−= − ≤ ≤ . The number of 
combinations is 1M − . 
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2)  Partition the data with maxd  as the border. 
3)  Apply the robust regression analysis to each cluster. 

2.1.4 The smoothing algorithm 

Figure 2-1-1 

Overall, the smoothing procedure for the data follows figure 2-1-1, where ε  in the 
figure means very small positive number and the error rate is given as 

( ) ( )
1

( )

max( ) min( )

M

t t
t

g x x

x x
=

−

−

∑
 (2.1.3) 

where ( )g x  represents the robust regression function with the modification for 
inappropriate values (such as zero). If the robust regression has a power correlation, 
then the error rate for the different classifications is determined. The algorithm with the 
lowest error rate is chosen. 

3. Variation of underlying data 
 
In section 3.1 and 3.2, we show the variations of underlying data and compare raw data 
and smooth data. In section 3.3, we discuss the variation of the errors between raw and 
smooth data and inspect usefulness of the errors. 

3.1 Variation of final demand 

Figure 3-1-1 

In figure 3-1-1, the raw data are represented by circles and sold lines show the smoothed 
data constructed by the algorithm in figure 2-1-1. The left figure shows export on 
casting of metal and the right represents household expenditure on insurance and 
pension funding. Although the raw data have variations, the smooth data represents the 
features without the noise. By the classification, the features are well-represented.  

Figure 3-1-2 

Similar variations are found in the raw energy and emissions data. In figure 3-1-2, the 
circles show the total energy consumption (the sum of the different energy types) and 
the solid lines represent the sum of smoothed consumption of each fuel type. Thus, we 
are comparing the sum of smoothed components and not the individual points. The 
figures not only show how energy consumption can vary significantly in each sector, 
but also show that the features of the total energy consumption are retained with the 
classification and smoothing methods. 

3.2 Variation in EIOA 
This section compares standard EIOA calculations using the raw data and the smooth 
data. This process gives an indication in the likely errors caused by using the noisy raw 
data compared to using the smooth data. 
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In each of the following figures we show the results of the calculation 
1( )−= −f F I A y  (3.2.1) 

for the raw and the smoothed data where F  represents energy consumption intensity 
and A  is technical coefficient matrix, i.e: Leontief (1986). The “raw” calculations 
simply substitute the raw data into each of the variables to obtain f . For the “smooth” 
calculations, ( )ijsmooth z , ( )ismooth x , ( )iksmooth y  and ( )ilsmooth f are used to 
calculate ( )smooth A and ( )smooth F  where ( )ismooth x  represents a sum of individual 

smoothed flow from sector 1 to 64 ( 64

1
( )ijj

smooth z
=∑ ). Consequently, the whole data 

set is smoothed, then the EIOA calculations are performed (in other words, ( )smooth f is 
not the results of smoothing ( )raw f ). Thus the following comparisons give an 
indication of how “average” values in the IOT may differ from a fixed-base year. 

Figure 3-2-1 

The calculations show how the noise in the raw data may affect the results. In figure 3-
2-1 left, energy consumption for the export of renting of machinery and equipment is 
gradually increasing although the point in 2000 is an outlier. Thus, if 2000 was used as 
a base year, the energy consumption in this sector might be twice as much as if the 
smooth data was used. The energy consumption for the export of sea and coastal water 
transport, figure 3-2-1 right, shows a lot of scatter from 1990 to 2002. Depending on the 
base year, the emissions can vary about 40% either side of the median. These figures 
collectively demonstrate that the choice of base-year may effect results and hence policy 
recommendation. 

Table 3-2-1 

Table 3-2-1 shows the average errors for estimating the difference between raw and 
smooth energy consumption, where the error rate is defined as: 

( )

13

( ) ( )
1

( ) ( )

( )

max( ( )) min( ( )) 13

t t
t

t t

f smooth f

smooth f smooth f
=

−

− ×

∑
 (3.2.2) 

For example, 0.164 for exports represents the sum of the absolute differences divided by 
the range of the values (to make the different final demands comparable). The average 
error for government & NPISH is larger than others, because of two quite large outliers. 
Except for these outliers, it is almost same as others. 

