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Abstract 

With increasing interest in the modeling of global trade, international supply chains, and 
multi-scale environmental impacts of global production chains, the method of 
multiregional input-output (MRIO) modeling is enjoying substantial recent research 
interest. Models ranging from simple two-region models to expansive world models 
with more than 100 countries have been constructed. However, relatively little attention 
has been given to the uncertainties inherent in the method and data typically used for 
constructing these models. This paper examines three of the greatest uncertainties in the 
method through a series of models built using input-output data from the United States 
and several of its largest trading partners (Canada, China, Mexico, Japan, Korea, 
Germany, and the UK). The three major uncertainties, relating to aggregation and 
concordance to a common sectoral scheme, treatment of the rest-of-world (ROW) 
region, and monetary exchange rate issues for factor embodiments, are all shown to be 
major problems for MRIO models. In fact, while MRIO proponents often claim the 
method limits uncertainty compared to single-region models, it is likely that these 
inherent uncertainties often end up raising total uncertainty beyond the levels of a 
detailed (ie, >200 sector) single-region model, though the relative lack of understanding 
of underlying uncertainty in standard IO models prevents a strong comparison. 
Nonetheless, MRIO models offer border-specific emissions inventories and supply 
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chain delineations, which are essential to many analyses, and thus, practitioners must 
understand, quantify, and to the extent possible minimize MRIO uncertainty in practice. 
Practical suggestions are offered for quantifying aggregation, ROW, and exchange rate 
uncertainties. 

Keywords: multiregional input-output, uncertainty, aggregation, exchange rate. 
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1. Introduction 

Recent years have seen an explosion of interest in the field of input-output analysis for 

environmental purposes, as data have become more available and reliable and 

researchers worldwide have looked for methods for life cycle assessment, corporate 

environmental management, and carbon footprinting(Tukker & Jansen, 2006). Within 

this growth has been a particular interest in analyzing global trade patterns and the 

effects of globalization on life cycle impacts of goods and services. Globalization has 

connected production and consumption systems around the world in ways completely 

new to human history; it is now commonplace for complex consumer products to 

contain parts or materials from several countries and dozens of locales. A wealth of 

recent literature from both the economics and LCA fields has sought to understand the 

energy and environmental implications of this growth in trade(Ahmed & Wyckoff, 

2003; Lenzen et al., 2004; Muradian et al., 2002; Nijdam et al., 2005; Peters & 

Hertwich, 2006b; Weber & Matthews, 2007a,b).  

These analyses have often used a combination of traditional single-region 

input-output analysis (IOA), coupled single region models, and full multiregional input-

output (MRIO) models. The use of MRIO, previously a method used mostly in regional 

input-output studies, has become popular for global analysis only recently (see 

(Wiedmann et al., 2007) for a detailed review of recent international MRIO models). 

Several new models being discussed at this conference, including the UK-MRIO 

project, the Global Resouce Accounting Model (GRAM), MRIO models built from the 

GTAP database (Peters, 2007), and the EXIOPOL project. Each has been developed in 

just the past few years.  Clearly a large need exists in the community or the type of 

results MRIO models can produce. 

The main draw of environmental MRIO models has been, and continues to be, 

their ability to distinguish between different production patterns, energy usages, and 

emissions factors in different locations of global production chains. Many previous 

MRIO studies have assumed implicitly that overall model uncertainty will be reduced 

by including region-specific production and emissions patterns; it is a widely accepted 

premise in the community that the “imports assumption” (taking the name used in 
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(Lenzen, 2001) is one of the major weaknesses of IOA(Lenzen et al., 2004; Tukker & 

Jansen, 2006). Yet regrettably, relatively little literature has examined the tradeoffs 

inherent in the choice of single-region vs. multiregional models, with a few notable 

exceptions(Lenzen et al., 2004; Peters, 2007; Peters & Hertwich, 2008b).  

The uncertainties in environmentally-extended IOA have been described in 

some detail by previous authors, and this paper does not attempt to duplicate this 

work(Hawkins et al., 2007; Lenzen, 2001). Nor do I wish to duplicate previous 

discussions of uncertainty in MRIO(Lenzen et al., 2004; Peters & Hertwich, 2008b). 

Rather I will attempt to illustrate, quantitatively where possible, a few additional error 

types associated with environmental MRIO analysis compared to traditional single-

region IOA. For several reasons, such as limiting analysis to developed countries or 

starting with prebalanced and aggregated input-output tables (IOTs), previous 

assessments of MRIO uncertainty may have overlooked potentially large sources of 

error. Error types and magnitudes will of course by situation dependent, conditional on 

the underlying data being used to construct the MRIO model. In some cases, though, I 

will argue that single region models, combined with corrections for production and 

emissions differences in different countries, could be more effective that full MRIO 

models. 

