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Abstract.  This paper returns to the input-output model used by the SNA, with its two 
rectangular matrices, Supply (or Make) and Use that has a large importance in national, 
regional and interregional economic analysis.  We focus on the product-by-product input-
output tables (Eurostat’s models A and B).  Two alternating hypothesis are possible, that of 
“product technology”, almost universally adopted within the framework of SNA (Eurostat 
model A) and that of “industry technology” (Eurostat’s model B).  One examines the 
calculability of the model when the product-technology hypothesis is selected.  As the 
negatives are systematical in the inverse of the matrix of the supply matrix, they are an issue 
if they appear in the symmetric matrix of technical coefficients or in the inverse matrices 
(negative flows are nonsense) but also if they only appear in the intermediary matrices 
because they correspond to negative probabilities, therefore impossible, and the economic 
interpretation of the model in terms of Markov chains becomes impossible.  The model 
requires the matrices to be square what removes much of the interest of the model.  The 
arguments are based on an attentive reading of the original documentation of the SNA.  The 
same conclusions should be able to be transposed, mutatis mutandis, to the industry-by-
industry input-output tables when the fixed industry sales structure assumption is posed –
Eurostat’s model C. 
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1 Introduction 

The two-matrices-input-output model, so-called Supply-Use or Make-Use, is the basis 
for most charts of national accounting as the SNA or System of National Accounts (United 
Nations (1968, 1993, 1999, 2001),1 but it is also considered as very useful and more realistic 
than the traditional input-output model for regional or interregional modeling (Oosterhaven 
1984).  This model is based on two matrices because the one-to-one correspondence 
sector/product is abandoned to the benefit of the distinction between industries and 
commodities, a same product being able to be produced by many industries, and reciprocally.  
One encounters: 

• The Use matrix which is analogous to the Leontief matrix and which describes a linear 
production function with complimentary inputs. 

• The Make or Supply matrix which describes which industry produces which commodity 
and reciprocally. 

Actually, Eurostat (2008) considers two types of tables, the product-by-product input-
output tables by making an assumption on the technology, and the industry-by-industry input-
output tables by making the assumption of “fixed sales structure”.  In this paper, we focus on 
the product-by-product input-output tables, Eurostat (2008, p. 310) saying that “product-by-
product input-output tables are believed to be more homogeneous in terms of cost structures” 
while the industry-by-industry input-output tables “are close to statistical sources and more 
heterogeneous in terms of input structures.  It remains to be seen in empirical research which 
type of tables is the better option for comparisons across nations...” (Eurostat 2008, p. 310).  
The demonstrations could be transposed to the industry-by-industry tables; see Rueda-
Cantuche and ten Raa (2008) for a fine analysis of the axiomatics of those tables. 

Two hypotheses are set by the SNA 1993 to transfer outputs and associated inputs:2 

• The technology based on commodities, also called product-technology assumption , 
which corresponds to Eurostat’s Model A: “Each product is produced in its own specific 
way, irrespective of the industry where it is produced” (Eurostat 2008, p. 297).  This 

                                                 
1 See also Blades (1989), Van Bochove and Bloem (1987), Vanoli (1994), Lawson (1997) 
and Guo et al. (2002). 
2 This excerpt from the SNA 1993 (United Nations 2001, item 15.144 and 15.145): 
“The mathematical methods used when transferring outputs and associated inputs hinge on 
two types of technology assumptions: 
(a) Industry (producer) technology, assuming that all products produced by an industry are 
produced with the same input structure; 
(b) Product (commodity) technology, assuming that a product has the same input structure in 
whichever industry it is produced. 
The importance of the role played by the assumptions depends on the extent of secondary 
production, which depends not only on how production is organized in the economy, but also 
on the statistical units and the industry breakdown in the tables.  More secondary production 
will appear with institutional units than with establishments, and more secondary production 
will inevitably be found in more detailed tables”. 
These two alternative models can also be combined into mixed models (Gigantes, 1970; ten 
Raa, Chakraborty and Small, 1984; Miller & Blair 1985); for a review see ten Raa and 
Rueda-Cantuche 2003.  Konijn and Steenge (1995) have described a model that uses von 
Neumann’s activities: we do not examine it here. 
Stone (1961, pp. 107-108) is at the origin of these two hypotheses. 
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hypothesis is recommended by the new SNA even it generates negatives: “Economically, 
the commodity technology assumption makes more sense than the industry technology 
assumption” (United Nations 1999, p. 87).3 

• Or the technology based on industries, also called industry technology assumption, which 
corresponds to Eurostat’s Model B: “Each industry has its own specific way of 
production, irrespective of its product mix” (Eurostat 2008, p. 297).  This hypothesis was 
recommended by the former SNA 1968 (United Nations 1968) but the present SNA 1993 
considers that it is incoherent because it leads to incoherent “cooking recipes” (United 
Nations 1999, p. 99; Almon 2000).  Unlike the product-technology assumption, it violates 
the last three of the following list of four desirable axioms: materiel equilibrium, financial 
equilibrium, price invariance, scale invariance (Kop Jansen and Thijs Ten Raa 1990; ten 
RAA and Rueda-Cantuche 2003; ten RAA 2005) and (United Nations 1999, pp. 100-
103).4  Following ten Raa (2005), this is an obvious reason to abandon the hypothesis 
based on industries. 