3.3 Monte-Carlo Analysis 
With a mean based on the smooth data and error estimates for each cell in the IO data 
Monte-Carlo analysis can be performed. In the Monte-Carlo analysis we use the 
uncertainty distributions of the monetary value of the flow ijz , final demand iky  and 
energy flow ilf  and the normalize the data and calculate the energy consumption using 
Eq. (3.2.1). This process ensures that the IO data remains balanced and consistent. 
Because the data takes non negative numbers, we assume the data follows a log-normal 
distribution, with the mean from the smooth data and the standard deviation from the 
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average of the difference between the raw and smooth data. We use 1000N =  in the 
Monte-Carlo simulation and we survey the average number of data within σ±  centering 
around ( )smooth f . Where, σ is standard deviation from ( ) ( )raw f smooth f− . The 
Monte-Carlo analysis gives the distribution of the variations is more peaked than in the 
normal distribution in table. 3-3-1. 

Table 3-3-1 

Figure 3-3-1 

The Monte-Carlo analysis can be applied to individual sectors to show the uncertainty 
in a standard IO calculation. Figure 3-3-1 show a Monte-Carlo analysis applied to the 
export of oil extraction and the household consumption of land transport. In the figures, 
circles and crosses represent the raw and smooth data and the bars show σ±  from the 
average by Monte-Carlo analysis. One standard deviation gives the expected coverage 
of the raw data. This confirms that the use of Monte-Carlo analysis describes the 
variations in the data. 

4. Constant price data 
When we compare consumptions at two different periods, it is difficult to directly 
compare the consumptions and grasp the change because consumption consists of two 
variances, price and quantity. Indices are generally used to compare prices / quantities at 
different periods by fixing quantities / prices.  
 
More widely used indices are Laspeyres and Paasche indices and chained index is more 
representative of economic variations, i.e Statistic New Zealand (1998) United Nations 
(1993). They have two kinds of indices, price index and quantity index. Price index 
shows the change of prices by fixing the quantities and quantity index represents the 
movement of quantities by fixing the prices. The consumption data converted by the 
price or quantity indices are called constant price data or constant quantity data. Here 
we mainly describe the Laspeyres constant price data and chained constant price data.   

4.1 Laspeyres fixed-base indices 
The perhaps most common indices in use, and most certainly the most simple ones, are 
the Laspeyres and Paasche indices. Suppose information on the price and quantity of 
n output is available for period 1t M= L . Denoting the output price and quantity 
vectors in period t  as  1( , , , , )t t t t

i np p p=p L L  and 1( , , , )t t t t
i nq q q=q L L . The Laspeyres 

price index ( t
LP ) is computed using the following formula: 

 
00 0

1 2
1 2

0 0 0 0 0 0

1 1 1

0
0

1

t t t t n
L nn n n

i i i i i i
i i i

tn
i

i
i i

qq qP p p p
p q p q p q

pw
p

= = =

=

= + + +

=

∑ ∑ ∑

∑

L

(4-1-1) 
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where  
1

nt t t t t
i i i j jj

w p q p q
=

= ∑ is output i ’s nominal output share. It shows that the 

Laspeyres output price is the period 0 share-weighted sum of price ratios. The Paasche 
output price index uses period t  prices as the weight, in contrast to the Laspeyres output 
price index that use period 0 prices as weight. 
 
When we wish to grasp time series price changes with a common year, constant price is 
constructed from t

LP  or t
PP . Assuming that we already have computed an index, the 

value of consumption with quantity in period t  and price in base period zero, 
0

1

n t
i ii

p q
=∑ ,  is computed as the value of current price consumption in period 0 times 

t
LP index with period 0 as the base year and period t  as the end year: 

 

0 0 0

1 1

n n
t t
i i L i i

i i
p q P p q

= =

= ×∑ ∑  (4-1-2) 

When computing values of consumption in each period with the same base period and 
quantity, we get a time series of consumption measured with quantity in constant period 
0.  