I hope to show this through an example of constructing a MRIO model based 

on the United States and several of its largest trading partners, previously discussed 

elsewhere(Weber & Matthews, 2007a,b). In general the construction of the model 

follows the methods used to create the GTAP database (Dimaranan, 2006), and 

constructive criticism about the use of this method will be inserted where appropriate. I 

start with a brief recap of the structure of MRIO models, followed by an examination of 

the data sources used. The next section details several of the uncertainties in combining 

the individual models to a MRIO model, followed by a discussion of different potential 

uses for single vs. multiregional models. I finish by discussing some simpler 

alternatives to MRIO for certain analysis types and a discussion of the implications for 

the future of MRIO analysis.  
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2. Basic Methods of Multiregional Input-Output Modeling 

2.1 Full Multiregional Model 

Several authors have detailed the basics of MRIO models(Dimaranan, 2006; Lenzen et 

al., 2004; Miller & Blair, 1985; Peters, 2007; Peters & Hertwich, 2008b; Weber & 

Matthews, 2007b), and thus only a brief review is presented here. As originally 

formalized by Leontief in his groundbreaking work in the 1950’s (Leontief), the total 

output of an economy, x, can be expressed as the sum of intermediate consumption, Ax, 

and final consumption, y:  

 x Ax y= +  (1) 

where A is the economy’s direct requirements matrix.  When solved for total output, 

this equation yields: 

 1( )x I A y−= −  (2) 

The equation can be generalized for an open economy, where only output related to 

country 1 is considered, to (UN DESA, 1999):  

 11 1 11 1 1
1 1 1

( )j j j
j j j

x A A x y y y
≠ ≠ ≠

= + + + −∑ ∑ ∑  (3) 

where A11 is the domestic portion of the direct requirements matrix (domestic 

interindustry demand on domestic goods), Am = 1
1

j
j

A
≠
∑ is the import matrix (domestic 

use of imports to make domestic output), and y11, ym = 1
1

j
j

y
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∑ , and yex = 1

1
j

j
y

≠
∑ represent 

domestic final demand on domestic production, imports from all countries to final 

demand in country 1, and exports from country 1 to final demand in all other countries, 

respectively(Peters, 2007).   

This equation can be expressed in matrix form for the m-region multiregional case, 

where each of m countries imports from every other country, to both interindustry 

demand as well as final demand:  



6 Weber, C.L. 

IIOMME08  Seville - July, 9-11 2008 

    

11 111 111 12 1

21 22 221 22 2 2

1 2 1

jj
m

jm j

m mm m mm m mjj m

y yx xA A A
y yx xA A A

x xA A A y y

≠

≠

≠

⎛ ⎞+⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟+⎜ ⎟⎜ ⎟ ⎜ ⎟= + ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ +⎝ ⎠

∑
∑

∑

K

L

M MM M O M M

L

    (4) 

which shows the relation between total production in each country, xj, and final demand 

in each country, both from domestic production (ymm) and from imports ( mjj m
y

≠∑ ).   

Each country yj1 represents imports from country j to final demand in country 1 and y1j 

represents country 1’s exports to final demand in all other countries(Peters, 2007).   

Equation (4) can be solved for total output, x, and further for total emissions or 

factor embodiment (such as energy) with the use of a region and sector-specific factor 

embodiment vector, F = f*diag(x), where f represents the total emissions or factor use 

by each sector in each region:  

 f = F(I − A)−1 y  (5) 

where f, F, A, and y each represent compound vectors or matrices with dimension mn x 

1 or mn x mn, where n is the number of sectors in each region.  

2.2 Common Model Simplifications 

2.2.1 Assumptions for studies of embodied emissions in trade 

MRIO models are used for different purposes, and common simplifications are made to 

simplify model construction when appropriate(Nijdam et al., 2005; Peters & Hertwich, 

2006b; Weber & Matthews, 2007b). As Peters and Hertwich have explained, for the 

now fairly common studies of embodied emissions in trade (EET), two accounting 

frameworks, each of which produces the same total world emissions, can be used. 

Following their framework(Peters, 2007), we label these the ‘embodied emissions in 

trade’ (EET) framework and the ‘embodied emissions in consumption’ (EEC) 

framework. The difference between the two is how each allocates what the authors term 

“through-trade”, or what Lenzen et al. termed “multi-directional trade”(Lenzen et al., 

2004).  
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The EEC framework is essentially the full model shown above in equation 4. Its 

advantage is that it properly delineates the global supply chain of each final demand 

through infinite levels of trade between all modeled economies. For example, if the 

Chinese economy requires a semiconductor device from the U.S. to create a computer it 

will then export to the U.S., the emissions associated with making the semiconductor 

made in the U.S. will be allocated to the U.S. and modeled with U.S. technology. In this 

way, the EEC framework is the full “consumption perspective”(Munksgaard & 

Pedersen, 2001), and the framework is fully correct in that it makes no approximations 

of trade structure. However, the framework has two disadvantages. The first is that it is 

usually (see below) necessary to aggregate the IO tables to a common sectoral 

classifcation in order to avoid rectangular off-diagonal elements. With several different 

countries, the necessary level of aggregation may be rather high since each country has 

a different set of original sectors in their table. The second disadvantage is that bilateral 

trade data cannot be used directly since an assumed split must be made between imports 

used by interindustry and imports which go directly to final demand(Peters, 2007). 