This paper wants to examine the question of the negatives in the Supply-Use model 
when the hypothesis of the technology based on commodities is chosen.  Various approaches 
have been proposed by some authors to eliminate the negative terms (Almon 1970, 2000; 
Armstrong, 1975; Rainer 1989; Steenge 1990; Rainer and Richter 1992; Mattey 1993; Mattey 
and ten Raa 1997; for a review, see ten Raa and Rueda-Cantuche (2003)).  Even if they allow 
solving the problem of negatives, they cannot be more than a stopgap because the negative 
terms are not caused by some errors or by the presence of different technologies or by 
heterogeneous classifications, but are inherent to the nature of the technology based on 
commodities in the Supply-Use model.  Indeed, they are necessarily produced by the 
inversion of the matrix of output proportions of industries, and are present at least one by row 
and one by column in the inverse of this matrix (de Mesnard, 2004).  Intuitively, one 
understands that these terms are bothering but beyond of this, it is necessary to ponder about 
their economic and mathematical meaning.  This will allow demonstrating that SNA’s 

                                                 
3 For the SNA 1993 (United Nations 2001, item 15.147), 
“… the product (commodity) technology model seems to meet the most desirable properties, 
i.e., the axioms of material balance, financial balance, scale invariance and price 
invariance.  It also appeals to common sense and is found a priori more plausible than the 
industry technology assumption.  While the product technology assumption thus is favoured 
from a theoretical and a common sense viewpoint, it may need some kind of adjustment in 
practice.  The automatic application of this method has often shown results that are 
unacceptable, insofar as input-output coefficients sometimes appear as extremely improbable 
or even impossible”. 
4 For the SNA 1933 (United Nations 2001, item 15.146), 
“On theoretical grounds, … by referring to certain axioms of desirable properties one may 
come somewhat closer to a choice between these two technology assumptions.  On this basis, 
the industry technology assumption performs rather poorly, as being: 
(a)  Highly implausible;  
(b)  Not price invariant, which means that values at current prices are affected;  
(c)  Not scale invariant, due to its fixed market share property, which means that the 
coefficients that follow may vary without change in technique;  
(d)  Not maintaining financial balance, which means that the axiom of revenue being equal to 
cost plus value added for each commodity is not met;  
(e)  The Leontief material balance (total output = input-output coefficients * total output + 
final demand) is however met”. 
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approach to fix the problem is wrong: the difficulty cannot be solved by arranging the data or 
by creating a mixed hypothesis.5 

2 The product-technology hypothesis 

In the rectangular models such as SNA, one considers two rectangular homogeneous 
matrices.  The Use matrix, noted U, indicates which quantity of each product each industry6 
buys in order to produce: iju  is the quantity of input i used by industry j.  For example, for 2 

industries and 3 products: 

(1)  

Industries

sCommoditie
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3231

2221

1211

xx
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uu
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







 

where ix  is the output of industry i ( 0>ix for all i), jw  is the value added of industry j 

( 0>jw for all j), iq  is the total production of commodity i ( 0>iq for all i), ie  is the amount 

of commodity i sold to final demand ( 0>ie for all i). 

The Supply (or Make) matrix, noted V, indicates which quantity of each product each 
industry produces, where ijv  is the quantity of good j produced by industry i.  For example: 

(2) 

sCommoditie

Industries

321

2

1

232221

131211

qqq
x

x

vvv

vvv









 

This table is similar to those of Miller & Blair (1985, p. 160) but it is transposed by 
respect to Eurostat (2008, p. 311).  Four accounting identities are given, s being the sum or 
identity vector, i.e., ( )1...1'=s , prime denoting the transposition: 

(3) sVx =  

(4) wsUx += '  

(5) esUq +=  

(6) sVq '=  

Technical coefficients are defined by: 

(7) 1ˆ −= xUB  
                                                 

5 For the SNA (United Nations 2001, item 15.148): 
“Further improvement of the input-output tables can be made in the following ways: 
(a)  Make proper adjustments to the basic data so as to obtain a supply and use table of good 
quality, since this will in fact mean more to the quality of the symmetric tables than the 
choice of technology assumption; 
(b)  Introduce other models like mixed technology models whenever modifications of the 
basic input-output model are to be made, however complicated to implement”. 
6 Industries are called “establishments” by Stone (1961, p. 107). 
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By combining (5) and (7), one obtains: 

(8) exBq +=  

In connection with the way in which matrix V must be read, two alternative 
assumptions are posed, that of product technology, examined here, and that of industry-based 
technology, recalled in annex.  The derivation of models' solution will follow the standard 
presentation of Miller & Blair (1985 pp. 159 -…).7  It is possible to present the complete 
solution of these models: each assumption generates two accounting identities (commodities / 
commodities and industries / industries) and four inverse matrices (commodities / 
commodities, commodities / industries, industries / industries and industries / commodities). 