4.2 Chained index 
Although the above fixed-weight indices are common and simple, when studying long 
time series, the structure of prices and quantities in the base period become 
progressively less relevant as one is moving further away from the base period, and the 
bias of fixed-weight indices is likely to increase correspondingly. The reason is the 
information on price movements and weighting changes in the intervening periods are 
ignored. 
 
This problem may be overcome by changing base period from time to time. A chained 
index compares prices between two periods taking into account information on 
weighting changes in the intervening periods, i.e Statistic New Zealand (1998) United  
Nations (1993). Rebased LP price indices are shown below: 

1 0

1/ 0 1

0 0

1

1

/ 1 1

1 1

1

L

L

n

i i
i
n

i i
i

n
t t
i i

t t i
n

t t
i i

i

p q
P

p q

p q
P

p q

=

=

−

− =

− −

=

=

=

∑

∑

∑

∑

M  (4-2-1) 

 
The next step is to link the indices for each period, which have individually different 
base periods, together to a continuous time series of indices with a common base period. 
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This procedure is called chaining, and is done by multiplying the indices for adjacent 
periods: 

/ 0 1/ 0 2 /1 / 1
LCH

t t t
L L LP P P P −= × × ×L  (4-2-2) 

 
Here the subscript LCH indicates the Laspeyres chained index. In general the result is 
different from the fixed base index. The expenditure in a period t with a base period 0 
by a chained index is 

0 1/ 0 2 /1 / 1 0 0

1 1

t n
t t t
i i L L L i i

i i

p q P P P p q−

= =

= × × × ×∑ ∑L (4-2-3) 

Economical changes since a base year is included in the calculation of indices in each 
period by updating the weights. Therefore it is advantage that chained index reflects the 
change of economical structure since the base year as compared with the Laspeyres 
index which has a fixed weight. In this study we adopt the Laspeyres chained index for 
constant price. 

4.3 Raw, raw-smooth and smooth constant price data 

Figure 4-3-1 

Although we perform chained constant price, it is difficult to how to specify a base year. 
The comparison of export on manufacture of basic precious and non-ferrous metals with 
base year 1999 and 2000 is shown in figure 4-3-1. Because of sudden increase of the 
price in 2000, the raw constant price with base year 2000 is much higher than that with 
1999. While the smooth constant prices with base period 2000 is not subject to it and 
similar to the constant price with base year 1999. It might make easy to choose a base 
year. 
 
Here we compute constant price with base year 2000 and compare the difference 
between raw constant price data constructed from raw current price data, raw-smooth 
constant price data constructed by smoothing the raw constant price data and smooth 
constant price data constructed from smooth current price data.  

Figure 4-3-2 

Figure 4-3-2 shows household expenditure on extraction of crude petroleum and natural 
gas and manufacture of machinery and equipment n.e.c. respectively. The figures 
compare three constant prices. In figure 4-3-2 left, raw constant price (black circles) is 
nearly zero before 1994 and increases constantly after sudden boost in 1995 although it 
has some variations. The feature is well-represented with two straight lines by the raw-
smooth constant price (solid line). On the other hand, the smoothed constant price data 
dotted line represents gradual rise with a curve. The similar tendency is shown in figure 
4-3-2 right. The raw-smooth data linearly represents increase until 1997 and decrease 
after 1998. The slope of the line from 1990 to 1997 may be a little steep because of an 
outstanding data in 1997. The smooth data shows it with a gradual curve and is not 
concerned by the point in 1997.   

Figure 4-3-3 
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Capital formation on manufacture of other non-metallic mineral products is shown in 
figure 4-3-3. It clearly shows the difference of two ways to represent the features. The 
raw-smooth data shows the decline of the data from 1991 to 2002 and then the points 
from 1995 to 1997 are regarded errors. Meanwhile the smooth constant price shows the 
rise tendency from 1995 to 2002 with a curve.  
 
To compare the raw-smooth and the smooth constant prices to the raw constant price we 
define the difference as follows: 
 

( )
( ) ( )

1

( ) ( )

( ) ( )

max( ( )) min( ( ))

M

t t
t

t t

smooth y raw y

raw y raw y M
=

−

− ×

∑
  (4-3-1) 

 
It is the difference between raw and smooth constant prices. For example the differences 
in figures 4-3-2 left and right and 4-3-3 are 0.117, 0.122, and 0.149. The difference 
between raw and raw-smooth constant prices is computed with the same definition and 
the results in the figures are 0.072, 0.064 and 0.199 respectively.  