While the import penetration assumption can be used to accomplish this, when 

performed at an aggregated level this assumption can yield significant errors.  

The second accounting framework that can be used, EET, solves both these problems 

with the EEC framework, though has an alternative disadvantage of misallocating 

through-trade from a consumption perspective. For EET all embodied emissions in 

exports (EEE) are allocated to the exporting country, regardless of whether they may 

return to the exporting country in its imports, as in the semiconductor-computer 

example above. Accounting is thus similar to the economic concept of border tax 

adjustments, where excise taxes on goods are added at the border to imports and rebated 

at the border for exports(Ismer & Neuhoff, 2004). The model is simplified to: 
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Where yij now represents total bilateral trade from country i to country j regardless of 

how the imports are used (ie, in final demand or in interindustry demand). This model 

structure allows for each country’s IO table to be used in its native sectoral structure 

since no off-diagonal matrices are used, clearly advantageous for reducing aggregation 

error(Weber & Matthews, 2007a; Peters & Hertwich, 2008a). Further, the final demands 

in the model are fully consistent with bilateral trade data. 

2.2.2 Unidirectional Trade Assumption 

While both the EET and EEC models have advantages, some analysts have found it 

useful to strike a middle ground of unidirectional trade to infinite order into a single 

country of interest, often called “unidirectional trade models”(Peters & Hertwich, 

2008b). The advantage of such models is to allow modelling of arbitrary final demands, 

ie by households, while still limiting data and model balancing requirements (more on 

this below). Basically, these models assume that direct trade (aka first-level trade) 

dominates overall trade so that off-diagonal elements of the compound A matrix are 

assumed zero. The effect is to redirect the remainder the supply chain to the current 

trading partner if 2 or more borders are crossed in a good’s production. Several authors 

have cited Lenzen et al.’s influential study for justification for this assumption; they 

found that the error in cutting off such feedback loops to be around 1-2%(Lenzen et al., 

2004). The unidirectional model is shown in equation 7. 
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3. Example MRIO Model Construction 

3.1 Single Region Input-Output and Environmental Data 

Armed with this background, I begin with a discussion of the data sources that will be 

used in the illustrative examples below. Detailed sources for all data discussed herein 

are available in previous publications(Weber & Matthews, 2007a,b). The desired model 

is a full multidirectional trade MRIO model for the year 2002, amended with CO2 

emissions data for each country, derived from national energy and environmental 
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statistics. In many countries, CO2 data was not available at the same level of detail as in 

the input-output table, and for these countries emissions were allocated by output 

(similar to (Lenzen et al., 2004; Peters & Hertwich, 2006b).  

Input-output data details are shown in Table 1. It is clear that despite best 

intentions, IOTs are available for several different years and in varying levels of detail. 

A striking difference lies between the most detailed IOT of the U.S., at 491 sectors, and 

the least detailed of the E.U. members at 59 sectors (the UK table was taken from the 

OECD input-output database (Yamano & Ahmad, 2007) and has only 48 sectors). 

Similarly, different classification schemes are used for all of the tables (discussed 

below), and only for a limited number of the countries are detailed make and use tables 

or import matrices ( Aim = A jij=1

n∑  ) available. Finally, tables are available at different 

pricing schemes, with the U.S. and its two largest trading partners (China and Canada, 

as well as Japan) available at producer prices and the remainder of countries available at 

basic prices. 

In addition to the input-output data, to create a balanced world model, one 

needs data on the overall size of each of the economies to be modelled, as well as the 

world economy as a whole for balancing the rest-of-world (ROW) sector. Here the data 

is taken from the International Monetary Fund’s World Economic Outlook database for 

2005(IMF, 2006), and can be seen in Table 2. A few things can be noted about this data; 

first, despite having several of the world’s largest economies in 2002 included, the 

ROW sector is still very large, roughly 60% of the world economy. Second, large 

differences exist between estimates of the size of several economies using market 

exchange rates (MER) and purchasing power parity (PPP) rates to convert the country’s 

currency into the international dollar, which is the standard unit for measuring 

trade(IMF, 2006; UN DESA, 1999, ; Yamano & Ahmad, 2007). Implications are 

discussed in the following section. 
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4. Uncertainties in Single Region and Multiregional Models 

4.1 Single Region Models: Standard Uncertainties of Environmental IOA 

While the uncertainties in standard single-region environmental input-output models 

have perhaps not received the attention they warrant due to difficulties in estimating 

several of them, there has been some past work in the field(Bullard & Sebald, 1988; 

Hawkins et al., 2007; Hendrickson et al., 2006; Jackson & West, 1989; Lenzen, 2001). 