While noting by ( )VUA ,  the matrix of the direct requirements in intermediate goods 
formed when one of the two polar assumptions is chosen, the four axioms of Kop Jansen and 
ten Raa (1990), ten Raa and Rueda-Cantuche (2003) are as follows (the hat over a vector 
indicates the diagonal matrix formed from this vector): 

• material balance, ( ) UssVVUA =', , 

• financial balance, ( ) UsVVUAs '',' = , 

• price invariance, ( ) ( ) pVUAppVUpA ˆ,ˆˆ,ˆ =  for all price vector 0>p  

• scale invariance, ( ) ( )VUAVkkUA ,ˆ,ˆ =  for all scale factor vector 0>k . 

In the product-technology hypothesis, as Miller & Blair (1985, p. 165) say: “…the 
total output [ ix ] of any industry [i] is composed of goods [j] in fixed proportions”, and the 

input structure of a product does not depend on the industry which produces really this 
commodity; that is, the matrix C is fixed:8 9  

(9) 
i

ij
ij x

v
c =  or 1ˆ' −= xVC  

For Miller & Blair (1985), this assumption is applicable to secondary products but for 
Rainer (1989), it is not suitable for some secondary products as mineral oil industry.  The 
1993 System of National Accounts prescribes the product-technology hypothesis (United 
Nations 1999, p. 98-99), mainly because it fulfills the four desirable axioms cited above 
(materiel equilibrium, financial equilibrium, price invariance, scale invariance). 

From (6) and (9) one obtains 

(10) qCx 1−=  

what indicates how the goods are produced by industries but requires calculating the inverse 
of C.  Remember that C is invertible because it is the product of V and of an invertible matrix 
from (9)), V being invertible from ten Raa’s theorem 7.1 (ten Raa and van der Ploeg 1989, p. 
89).  Combining (10) with (8) gives: 

(11) ( ) eqVUAqeqCBq +=⇔+= − ,1 C  

                                                 
7 See also Aidenoff (1970), United Nations (1999, pp. 86-103), Gilchrist et al. (2000); Shao 
and Miller (1990) have focused on the multiregional case; there is a remarkable survey in 
Guo et al. (2002). 
8 As for Stone (1961, p. 108) who says: “… on the assumption that the output of each 
industry is made up of the different products in fixed proportions…”. 
9 Matrix C is defined as in Miller & Blair (1985), while it is transposed by respect to de 
Mesnard (2004) or to the SNA 1993 (United Nations 1999, 2001). 
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by denoting 

(12) ( ) 1, −= CBVUAC  

the matrix of direct intermediary consumption of commodities in the product-technology 
hypothesis; this matrix is a matrix of constant as B and C are.  Note that 

(13) ( ) 1', −= VUVUAC  

by using (7) and (9).  The solution is: 

(14) ( ) ( )( ) eVU,AIeCBIq
111 −−− −=−= C  

where ( ) 11 −−− CBI  is called the commodity - commodity inverse matrix.  The final demand 
addressed to industries is: 

(15) fCe =  

thus (14) transforms directly into 

(16) ( )( ) fCCBIq
11 −−−=  

where ( ) CCBI
11 −−−  is the commodity - industry inverse matrix.  From (10) one draws 

Cxq = , what carried into (14) gives ( ) eCBICx
11 −−−=  ( ) eCxCBI =−⇔ −1  

( ) exBC =−⇔  ( ) eCxBCC 11 −− =−⇔  ( ) eCxBCΙ
11 −− =−⇔  and: 

(17) ( )( )eCBCIx 111 −−−−=  

where ( ) 111 −−−− CBCI  is the industry - commodity inverse matrix.  Finally, from (15) it 

comes feC =−1  and by using (17): 

(18) ( ) fBCIx
11 −−−=  

where ( ) 11 −−− BCI  is the industry - industry inverse matrix. 

Note that in all cases the number of goods must be equal to the number of industries 
so that the inverse of matrix C can be calculated as of the use of equation (9): Supply and Use 
matrices must be square, which is highly restrictive and will be discussed in the next section.  
It is known that this technology, if it does not lead to absurd recipes of production (no 
chocolate into cheese as Almon says (2000)…) generates negative terms in 1−C , which, even 
if they are small, are not interpretable economically and cannot be avoided.  It is on this point 
that we will insist: this will also be discussed in the next section. 