 Table 4-3-1 

Table 4-3-1 is averages and medians of the differences of 64 sectors by each final 
demand. As shown in Eq. (4-3-1), it shows the distance from the raw data. It is natural 
that the raw-smooth data fits the raw constant price more than the smooth data because 
the raw-smooth data is smoothed based on the raw constant price.  
 
The averages of the raw-smooth constant price are similar to the medians, while the 
averages of the smooth constant price are much larger than the medians. It means 
differences between the raw and raw-smooth constant prices distribute as normal 
distribution, whereas a few of the smooth constant price have large differences from the 
raw constant price. In the other words, the smooth constant prices fit to the raw constant 
data as well as the raw-smooth constant data except for a few data. 
 
Besides, the smooth constant price represents the feature with a curve and it may be 
more realistic price movement than to be represented by one or two liner functions. In 
addition, to compare smooth constant price to raw-smooth constant price, we define the 
dissimilarity as follows: 
 

( )
( ) ( )

1

( ) ( )

( ) _ ( )

max( _ ( )) min( _ ( ))

M

t t
t

t t

smooth y raw smooth y

raw smooth y raw smooth y M
=

−

− ×

∑
(4-3-2) 

Table 4-3-2 

The average and median of the dissimilarity are shown in table 4-3-2. The median is 
much less than the average. It means smooth constant prices are very similar to raw-
smooth constant price except for a few constant prices. For instance, the dissimilarities 
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of figures 4-3-2 left, right and 4-3-3 are 0.074, 0.127 and 0.379 respectively. It is said 
the smooth constant price is relatively similar to the raw-smooth constant price and 
approximate it with realistic curves. Besides the raw-smooth constant price may have 
variation by the base period same as the raw constant price in figure 4-3-1, because it is 
constructed from the raw constant price. Consequently the smooth constant price is not 
influenced by the variations that is brought by difference of the base year, and shows the 
movement of prices with realistic curve. 

4.4 EIOA with constant price data 

Figure 4-4-1 

We compute energy consumption with the same manner as current price energy 
consumption.  Figures 4-4-1 left and right show energy consumptions of capital 
formation on machinery and equipment n.e.c and export on other business activity. The 
dotted lines (energy consumption from smooth constant price data) are smoother than 
the solid line (energy consumption from raw-smooth constant price data) though it is 
not smooth curve.  

Table 4-4-1 

Table 4-4-2 

We compute the difference and dissimilarity with eq.(4-3-1) and eq.(4-3-2) and the 
averages and medians are shown in tables 4-4-1 and 4-4-2. The averages of differences 
between energy consumptions from the raw and raw-smooth constant prices are almost 
same as the median of those, while the averages of difference between the raw and 
smooth constant price are quite larger than the medians. That is the differences between 
the raw and smooth constant prices are not so much different from those between the 
raw and raw-smooth constant prices except for some data. The same can be said in 
Table 4-4-2. The medians of dissimilarity are about half of the average and 0.1 or 
thereabout. It means many of the energy consumption from the smooth constant price 
are similar to those from the raw-smooth constant price. The dissimilarities in figures 4-
4-1 left and right are 0.103 and 0.129 respectively.  
 
Here it is important that the energy consumption constructed from the raw and the raw-
smooth constant prices may be vulnerable to difference of base years.  

5. SDA 
There are some techniques that are used for decomposing the development in emission 
indicators at the sector levels. Structural decomposition analysis (SDA) is one of the 
techniques, i.e:  Rørmose (2005) and Hoekstra (2002). SDA has been applied, for 
example, to analyze the demand and technological driving forces of energy use, CO2 
emission and various other pollutant and resources.  
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5.1 Mathematical derivation 
Environmental stressor / energy indicators are introduced by three variances, 
environmental stressor / energy intensity, changes in absolute quantities and output 
elasticity.   