Much of the previous work in the field might be better labelled sensitivity analysis 

rather than uncertainty analysis because oftentimes underlying error and correlation 

structures have been assumed with no prior information on the uncertainty in underlying 

input-output data(Morgan & Henrion, 1990). One particular study, Lenzen’s work 

comparing conventional life cycle assessment to environmental input-output analysis, 

has been influential(Lenzen, 2001), and the base uncertainties analyzed therein are 

shown in Table 3, reprinted with permission from (Hawkins et al., 2007).  

One of the reasons uncertainty analysis has likely been somewhat lacking in 

the environmental IOA field is the relative lack of information on the size or structure of 

many of the types of uncertainty listen in Table 3. Because input-output models are 

created by central statistical agencies within governments, many of the calculations 

which go into transforming underlying survey data into balanced IOTs are not 

public(Peters & Hertwich, 2008b). Thus, it becomes difficult to analyze such 

uncertainties as source data uncertainty (for the IOT), transaction estimations, 

proportionality assumptions (for all sectors which do not produce a single homogenous 

output), and harmonization uncertainties. Some of the other uncertainties in Table 3 can 

be approximated using different methods, such aggregation uncertainty using successive 

aggregations (Lenzen, 2001; Williams, 2006), though this method is limited in that one 

can only disaggregate to the point of the maximum number of sectors for the IOT.  

Due to this lack of information on error structure, oftentimes errors are simply 

assumed and monte carlo (MC) simulations are used to estimate resulting posterior 

distributions on energy or emissions multipliers. One of the common results from 

literature has been that errors in multipliers tend to be significantly smaller than errors 

in input data due to stochastic cancelling(Bullard & Sebald, 1988; Hawkins et al., 2007; 

Lenzen et al., 2004). For example, for an aggregate sector with some high-impact 
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commodities and some low-impact commodities, different supply chain purchases of 

both the high- and low-impact commodities will cancel and lead to the average sectoral 

direct multiplier.  

In contrast to these data uncertainties which will tend to cancel due to IO 

model structure, some of the inherent uncertainties in environmental IOA will bias total 

multipliers in a specific direction. Aggregation of the input final demand sector (the 

commodity which is being modelled) is probably a more severe problem than 

aggregation of other sectors in its supply chain, for instance, since the direct multiplier 

for the sector itself will be biased either high or low. Similarly, temporal lag of IOTs 

will usually produce total environmental multipliers that are too high, since in most 

countries energy efficiency tends to improve with time (Williams, 2006).  

The problem of imports, commonly called the “imports assumption”(Lenzen, 

2001), see Table 3) or the “import penetration assumption” (Weber & Matthews, 

2007b), is another uncertainty which is unlikely to cancel out given that in general a 

country’s trading partners will produce their exports with different production patterns 

and more importantly, different energy and environmental intensities. The error will 

only stochastically cancel if trading parters with higher environmental intensities are 

cancelled by other trading partners (of the same commodity) with lower environmental 

intensities. As previously stated, the underlying interest in MRIO models is to attempt 

to reduce this uncertainty by explicitly modelling the production location of a country’s 

imports. Other problems with MRIO models, such as the need to aggregate IOTs to 

similar sectoral structures, may be of the cancelling form (to a point), and thus the move 

from a single-region to a MRIO model would theoretically change a non-canceling error 

to a cancelling one. However, as we shall see, other additional uncertainties in MRIO 

complicate this potential uncertainty reduction. 

4.2 Additional Uncertainties Associated with Multiregional models 

 Several uncertainties associated with environmental MRIO are either 

nonexistent or latent in similar single region models. Peters and Hertwich (Peters & 

Hertwich, 2008b) and Lenzen (Lenzen et al., 2004) have reviewed in broad terms the 

many empirical issues with MRIO model construction, including grouping of like 
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regions to reduce data collection, estimation of interindustry trade flows from bilateral 

trade data, inflation/deflation of data from different years, different sectoral schemes, 

different valuation of IOTs, aggregation of IOTs, and exchange rates. Each of these are 

potentially important for overall model uncertainty. I will not repeat these valuable 

discussions, but instead will look in detail at three of these issues as the sample data 

from Tables 1 and 2 are combined into a full multidirectional MRIO model. 

4.2.1 Rest-of-World (ROW) Approximation/Region Grouping 

To approximate the world economy in any given year not only must the economies of 

interest be included, but also a grouping of all other countries. These other countries are 

commonly referred to as the rest-of-world (ROW). A full multidirectional model 

including the ROW must include both trade flows coming from the ROW into the 

economies of interest as well as exports from the modelled countries to the ROW. As 

can be seen from table 2, despite including several large U.S. trading partners, the ROW 

region block still accounts for $32 x 1012 in 2002, or approximately 60% of the world 

economy measured at market exchange rates.  