3 The negatives 

3.1 Where are the negatives? 
The existence of negative terms in the Supply-Use model under the product-

technology hypothesis has been badly understood in the past.  The negative terms may be 
very small in absolute value in national accounting matrices: this is why most authors or 
scholars tend to neglect them or try to remove them by some process even theoretically 
unsatisfactory.  A complete review can be found in ten Raa and Rueda-Cantuche (2003).  
Most authors have thought that the negatives are caused by nonhomogeneities (Rainer 1989) 
or by measurement errors (Steenge 1990).  They have tried to eliminate them by various 
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methods that are absolutely correct in themselves as.  For example one may quote the simple 
method of the SNA (United Nations 1999, p. 97)10, the sophisticated Almon’s iterative 
method (Almon 2000) or ten Raa and van der Ploeg’s statistical adjustment (1989) (even if 
they reject the product-technology hypothesis) or the non-negativity constraints (Ten Raa 
2005, p. 96).11  Alternately, a transition matrix between B and C has been proposed (Steenge 
1990), what is a matter for another category of methods.  Rainer (1989) lists three methods to 
alleviate negatives: set the negatives to zero, set the negatives to zero iteratively as done by 
Almon (1970) again, or set the negatives to zero by replacing some by a positive value as 
done by Armstrong (1975).  Most of these methods takes us away from the input-output 
model.  The SNA 1993 thinks that over-specification, misclassification, differences between 
secondary products and products, and above all, errors in data, are the cause of the negative 
terms; the following quotation of the SNA 1993 is enlightening (United Nations 2001, item 
15.147): 

“There are even numerous examples of the method leading to negative coefficients which are 
clearly nonsensical from an economic point of view.  Improbable coefficients may partly be 
due to errors in measurement and partly to heterogeneity (product-mix) in the industry of 
which the transferred product is the principal product”. 

This one is also interesting (United Nations 1999, p. 96-97): 

“… one can see that as the inputs required for secondary products are removed from total 
input, the derived technical coefficient can be negative if one of the following occur: (i) There 
is the over-specification of the secondary products, i.e. the output of the secondary product in 
the make matrix (the supply table), in our example, product 2 produced in product 1, is 
misclassified; (ii) The secondary product is not exactly the same as the product produced as 
a primary product elsewhere; it requires less inputs than assumed; (iii) There are errors in 
data. …  The solution to the problem of negative coefficients is to recheck data themselves.  
Significant secondary products and their associated inputs must be transferred by using the 
redefinition method on the basis of the information provided by establishments producing 
only these kinds of secondary products or collected by special surveys”. 

However, even if one or all of the items of this quotation are true –(i), (ii) or (iii)–, the 
negative terms in 1−C  are unavoidable as soon as the V matrix is not diagonal.  The following 
theorem can be found in (de Mesnard, 2004), for 1−C .12  In de Mesnard (2004) matrix C was 
assumed indecomposable.  However, by respect to de Mesnard (2004), it is necessary to add 
the particular case where matrix C is quasi-diagonal, that is, decomposable with at least one 
diagonal block: this configuration corresponds to real Make matrices that are large with a few 
terms out of the diagonal.  Almon (2000, p. 30) gives the following example where C is 
decomposable and the block formed by the last three sectors is diagonal: 

                                                 
10 “In cases where negative coefficients are very small in comparison to other coefficients in 
the same columns, practitioners may set them to zero and balance the tables by the RAS 
method”. 
11 This method is absolutely correct in itself but the terms that should be negative will tend to 
accumulate themselves on the border of the set delimited by the non-negativity constraints, 
that is, are replaced by zeros, what could be not realistic to some extent. 
12 Obviously, the same holds for 1−D  even if it is not a big issue: see annex. 
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0009.3.
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C  

It is true that the more aggregated the data are the more the nondiagonal blocks are large: 

“Heterogeneity results from working on aggregated data with a high occurrence of non-
characteristic products.  This might be overcome by making adjustments based on 
supplementary information or exploiting informed judgment to the fullest extent possible” 
(United Nations 2001, item 15.147). 

Theorem.  Consider a nonnegative matrix C which has one or more nondiagonal blocks (C 
may be composed only of one nondiagonal block, that is, not decomposable).  The 
nondiagonal blocks in matrix 1−C  have at least one negative term per row and column, that is, 
per industry and commodity. 

Example (coming from de Mesnard (2004)): 

(20) 

Industries

sCommoditie

111
7.3.2.

2.6.3.

1.1.5.


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


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so: 

(21) 

sCommoditie

Industries

111
6875.18125.1875.
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In the example (20)-(21), all nondiagonal terms are negative.  In the inverse of matrix of 
example (19) all nondiagonal terms of the nondiagonal block are negative: 

(22) 


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Proof.   