= ⋅ ⋅f F L y   (5-1-1) 

Where 1( )−= −L I A  is the Leontief inverse matrix. The additive decomposition form is 
given as 
  

Δ = Δ ⋅ ⋅ + ⋅Δ ⋅ + ⋅ ⋅Δf F L y F L y F L y   (5-1-2) 

 
The first term, the intensity effect, measures the influence of changing physical flow per 
unit of monetary output. The second and third effects are the input-output coefficient 
and final demand effects.  
 
The discrete approximation of a continuous integral function of Δf is represented by the 
parametric equation 
 

1( 1) 1 1 2( 1) 2 2 3( 1) 3 3( ) ( ) ( )t t tα α α− − −Δ ≈ + ⋅Δ Δ + + ⋅Δ Δ + + ⋅Δ Δf w w F w w L w w y (5-1-3) 

where the w  represents weights and the α  are parameters. The sizes of weights are 
determined by their value in period 1t −  and t  and the parameter.  The parameter is 
specified by a choice in index. For example, when 1α = , 1( ) 2( ) 3( )t t tw w wΔ + Δ + ΔF L y . It 
leads to the Paasche index because it use the previous year as weights. If 0α = , it 
means the Laspeyres index because base year is used for weights. The decomposition in 
Eq.(5-1-3) can be decomposed into more than three determinant effects.  

5.2 Model for Norwegian SDA 
With three constant price, raw constant price, raw-smooth constant price and smooth 
constant price in section 4-3, decomposition is carried out of changes in emission 
between 1990 and every single year from 1991 to 2002 subsequently. The base year is 
kept constant at 1990, the target year gradually run through the entire time span.  
The model for this SDA study is defined as: 

 /s v cptP= ⋅ ⋅ ⋅ ⋅f F L y y   (5-2-1) 

The notations in eq.(5-2-1) are as follows: 
P : Population 
F : Emission or energy consumption intensity 
L : Leontief inverse, Inversed matrix of intermediate deliveries 

sy : Final demand coefficient ( /sij ij ij
i

y y y= ∑ )  

/v cpty : Per capita final demand. 
With eq.(5-2-1), it is possible to use the decomposition method laid out in section 5.1 to 
get the changes of isolated elements.  
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Although weights can be calculated by economic method in eq.(5-1-3), here we 
introduce a way to derive them with the structural decomposition method. The additive 
identity splitting method is used to get an idea of what the w ’s should be: 

1 0

1 1 1 1 / 1 0 0 0 0 / 0

1 1 1 / 1 0 1 1 1 / 1 0 0 0 0 / 0

1 1 1 / 1 0 1 1 / 1 0 0 1 1 / 1 0 0 0 0 / 0

1 1 1 / 1 0 1 1 / 1 0

s v cpt s v cpt

s v cpt s v cpt s v cpt

s v cpt s v cpt s v cpt s v cpt

s v cpt s v cpt

f f f
PF L y y P F L y y

PF L y y P F L y y P F L y y

PF L y y P FL y y P F L y y P F L y y

PF L y y P FL y y P F

Δ = −
= −

= Δ + −

= Δ + Δ + −

= Δ + Δ +
M

0 1 / 1 0 0 0 / 1 0 0 0 0 /s v cpt s v cpt s v cptLy y P F L y y P F L y yΔ + Δ + Δ
 (5-2-2) 

Each of components represents the contribution of the Δ -component to the total change 
in f . We notice the pattern of the coefficients. But this pattern is not unique. If the 
number of variance increases, the pattern would be a huge number. Dietzenbacher and 
Los (1998) propose that a way to reduce the variance is to look at the mean of so-called 
“mirror images”. Let n be number of variable and k represent the number of subscript 0 
values in a coefficient. According to Dietzenbacher and Los (1998), the number of 
coefficient for each k  and the weights are given by eq.(5-2-3) and. eq. (5-2-4) 
respectively. 

( 1)!
[( 1 )! !]

n
n k k

−
− − ⋅

 (5-2-3) 

( 1 )! !n k k− − ⋅  (5-2-4) 

 
In Norwegian SDA, the results of eq.(5-2-3) and eq.(5-2-3) with 5n = are represented in 
table 5-2-1. 