There are two main options for the ROW countries, including them all in a 

single ROW block of the model(Lenzen et al., 2004; Weber & Matthews, 2007) or 

grouping them together with the modelled countries based on some measure of 

similarity(Peters & Hertwich, 2006b; Weber & Matthews, 2007b). Each has advantages 

and disadvantages—a single ROW block is easier to deal with empirically with trade 

share approximations (Lenzen et al., 2004), but a grouping may be more appropriate 

since it allows different ROW countries to be treated differently according to some 

metric. Of course, there is no standard metric for deciding which modelled country a 

certain ROW country is most similar to; past suggestions for studies of CO2 emissions 

in MRIO have included GDP/person, CO2 emissions/GDP, CO2 emissions/total primary 

energy, etc. (Nijdam et al., 2005; Peters & Hertwich, 2006b; Weber & Matthews, 

2007b). However, such groupings would be very difficult to deal with for 

multidirectional models; the trade share approximation of off-diagonal elements make 

this method more applicable to unidirectional models(Peters & Hertwich, 2008b). 
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Thus, I will assume a block ROW will be used, and two choices immediately 

come up: the relative economic size of the block and its structure. Past studies have 

chosen relatively large and broad economies to represent the ROW (the U.S. is a 

common choice), and the choice is usually governed simply by convenience (Ahmed & 

Wyckoff, 2003; Lenzen et al., 2004; Weber & Matthews, 2007a). The choice has some 

fairly major implications, though, given the relative size of the ROW in models with a 

small portion of world GDP represented. For example, assume the U.S. is chosen as a 

convenient ROW country. To scale the model correctly, the U.S.’s economy must be 

increased to the approximate size of the ROW, or by a factor of around 3 (From $10.5 

trillion to $32.5 trillion in 2002). This scaling must also be done in some form to 

convert models of different years to model year 2002. One method to accomplish this is 

scaling GDP to match the GDP from a central database as in Table 2. This assumes the 

structure of GDP remains constant between the year of the IOT and the year of the 

MRIO model (Dimaranan, 2006; Peters, 2007). 

To balance the model correctly, the blocks A1m to Amm of equation 4 must 

represent trade flows, properly valued in basic prices from either cif or fob(Lenzen et 

al., 2004), from the modelled countries to the ROW block. Since the ROW block is 

simply an approximation based on the U.S. IOT, splitting the modelled countries’ 

exports to the ROW into exports for industry and exports for final demand is entirely 

arbitrary. It must be assumed, and basing the split on the U.S. is problematic given that 

the U.S. may constitute large portions of the world sectoral output for some 

commodities (ie, semiconductors) but not others (ie coffee). How this split is done 

matters considerably for the ROW production function, and is probably why some 

authors in the past have avoided it altogether by using only unidirectional trade flows 

from the ROW (Lenzen et al., 2004). A related problem is that for the model to balance 

the consumption pattern (structure of GDP) for the ROW sector must be included and in 

general this structure is unknowable except for a few homogenous sectors. Perhaps the 

best method is to assume a scaled Am = Aim∑ or more likely 

Zm = Zim = Am * diag(xm )∑ , and subtract off the approximated imports to industry: 
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Amm = Am − Aim
i≠m
∑ , followed by a balancing using the RAS method(Lenzen et al., 

2004).  

Perhaps even more important than the ROW economic balancing is the assumed 

environmental intensities of the ROW. Lenzen et al. compare Australian-assumed ROW 

intensities to average world intensities from disparate sources; however, these average 

world intensities can only be found for a few key industries. In truth, world averages 

might not even be appropriate, since the remaining ROW trade going into any given 

country might be dominated by one or two nations which are not well-represented by 

the world average. As shown below, environmental intensities can vary considerably 

between countries, and the range for all world countries is rather large. Weber and 

Matthews (Weber & Matthews, 2007a) perform a sensitivity analysis by assuming the 

ROW is represented by the most CO2-intensive and least CO2-intensive countries in the 

data below and find considerable variation due to this uncertainty, on the order of 20% 

of total embodied emissions of CO2. 

4.2.2 Aggregation issues 

Depending on the purpose of the study, there may or may not be a need to aggregate 

IOTs to a common sectoral format. In general when the EEC or multidirectional trade 

model types are used it will be necessary, though for studies of embodied emissions in 

trade the most detailed sectoral structure should be used to avoid aggregation error, 

which can be severe for studies using a very aggregated classifcation system(Ahmed & 

Wyckoff, 2003; Lenzen et al., 2004; Weber & Matthews, 2007b).  