Matrix C is nonnegative: 0≥ijc  for all i, j.   Consider the kth nondiagonal block kC  of matrix 

C: it is such that for all diagonal element k
iic , there is at least one strictly positive term in the 

row i or in the column i: 

(23) ( ) ( ){ }0/or  0/ >∃>∃∀ k
ji

k
ij cjcji   
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As C is not negative by assumption, and as ( ) ICC =−1kk , then for the nondiagonal terms of I, 

one can pose the following formula: 0=∑p

k
pj

k
ipc σ  for all i and j, where k

pjσ  is the term 

{ }jp,  of ( ) 1−kC .  Therefore, at the very least, there is one k such that 0<k
pjσ  for all j; hence 

there is thus one negative term per column of ( ) 1−kC , that is, per commodity.  But one could 

have written ( ) ICC =− kk 1
 in an equivalent way: there is also one negative term per row of 

( ) 1−kC , that is, per industry.  • 

The negative terms are thus systematic in C in their non diagonal blocks.  Remember 
that a completely diagonal Make matrix makes the model completely equivalent to the single-
matrix model of Leontief.  Hence, the diagonal block can be considered as trivial in the 
context of the Supply-Use model, even if, in real Make matrices, there could be many 
diagonal blocks.  This theorem is important because it indicates that scholars13 and the SNA 
1993 (United Nations 1999), are completely misleading on this point.14  All the cases have 
obliged to calculate the inverse of matrix C: 

( )
( )

( )
( ) 
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−
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−
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
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








→

→








→







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−−−

−−

−−

−
11

111

11
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1 BCI

CBCI

CCBI

CBI

CC

C
x

V

B
x

U

 

However, for the product-technology model, the linking of mathematical derivations 
indicates in Figure 1 indicates that the negative terms of 1−C  generated by the combination of 
equations (6) and (9) pollute all cases: all the cases contain negative terms and the first 
appearance of a negative term orders the others. 

                                                 
13 Except ten Raa (1988) who saw that the negatives are not caused by errors in the data but 
by the model, what must lead to abandon the model based on commodities. 
14 What’s more, the  SNA 1993 (United Nations 1999, p. 87) indicates that: 
“The more prevalent methods are (i) setting all negatives to zero and using the RAS 
technique … to balance the table and (ii) optimization such as minimization of variances 
under constraints to generate positive values.  However, the latter is also questioned on other 
grounds such as an economic justification for a specific form of the objective function”. 
This is obviously awful: nothing indicates that negatives are small and above all, they are not 
accidental but completely systematic. 
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Figure 1.  Linking of mathematical derivations 

3.2 Why negative technical coefficients are an issue 
As the inverse of matrix V necessarily contains negative terms, the matrix ( )VUA ,C  

given by (13) may contain negative terms.  Ten Raa and van der Ploeg explain when on a 2x2 
example (1989, p. 89): if the diagonal terms of U are large.  They have not explored larger 
matrices but it is sufficient to know that ( )VUA ,C  may contain negatives.15  The negative 

terms in ( )VUA ,C  are economic flows of which subtle explanation is complex and 

unconfirmed.16  Consider an eventual couple { }ji,  such that the flow of product i bought by 

sector j is negative, that is, 0<c
ija . 

• Either this means that j buys a negative quantity of commodity i to sector i.  What 
interpretation for this negative quantity? 

• Or sector j itself sells commodity i to sector i.  In this case, sector j, which normally 
produces commodity j, becomes also manufacturer of commodity i.  Strange.  Moreover it 
violates the identity sector-product. 

If we consider the example of car industry for j and of steel for i, then in the first case, 
the car sector buys a negative quantity of steel: what does mean a negative input?  In the 

                                                 
15 Remark that ( )VUA ,I  never contains negatives even if equation (33) in annex –one of the 
four cases of the industry-based model– could lead to negatives. 
16 The 1993 SNA (United Nations 1999, p. 83) explains that it is impossible to make the 
symmetric-table model functioning when by-products lead to introduce negatives (in the 
Stone’s “negative transfer method”): the net output of by-product cannot be equal to zero if 
the final demand increases.  It is a completely different reason to explain why negatives are 
impossible. 

   ( q = U s + e and B = U <x>-1    q = V’ s and C = V’ <x>-1              e = C f 

Commodities-
commodities 

q = (I - B C-1)-1 
e 

Commodities-
industries 

q = [(I - B C-1)-1 C] f 

Industries-
commodities 

x = (I - C-1 B)-1 C-1 

e 

q =B x + e 

q = B C-1 q + e           

Industries-
industries 

x = (I - C-1 B)-1 f 

f = C-1 e 

x =C-1 q 

q = C x            
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second case, the car sector sells a positive quantity of steel to the steel sector itself, that is, the 
steel sector becomes a manufacturer of steel entirely sold to the car industry, without itself 
consuming steel: if we think on the balance of opposed flows, the car industry is becoming a 
net seller of steel to the steel industry by selling more to this sector than it buys: very 
unlikely.  In any case, these interpretations that makes the car industry in a situation of being 
multiproduct which is excluded by the square Leontief model. 