Table 5-2-1 

Making reference to table5-2-1, fΔ for Norwegian SDA is computed as the average of 
all 120 components represented by 16 different decomposition of f as follows: 
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0 0 0 / 0 0 0 0 / 0 0 0 0 / 0 0 0 0 / 0 0 0 0 0 /

0 0 0 / 1 0 0 0 / 1 0 0 0 / 1 0 0 0 / 1 0 0 0 1 /

1 [120
(24 24 24 24 24 )

(6 6 6 6 6 )

(6

s v cpt s v cpt s v cpt s v cpt s v cpt

s v cpt s v cpt s v cpt s v cpt s v cpt

f

PF L y y P FL y y P F Ly y P F L y y P F L y y

PF L y y P FL y y P F Ly y P F L y y P F L y y

Δ = ⋅

Δ + Δ + Δ + Δ + Δ +

Δ + Δ + Δ + Δ + Δ +

0 0 1 / 0 0 0 1 / 0 0 0 1 / 0 0 0 1 / 0 0 0 1 0 /

0 1 0 / 0 0 1 0 / 0 0 1 0 / 0 0 1 0 / 0 0 1 0 0 /

1 0 0 / 0

6 6 6 6 )

(6 6 6 6 6 )

(6

s v cpt s v cpt s v cpt s v cpt s v cpt

s v cpt s v cpt s v cpt s v cpt s v cpt

s v cpt

PF L y y P FL y y P F Ly y P F L y y P F L y y

PF L y y P FL y y P F Ly y P F L y y P F L y y

PF L y y

Δ + Δ + Δ + Δ + Δ +

Δ + Δ + Δ + Δ + Δ +

Δ 1 0 0 / 0 1 0 0 / 0 1 0 0 / 0 1 0 0 0 /

0 0 1 / 1 0 0 1 / 1 0 0 1 / 1 0 0 1 / 1 0 0 1 1 /

1 1 1 / 1 1 1 1

6 6 6 6 )

(4 4 4 4 4 )

(24 24

s v cpt s v cpt s v cpt s v cpt

s v cpt s v cpt s v cpt s v cpt s v cpt

s v cpt s

P FL y y PF Ly y PF L y y PF L y y

PF L y y P FL y y P F Ly y P F L y y P F L y y

PF L y y P FL y y

+ Δ + Δ + Δ + Δ +

Δ + Δ + Δ + Δ + Δ +

+

Δ + Δ

L

/ 1 1 1 1 / 1 1 1 1 / 1 1 1 1 1 /24 24 24 )]v cpt s v cpt s v cpt s v cptPF Ly y PF L y y PF L y y+ Δ + Δ + Δ

 (5-3-4) 

5.3 Comparison of SDA 
In this section, we compare decompositions from the three constant prices in section 4-
3. In figures 5-3-1 and 5-3-2, the three figures are decompositions computed from the 
raw constant price, the raw-smooth constant price and the smooth constant price 
respectively.  

Figure 5-3-1 

The bold lines in figure 5-3-1 indicate the total change in CO2 emissions in Norway 
from export as compared to the level in 1990. In the figure from the raw constant price, 
this line declines from 1990 to 1993 and repeats increase and decrease until 2002. CO2 
in 2002 is 10% more than in 1990. In figures from the raw-smooth and the smooth 
constant prices, these lines are very cloth to zero until 1995 and increase gradually after 
sudden increase in 1996. The reason of the sudden increase is the rise of emission 
intensity. In 1996 consumption of heavy fuel oil for sea and coastal water transport 
suddenly increased about 30%. The consumption of heavy fuel oil gradually decreases 
after 1996, on one hand middle distillates increase gradually. Therefore after increase of 
emission intensity in 1996, it declines not rapidly but slowly. In the figure from the raw-
smooth constant price CO2 increases to 13% for 13 years from 1990 to 2002, while the 
figure from the smooth constant price shows CO2 increase of 18%. The most significant 
in terms of increasing the CO2 emissions is per-capita final demand. The three figures 
show the isolated effect from per-capita final demand is increases of more than 40% in 
CO2 emissions. In the figure from the raw constant price, it is shown by rough line and 
they are shown by gradual curve and straight line in figures from the raw-smooth and 
smooth constant prices.  