 The reason for aggregation should be clear—in general IOTs from different 

countries use different systems to define economic sectors and have very different levels 

of detail (see Table 1). Most countries, including the European Union (directly) and 

Japan, Korea, China, and Mexico (somewhat more loosely), use some system based on 

the International Standard Industrial Classification (ISIC) system, now in its 3rd revision 

with a 4th revision in draft form. However, different systems exist, and North America 

(Canada, the U.S., and Mexico) have now converted to the North American Industrial 

Classification System (NAICS), and other countries define their sectoral schemes purely 

based on shares of different commodity groups in their domestic economy(Lenzen et 
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al., 2004). For these reason, most large international databases, such as GTAP 

(Dimaranan, 2006) and the OECD input-output database (Yamano & Ahmad, 2007) use 

a single structure that all IOTs are reclassified to in the preparation of the database or 

model. The number of sectors in any MRIO model will thus be dependent on both how 

well the more detailed sectors from different IOTs match and the limits of the least 

detailed table (here the UK at 48 sectors).  

It is constructive to ask how important aggregation error is for environmental 

IOA, and in which sectors it is likely to be important. Lenzen and colleagues 

specifically analyzed aggregation to a 10 sector structure and found significant errors, 

particularly due to aggregating electricity together with gas and water 

production(Lenzen et al., 2004). However, 10 items is more aggregated than most of the 

MRIO models in use or development today, many of which are based on either GTAP 

or the OECD input-output database. Using these sectoral schemes, Tables 4 and 5 show 

summary statistics of aggregating total CO2 multipliers (in mt CO2/$M 2002) from the 

recently completed 426 sector 2002 version of the EIO-LCA model, (Green Design 

Institute, 2007) into these common formats. Of course, as mentioned above, this only 

approximates aggregation error to the extent that the sector groupings in the 426 sector 

Benchmark U.S. IOTs are better distinguished than the GTAP or OECD sectors. For 

some sectors, such as the well-defined agricultural sectors in GTAP or some service 

sectors in OECD, the U.S. detailed IOTs offer no more detail than the aggregate 

schemes. Nonetheless, for some sectors comparing between the U.S. CO2 multipliers 

and the aggregate schemes leads insight into some potential problems with their use.  

For example, both schemes have a number of aggregate sectors with large 

coefficients of variation (the ratio of standard deviation to mean) of 1 or above. Of 

particular importance are pulp, paper, and publishing; chemicals; other nonmetal 

minerals; and post and telecommunications. They are problematic for different reasons. 

For pulp, paper, and publishing, the problem comes in combining 6 low-impact 

publishers with 7 medium impact paper products manufacturers and 3 high-impact pulp 

and paper mills sectors. Aggregate chemicals sectors have a similar large range of 

impacts, whereas the large potential aggregation errors in nonmetal minerals and 

post/telecommunications are due to one relatively large impact sector amidst many low 
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or medium impact sectors (cement manufacture for nonmetal minerals and couriers and 

messengers for post/telecommunications).  

It is at least conceivable to maintain the sectoral structure of each of the 

countries’ IOTs without aggregation by using rectangular off-diagonal matrices (Aij 

where i ≠ j  in equation 4) and this has been demonstrated by past authors (Lenzen et 

al., 2004; Weber & Matthews, 2007b). However, this method has several problems, not 

least that the difficulty of balancing rectangular hybrid structures increases quickly with 

an increasing number of countries in the model. The other issues are more complex: 

consider that aggregation error occurs for two reasons in MRIO models, aggregation of 

trade flows between different regions (off-diagonal Aij’s) and aggregation of flows 

within a domestic economy (diagonal Aii’s). I will call the latter interior aggregation and 

the former exterior aggregation for illustrative purposes. Rectangular off-diagonal 

matrices in theory solve interior aggregation error, since no aggregation is necessary in 

domestic matrices, and minimize exterior aggregation error. This is only true, though, if 

trade flows are allocated to the correct sector in each economy, and this is not possible 

with rectangular trade matrices.  

For instance, take a binational model submatrix between the U.S. (country i, 

491 sectors) and the U.K. (country j, 48 sectors). The rectangular trade matrices would 

thus have dimensions Aij = 491x48 and Aji = 48x491. Consider the submatrix of the Aij 

matrix where 5 sectors from the U.S. table flow into 1 sector of the UK table. The trade 

and trade share data from the UK are unlikely to be at a sectoral detail greater than the 

IOT, so data from the UK will yield a 1x48 vector of UK use of US exports of a 

commodity in the UK sectoral system. The US data, after correcting for valuation and 

splitting exports into exports for industry and final demand, will yield a 5x1 vector of 

total exports from the U.S. to UK industries. Somehow these two vectors (5x1 and 

1x48) must be converted into 5x48 submatrix representing every industry in the UK’s 

use of each of the 5 exporting sectors from the U.S, although there is no remaining data 

to constrain this underconstrained problem.  