3.3 Why negatives in C-1 are an issue: the Supply-Use model as 
Markovian probabilistic model 

Assume that there are no negatives in ( )VUA ,C , or these negatives are very small, 

even if there are in 1−C : we could say that we don’t care of the problem of negatives.  This is 
the position of the large majority of the authors.  However, negatives in the inverse matrices 

1−C  –which is only an intermediary result– is a very important problem even when there are 
no negatives in ( )VUA ,C .  Having one forbidden mathematical object inside a mathematical 
derivation is not allowed even if the result is allowed.  I take an example in the probability 
theory.  The probability of having a six with 6-faces dice is 1/6.  Hence, the probability of 
having a double-six with two 6-faces dices is ( ) ( ) 3616161 +=× .  Now, assume that we are 
the Devil with a special dice, impossible for humans, where the probability of having a 6 is 
negative, say 61− , the other probabilities (of having 1 to 5) being equal to 1.16666/5.  What 

is the probability of having a double 6?  It is ( ) ( ) 3616161 +=−×− , of course, an ordinary 
positive probability: acceptable.  However, will humans accept this result even if it falls 
between zero and one?  Certainly not because 61−  and the probabilities greater than 1 are 
impossible. 

In the product-technology model, even when there are no negative terms in the results 
of the model (equations (14), (16), (17) and (18)), there are always in 1−C .  However one has 
been obliged to pass by an illegal operation, the inversion of C to obtain these results.  For 
most authors and scholars, having negatives in 1−C  is not an issue even though the result 
given by the inverse matrix is not negative: they neglect everything except the direct matrices 
U, V and B, and the inverse matrices.  In their mind, the input-output models are only 
interesting for deriving multipliers from inverse matrices.  The core of the question is there.  
Beyond the question of the realistic character of the negative terms in input-output analysis, 
some arguments against the negative terms in 1−C  can be exposed following the idea that the 
input-output model can be understood in terms of iterative intermediary transmission of 
economic impacts.  The idea of circuit is exposed in (de Mesnard, 2004) but another idea is 
possible: Markovian chains.  Some other arguments come even if one considers only the final 
result of inverse matrices. 

We develop here a probabilistic interpretation of the Supply-Use model in terms of 
Markovian chains, what follows from the interpretation of input-output analysis in terms of 
probability (Jackson and West 1989).  If we follow the probabilistic interpretation in terms of 
Markovian chains, coefficient ijb  is the probability that industry j spends one unit of money 

in commodity i, ijd  is the probability of producing commodity j by industry i and ijc  is the 

probability for industry i  to produce commodity j.17  As 1<∑i ijb , there are “leakages” and B 

                                                 
17 One way wonder what the associated probability distributions are; they are multinomial 
(draw with put back); see Choukroun (1975). 
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is a sub-Markovian matrix, but as 1=+∑ ji ij lb , where jij xz  is denoted jl , the terms ijb  and 

jl  are yet probabilities: the matrix B becomes a Markovian matrix when it is completed by 

the row vector of the jl  is Markovian. 

Hence for the hypothesis of technology based on the industries (see annex), matrix 
( ) DBVUA =,I  is generated by the following reasoning.  Commodity j has a probability ijd  

of being produced by industry i: D is a Markovian matrix of probability.  Then when a 
quantity ( )k

jq  of good j is produced, the expectancy of the output of industry i is ( )k
jij qd  of j.  

For all commodities j, the expectancy of the output of industry i is ( )( ) ( )kkE qDx =+1 .  As the 

probability of industry i to buy an intermediate commodity j is ijb , the expectancy of industry 

i to buy good j is equal to ( )( )1+k
iij xEb .  The expectancy of all industries i to buy commodity j 

is equal to ( )( ) ( )( )11 ++ = kk EE xBq .  Hence, ( )( ) ( )kkE qDBq =+1 .  If we make the hypothesis that 

the true value of ( )1+kq  tends toward ( )( )1+kE q , then the Markovian cycle starts again at the 
next step.  The model is fundamentally compatible with an interpretation in terms of 
Markovian matrix even if matrix 1−D  appears when one of the four inverse matrices is 
computed: the negative terms of 1−D  produced by equation (31) affect only one of the four 
cases but not at all the three others. 

Let’s look now at the product-technology model.  The Markovian interpretation of the 
product-technology hypothesis is never possible because 1−C  cannot be a matrix of 
probabilities: even in the square case of the hypothesis of technology based on commodities, 
an interpretation in terms of probability is impossible.  The probability of producing 
commodity j by industry i is denoted ijσ .  A term ijσ  of 1−C  is the probability for a 

commodity j to be manufactured by a given industry i, knowing that 1=∑i ijσ  for all j.  Then 

consider a couple { }ji,  such that the corresponding term ijσ  is negative.  What does 0<ijσ  

mean?  This negative term means that, in plain English, the probability of industry i to 
manufacture commodity j is negative.  This has no meaning since these shares cannot be 
negative, as indicated above when the interpretation in terms of probabilities has been done.  
Hence, as this so-called probability may be negative in some cases as demonstrated in the 
theorem recalled above (there is at least one negative term per row and per column), it is not 
a probability.  In conclusion, even if C is a Markovian probability matrix, 1−C  is not and the 
derivation done as above is impossible for the product-technology model. 

It was the same for the interpretation in terms of circuit developed by de Mesnard 
(2004).  The plausibility of the two alternative hypotheses depend on the possibility of 
building a circuit: either the circuit is plausible and the solution of the model is economically 
meaningful or it is not.  De Mesnard has demonstrated (2004) that the product-technology 
Make-Use model cannot form a circuit if it is demand-driven even if the matrices are square; 
but it can if the model is supply-driven even if the matrices are rectangular. 