Figure 5-3-2 

Figure 5-3-2 shows decomposition of energy consumption. The three figures indicate 
the total energy consumptions of more than 5% increase for 13 years. It is shown with 
rough line in the figure from the raw constant price and linearly in the figures from the 
raw-smooth constant price. In the figure from the smooth constant price, the line is 
close to zero from 1990 to 1992 and increase with relatively steep sloop after that. The 
only one decline element is emission coefficient. The emission coefficient from the raw 
constant price has variations and that from the raw-smooth constant price shows 



Environmental Input-Output Analysis, Structural  
Decomposition Analysis, and Uncertainty 15 

IIOMME08  Seville - July, 9-11 2008 

constant decline. In the figure from the smooth constant price, it has a sharp decline 
from 1990 to 1992 and gradual decrease after that. As comparing these three results, the 
trends are similar as a whole. But when we wish to predict the change in a short term, it 
is difficult to do it with the result from the raw constant price because the changes in 
each year are variable. Besides, we should remember that results from the raw and raw-
smooth constant price may have variations by the base year. 

 Table 5-3-1 

The total changes of CO2 in 2002 as compared to the level in 1990 and the ratios by 
each isolated effect are shown in table 5-3-1. The results from the raw constant price 
shows total increase in CO2 emission of 7.95 Mt in 2002 compared to 1990. The results 
from the raw-smooth and smooth constant prices represent increase of 8.71 Mt and 
10.00 Mt respectively. The result from the raw constant price is smaller than others. As 
shown in figure 5-3-1 left, total change of CO2 emission moves up and down and it 
declines in 2002. When we discuss a result from the raw constant price at one period, 
we should mind that it is noisy and may include temporary increase or decrease. For 
example, the emission from the raw constant price in 2001 compared to 1990 would be 
much different from that in 2002 as shown in figure 5-3-1 left. On this point, both of the 
results from the raw-smooth and smooth constant prices are reliable. But the result from 
the raw-constant price may have problem by the base year.  
 
In the results from the raw constant price, export accounts for 46.3% of the total CO2 
increase (3.68Mt). Other results also show export is a serious factor in causing a rise of 
CO2 emission. Export account for about 70% of whole CO2 emission in the results 
from the smooth constant price.  The decomposition results show per capita final 
demands in export bring much increase of CO2. For instance, the table from the raw 
constant price represents per capita final demands in export generate 216.4 % of total 
CO2 emission (216.4% of 7.95Mt). Overall, improvement of emission intensity 
decreases CO2 emission but emission by per capita final demands increase much more 
than the reduction.  
 
Eventually it is said when we compare the figures and table from three different 
constant prices, the result from smooth constant price is the most reliable.  

6. Conclusion 
We have proposed an algorithm for time-series data and discussed variations of IOT. 
Monte-Carlo analysis was used to replicate the uncertainty.  In section 4 we computed 
constant price data with a Laspeyres chained index and showed the importance of the 
base year from data with variations. By comparing three kinds of constant price data, it 
was revealed that smooth constant price data shows the most realistic movement of 
expenditure and energy consumption. Comparison of decompositions of CO2 and 
energy consumption from the three constant price data was discussed in section 5. We 
showed that the results of the decomposition with raw constant price have variation and 
it may bring large errors. The results from the raw constant price and raw-smooth 
constant price data have a risk in choosing the base year. Overall, it was shown the 
analysis of data with variations and the necessity of removing the variation at the first 
stage. Analysis with uncertainty is an important area of future work. 
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Tables: 

Table 3-2-1 

Export Households Government Capital formation
0.164 0.175 1.685 0.174  

Average error between raw and smooth energy consumption 

Table 3-3-1 

Export Households Government Capital formation
68.1 70.7 76.4 77.8
92.7 94.1 95.6 94.8
98.3 98.7 99.1 98.4