Similarly, using trade shares and the U.S. import matrix (Lenzen et al., 2004; 

Peters & Hertwich, 2008b), Aji can be approximated at the same sectoral level as the US 
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IOTs (491x491) and then must be aggregated to the appropriate rectangular size 

(48x491) using a concordance between U.S. and UK sectors. While this Aji submatrix 

will generally be more accurate itself than the Aij submatrix, since it was derived at a 

more detailed level then aggregated, it is still problematic in that detail is lost in moving 

from the US imports table, where 491 distinct imported commodities are modelled, to 

the UK-US flow matrix where only 48 distinct commodities are modelled. For instance, 

whereas the US imports table may allow imports of semiconductors or hard drives to 

flow to computer manufacturers, the UK-US flow matrix will only allow imports of the 

aggregate “office and computer machinery” sector, which includes intermediate and 

final products in both categories and thus has a total CO2 multiplier indicative of this 

average.  

4.2.3 Currency Conversion Issues  

Conversion of currencies has long been recognized as problematic in MRIO 

construction(Ahmed & Wyckoff, 2003; Peters, 2007; Weber & Matthews, 2007a). 

Since each country’s IOT is derived in local currency and trade data is generally in 

terms of international dollars, it becomes necessary to convert all currencies to a 

common unit to produce a full multidirectional MRIO model with a ROW block. Some 

past authors have suggested the use of hybrid currency units to get around this issue 

(Lenzen et al., 2004) but this is only possible because the ROW block is modelled 

unidirectionally. In any case, several reasons make currency conversion a worry for 

MRIO modellers, even if hybrid units are used. First, it is impossible to compare 

multipliers between countries without converting multipliers to a common currency, e.g 

kg CO2/$(Ahmed & Wyckoff, 2003). Second, if hybrid units are used modellers must 

use final demand inputs in hybrid currencies as well, which may be difficult for users 

unaccustomed to foreign currency units. Third, even with hybrid units there is an 

implicit conversion of trade data, usually by the local government’s customs officials, 

from international valuation to local valuation, and thus it behooves MRIO users to 

understand this conversion whether or not it is present in their model. 

 The basic issue surrounding currency conversion has been a discussion of 

whether it is more appropriate to use market exchange rates (MERs), the published 

exchange rate between a country’s currency and $USD, or purchasing power parity 
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rates (PPPs), a measure of the price level of consumption within a country, to convert 

gross output between countries(Ahmed & Wyckoff, 2003; Weber & Matthews, 2007a). 

The issue parallels a discussion in the climate change literature over which of these 

conversion rates is more appropriate to compare and project future incomes(IPCC, 

2007; Nordhaus, 2007). The problem is that due to development levels, price levels in 

developing countries tend to be much different than in developed ones, leading to a 

somewhat large difference between the MER and PPP. Table 2 below shows GDPs of 

the countries discussed here converted to 2002 $USD by both rates (data taken from the 

Penn World Table 6.1 (Heston et al., 2006), and the ratios of the rates (MER/PPP), 

which range from 0.9 in Japan to 4.7 in China. Most of the developed countries in the 

model have ratios around 1, implying similar price levels as the U.S. However, the 

developing countries have larger ratios, from 1.4 in Mexico to 1.6 in Korea and a 

whopping 4.7 in China due to a pegged and purposefully undervalued currency. 

The upshot of this difference is that depending on whether the MER or PPP 

rate is used to convert Yuan to $USD, the modeller gets total multipliers in CO2/$ 

around 400% different. Of course, this is for the economy-wide PPP rate, which 

includes all goods and services. Newer data from the recently performed International 

Comparison Programme of the World Bank (World Bank, 2008) show that sector price 

levels in 2005 varied from a low of 0.69 for health expenditures and a high of 8.79 for 

machinery and equipment expenditures. If available, sector-specific price level data will 

certainly act to reduce the large uncertainty in developed-developing country 

interactions in MRIO models.  

The question of which of the currency conversion rates is “correct” almost 

certainly depends on the two countries and the specific commodity group in question. In 

general, the desired conversion rate should be the ratio of gross output prices, since the 

desired effect is to convert the physical unit price of gross output in the foreign country 

(e.g. yuan/kg) to the physical unit price of gross output in the country of reference 

($/kg). Consider modelling the production of 1 MWh of electricity in the U.S. and in 

China. The proper price to input into either model is the gross output producer’s price of 

electricity, or xi/gi, where x is gross output of sector i is g is physical unit output of 

sector i. This price can be compared between the countries of interest for a number of 
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sectors where output is fairly homogenous, and this is done in Figure 1 below for coal, 

electricity, iron and steel, and cement.  

Figure 1 shows the ratio of the Chinese gross output price in 2002 to the U.S. 

gross output price in the same physical unit, which cancels to an implied conversion rate 

between the 2002 RMB and the 2002 $USD (both in producer’s prices). The price ratio 

of electricity is rather close to the market exchange rate of 8.1 RMB/$US while the ratio 

for coal is considerably higher at almost 15 RMB/$US and the ratio for steel and cement 

are between the MER and PPP at around 5.6 for iron and steel and 4.2 for cement. 