3.4 Same number of commodities and industries: epistemological 
discussion 

Mathematical derivations from the product-technology hypothesis are possible only if 
the number of commodities is equal to the number of industries (square matrices).  The 
following quotation of the SNA (United Nations 1999, p. 95) is very clear (with our 
notations): 
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“The relationship ( ) 1, −= CBVUAC  implies a strong restrictiveness of the commodity 
technology assumption, i.e., C is invertible only if C is square or the number of industries 
must equal the number of products.  This mathematical requirement is unrealistic since the 
number of industries needs not equal the number of products unless statisticians make it so 
by aggregation”. 

Can we go further? 

• Either the number of commodities is necessarily equal to the number of industries: there 
is a one-to-one correspondence between commodities and industries, that is, commodities 
are defined according to industries and reciprocally.  It is what Miller et Blair (1985) 
suggest when they indicate that each industry is named from the main product that they 
produce, what gives a Supply matrix with a strong main diagonal (after having sorted 
adequately the rows and columns).  In this case, one is very close to the French idea of 
“sector”.  This point of view poses some additional problems.  For example, what 
happens if two sectors have the same main product?  They are merged, but this leaves 
aside an orphan product.  Or what happens if a sector has two main products, placed equal 
first?  There is no mean for deciding. 

At the same time, when the number of commodities is necessarily equal to the number of 
industries, one is very close to the Leontief square model (commodities being defined at a 
very fine level and hence being rather homogenous) but now the nondiagonal elements 
indicate only the secondary products, what remove much interest to the Supply matrix. 

• Or the number of commodities and industries is equal by chance, but without any 
correspondence between industries and commodities.  This cannot be anything else than a 
fortuitous coincidence.  The main interest of the Stone model is to be close to the idea of 
firms by considering that industries may have many products, and that a product may be 
produced by many industries.  However, in the real life, the number of firms is not equal 
to the number of products. 

o In some sectors, there will be much more products than firms; this will be the case in 
industry and service sectors (example: there is a virtually infinite variety of cars, 
models and variants in a same car manufacturer or the virtually infinite types of 
service contracts). 

o In other sectors, there will be much more firms than products (for example in 
agriculture with the very large number of farmers producing a very homogenous 
good, as wheat, corn, fruits, etc.). 

o And in some rare cases, there will not be necessarily the same number of firms and 
products, but these numbers will be of the same order of magnitude (for example, in 
the wine sector in France). 

Moreover, modern companies are multidivisional (Aoki’s M form), each division often 
producing a different main product.  Hence the modern company cannot belong to a 
particular industry but to many industries at the same time: it is nonsense to say what the 
main product of such a company is. 

A last argument: even if one admits that a firm must belongs to the industry of its main 
products, this leaves aside the very large number of secondary products.  It is impossible 
to say that all secondary products are main products of other industries and conversely; 
some secondary products may remain into the air.  What to do with them?  One concludes 
that the philosophy of the model must be fundamentally rectangular, with an unequal 
number of commodities and industries. 
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• Ten Raa and van der Ploeg (1989, p. 95-96) discuss what happens when there are more 
commodities than sectors and conversely. 

o The case of more commodities than sectors occurs “when input-output data are 
aggregated into national accounts”: there are more technical coefficients than 
equations; the coefficients are impossible to infer. 

o The case of more sectors than commodities occurs “when input-output data are in raw 
form”, that is, these data come from establishments: there are more equations than 
technical coefficients.  Ten Raa suggests to introduce an error term, 

( ) εVVUAU += ',C  and to estimate these equations econometrically.  This is 
interesting but we are far beyond the mathematics of input-output analysis: if we 
begin to use econometrics, one might as well introduce non linear coefficients, etc., 
that is, abandon input-output economics to the benefit of a computable general 
equilibrium model, of which purpose is largely different. 

4 Conclusion 

After recalling what the product-technology model is, we have demonstrated five 
things. 

i. The negatives are systematical in matrix 1−C , at least one per row and one per column 
in each of its nondiagonal blocs. 

ii.  In the product-technology model, all of the four inverse matrices are affected by the 
negative terms of 1−C  (while in the industry-based version only one of the four 
inverse matrices is affected by those of 1−D ).  When deriving the product-technology 
model, if negatives appear in the technological matrix ( )VUA ,C  or in the inverse 
matrices, they are embarrassing because they are impossible to interpret 
economically.   

iii.  Even if the technological matrix ( )VUA ,C  or the results in the inverse matrices are 
non-negative and hence acceptable, this model must be rejected because it needs to 
use a forbidden intermediary matrix, 1−C . 

iv. Unlike the industry-based model, the product-technology model cannot be interpreted 
in terms of Markovian matrices while it was yet established that it cannot be in terms 
of circuit.  

v. Requiring the matrices U and V to be square is a strong assumption that has very bad 
epistemological consequences which remove much of the interest of the model. 