σ±
2σ±
3σ±

Distribution of data with noise 

Table 4-3-1 

Export Households Government Capital 
formation

raw-smooth 0.087 0.090 0.067 0.085
smooth 0.226 0.153 0.130 0.126

raw-smooth 0.082 0.092 0.071 0.087
smooth 0.144 0.127 0.092 0.101

average

median
 

Average of difference between raw and raw-smooth / smooth constant prices 

 

 
 
Table 4-3-2 

Export Households Government Capital 
formation

average 0.215 0.133 0.120 0.112
median 0.132 0.100 0.064 0.038  

Average of Dissimilarity 
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Table 4-4-1 

Export Households Governme Capital 
formation

raw-smooth 0.110 0.119 0.100 0.102
smooth 0.246 0.187 0.197 0.166

raw-smooth 0.101 0.115 0.095 0.099
smooth 0.148 0.156 0.118 0.117

average

median
 

Comparison of energy consumption from raw constant price  
and that from raw-smooth / smooth constant price 

 
Table 4-4-2 

Export Households Governme Capital 
formation

average 0.249 0.199 0.175 0.154
median 0.128 0.134 0.09 0.089  

Comparison of energy consumption from raw-smooth constant price  
and that from smooth constant price 

 
Table 5-2-1  

1st 2nd 3rd 4th

0 0 0 0 0 1 24
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0
0 0 1 1
0 1 0 1
1 0 0 1
0 1 1 0
1 0 1 0
1 1 0 0
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

4 1 1 1 1 1 24

2 6 4

3 4 6

k # of different 
coefficient weitht

subscript for the components in the coefficient

1 4 6

 
Number of coefficients and their weights 
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Table 5-3-1  

∆P ∆F ∆L ∆ys ∆yv/cap

(%) (Mt) (%) (%) (%) (%) (%)
46.3 ( 3.68 ) 28.1 -94.9 -4.7 -98.5 216.4
19.3 ( 1.53 ) 5.8 -16.4 7.6 -0.4 22.7
9.3 ( 0.74 ) 2.1 -4.7 2.3 1.4 8.2

-0.5 ( -0.04 ) 2.8 -6.6 -0.4 -6.0 9.8
25.6 ( 2.03 ) -1.0 2.3 -0.6 63.3 -38.3

(%) -37.8 -120.4 4.1 -40.2 218.7
(Mt) ( 3.00 ) ( -9.57) ( 0.33 ) ( -3.19 ) ( 17.38 )

61.9 ( 5.39 ) 25.6 -66.8 -9.3 -85.3 197.6
20.3 ( 1.77 ) 5.2 -13.4 7.2 0.3 21.1
7.8 ( 0.68 ) 1.9 -3.4 2.6 1.0 5.8
3.4 ( 0.29 ) 2.5 -5.3 -0.2 -7.0 13.3
6.7 ( 0.59 ) -0.1 0.3 0.9 52.6 -47.0

(%) 35.1 -88.6 1.1 -38.4 190.8
(Mt) ( -3.05 ) ( -7.72 ) ( 0.10 ) ( -3.34 ) ( 16.62 )

69.2 ( 6.94 ) 21.8 -68.0 -13.5 -55.6 184.5
19.2 ( 1.93 ) 4.5 -9.3 4.7 2.2 17.1
5.4 ( 0.54 ) 1.5 -3.6 2.1 0.4 5.0

-1.5 ( -0.16 ) 2.4 -7.2 0.0 -8.0 11.4
7.7 ( 0.78 ) -0.2 5.7 -0.3 41.3 -38.7

(%) 29.9 -82.4 -7.0 -19.8 179.3
(Mt) ( 3.00 ) ( -8.27 ) ( -0.70 ) ( -1.98 ) ( 17.98 )sm
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Figures: 

Figure 2-1-1 
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Figure 3-1-1 

 
Figure 3-1-2 
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Figure3-2-1 

 

Figure 3-3-1 

Figure 4-3-1 
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Figure 4-3-2 

 
Figure 4-3-3 

Capital formation on manufacture of manufacture of other non-metallic mineral products 

Figure 4-4-1 
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Figure 5-3-1 
  
 
 
 
 
 
 
 
 
 
 
 
 

Decomposition of CO2 emission from export 
Figure 5-3-2 

Decomposition of energy consumption from household 
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