Hence the negative terms have baneful consequences much more serious than those 
generally considered.  Thus, trying to eliminate them is not adequate: the whole model in its 
product technology version is false and must be rejected, even if it fulfils the four axioms 
proposed by Kop Jansen and ten Raa (Kop Jansen and ten Raa 1990; ten Raa 2005).  The 
product-technology hypothesis must be abandoned.  To the benefit of what?  The alternative 
model, the industry technology, even if this one is disappointing from the point of view the 
four axioms since this technology fulfils only the first axiom and even if it leads to use 
“production recipes” that are sometimes absurd?  Perhaps, unless another model can be 
developed. 

The same conclusions should be able to be transposed, mutatis mutandis, to the 
industry-by-industry input-output tables when the fixed industry sales structure assumption is 
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posed –Eurostat’s model C: “Each industry has its own specific sales structure, irrespective of 
its product mix” (Eurostat 2008, p. 297)–: the inverse of matrix V has also to be computed.18 

One last epistemological remark.  Even if the linear models are the simplest in 
Economics, this particular model poses some insuperable difficulties.  One may wonder if 
making it non-linear as in the models of computable general equilibrium changes anything. 

5 Annex.  The industries-based technology assumption in 
the product-by-product tables 

In the industries-technology model “…we assume that the total output [ jq ] of a 

commodity [j] is provided by industries [i] in fixed proportions”, as said by Miller & Blair 
(1985, p. 165).  The input structure of an industry does not depend of the goods that it 
produces; that is, the matrix D is fixed:19 

(24) 
j

ij
ij q

v
d =  or 1ˆ −= qVD  

This assumption corresponds to a fixed market share of all industries (realistic in the short 
run and to the by-products).  Combining (3) and (24) gives 

(25) qDx =  

what reported in (8) gives the model: 

(26) ( ) eqVUAqeqDBq +=⇔+= ,I  

by denoting 

(27) ( ) DBVUA =,I  

the matrix of direct consumption of commodities in the industry-based hypothesis; this matrix 
is fixed as B and D are.  Note that 

(28) ( ) 11
',

−−= sVVsVUVUA I  

by using (7), (24), (3) and (6).  The solution is: 

(29) ( ) eDBIq 1−−=  

where ( ) 1−− DBI  is called the commodity - commodity inverse matrix.  From (25) and (29) 
the following solution comes: 

(30) ( )[ ] eDBIDx 1−−=  

( ) 1−− DBID  is called the industry - commodity inverse matrix.  The final demand of 
commodities addressed to the industries writes as: 

(31) eDf =  

From (25) and (26) it comes ( ) eDBDIx 1−−=  and by using (31) the following solution: 

                                                 
18 The fixed product sales structure hypothesis –Eurostat’s model D: “Each product has its 
own specific sales structure, irrespective of the industry where it is produced” (Eurostat 2008, 
p. 297)– is not affected by negatives. 
19 As for Stone (1961, p. 107) who says: “… on the assumption that each industry produces a 
fixed proportion… of each product…”. 
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(32) ( ) fBDIx 1−−=  

where ( ) 1−− BDI  is the industry - industry inverse matrix.  Finally by writing (31) under the 

form fDe 1−=  –which obliges to calculate the inverse of D and implies that D is rectangular, 
unlike what is asserted in (United Nations 1999, p. 99)– and by deferring that in (29) it 
follows the solution: 

(33) ( )( ) fDDBIq 11 −−−=  

( ) 11 −−− DDBI  is the commodity - industry inverse matrix.20  Note that ten Raa’s theorem 7.1 
(ten Raa and van der Ploeg 1989, p. 89) demonstrates that V is invertible; hence, we deduce 
of it that D is also invertible (from (24), D is the product of V and of an invertible matrix). 

It must be recalled that the industries based hypothesis violates three of the four 
axioms cited above: financial balance, price invariance and scale invariance and respects only 
the axiom of material balance. 

In the industry-based technology, only the last case obliges to calculate the inverse of 
D.  One has: 
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for the last case.  It is thus seen that the inversion of D is here only one case among four, 
which conditions the three others by no means.  There is thus no obligation for U and V to be 

                                                 
20 Remark that Gilchrist et al. (2000) derive the model by considering that the whole model is 

a unique matrix (as it is done in Miller & Blair (1985, p. 161)): 
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where Cs  and Is  are sum vectors of commodity and industry order respectively.  As from (7) 

and (24), xBU ˆ=  and qDV ˆ=  respectively, this system turns out to be: 
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Carrying the multiplication in the right hand side yields ( ) qeDBI =− −1
C , which is (29) and  

( ) xeDBDI =− −1
I , which is (32); the two other equations, (30) and (31), are not produced 

by this way. 
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square, except for the case commodities-industries.  For the industry-based model, the chain 
of mathematical derivations is indicated by Figure 2: only Commodities-by-Industries is 
polluted by the negative terms in1−D . 

 

Figure 2.  Industry-based model: linking of mathematical derivations 
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