Interestingly, there seems to be relatively little intuition in which commodities tend 

closer to the MER or PPP rates, as intuition might lead one to believe that products 

which are very open to trade might be valued at closer to the internationally-traded 

MER whereas products produced mostly for domestic consumption should trend more 

toward the PPP. Counterintuitively, these four examples show that it is the less traded 

products (electricity and coal) which are close to or above the MER and the more open 

product, iron and steel, is in between the MER and PPP.  

Perhaps the best approach to dealing with the PPP/MER issue, other than 

simplistic sensitivity analysis (Weber & Matthews, 2007b), would be to use hybrid 

currencies within the compound A matrix (Lenzen et al., 2004), along with sector-

specific exchange rates to convert the environmental direct multipliers into a common 

currency for comparison and for converting final demand inputs. As expressed above, 

this would only be possible if a unidirectional ROW sector is assumed, as balancing the 

model to the world economy requires a common currency, at least in assumption, to 

define ROW output. The sector-specific rates should be defined by physical unit 

comparisons where possible (as above) and price level comparisons such as PPP 

components where available.  

5. Comparing Usefulness of Detailed Single Region Models to MRIO 

Given all these potential drawbacks of MRIO, what can be done for practitioners who 

would like to model global supply chains? The answer will of course depend on the 

underlying data, the goals of the study, and the relative importance of different 

uncertainty types to the study’s goals.  
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One crucial decision point will be the quality and detail of the single region 

IOT and environmental data available. For the current exploratory example, a single 

region global model could be approximated at the 491 sector level using the U.S. EIO-

LCA model and the imports similarity assumption. Tables 4 and 5 show that 

aggregation would be an issue in developing a MRIO model at the level of detail of the 

least detailed trading partner. Of course, the model’s detail could be improved 

considerably by only using a few of the more detailed IOTs in the MRIO model, such as 

only using the 1997 producer priced models of the U.S, Canada, and China. Around 100 

common sectors could be defined between the U.S. and these two largest trading 

partners, and this would help minimize the aggregation error in the analysis. Of course, 

the MER/PPP problem would still be present with the Chinese currency and the ROW 

would be rather large with only 3 regions. Further, these issues are in addition to the 

other, harder to quantify additional uncertainties of MRIO, such as classification 

uncertainties, valuation of trade data and IOTs, etc(Peters & Hertwich, 2007).  

This scenario stands in contrast to a potential MRIO model for a smaller nation 

which has most of its trade associated with bordering countries, typical of some EU 

countries. If the classification system of the IOT in the country of interest is already 

fairly aggregated, such as in the E.U. with its 59 sector models, not much information is 

lost in aggregation and most trading partner data is already available in a similar 

classification and valuation system. Although ROW uncertainty will still be high, there 

would certainly be a gain in information by moving from a single region 59 sector 

model with the import similarity assumption to a simplified MRIO model with several 

linked 59 sector IOTs.  

The use of preconstructed databases such as OECD or GTAP surely saves time 

and effort, though in both these databases aggregation is more extreme than in most 

countries’ base IOTs, and this can cause serious errors as seen above. Additionally, past 

work has suggested that some of the alterations done in the GTAP database to prepare 

the model for its computable equilibrium simulation capabilities introduce further 

uncertainties (Peters, 2007). Both the aggregation and CGE uncertainties will hopefully 

be minimized in the production of the EXIOPOL model, which holds great promise for  

the future of MRIO modeling. 
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Where detailed IOTs and environmental data are available, such as here, some 

alternatives may be available for global supply chain modelling. One option is to keep 

the detailed economic structure of the IOT while splitting domestic and imported 

production through a simplified 2 region MRIO model of the country of interest and the 

ROW (see (Weber & Matthews, 2007a) for an example). For example, for the U.S. a 

982 sector model could be derived simply by splitting the U.S. IOT into domestic 

production and a ROW assumed similar to the U.S. This method adds information to 

single region IOA by allowing the detailed breakdown of impacts happening within the 

country of interest and outside the country of interest to make arbitrary final demands. 

By scaling the ROW sector to world-average (Lenzen et al., 2004) or trade-weighted 

trading partner average environmental intensities, a passable approximation of the real 

world may be achieved, though this method will of course assume economic structure is 

equivalent to the country of interest even if environmental intensities are scaled.  

A more advanced single-region approximation could fully account for 

multidirectional trade, differences in environmental intensities, and structural 

differences in economic efficiency through the use of structural path analysis (SPA) 

(Peters & Hertwich, 2006a). Deriving a structural path using detailed single-region IOA 

and then correcting portions of the tree structure with process data or another single-

region IOA result from a trading partner would get around many of the issues above, 

including aggregation, exchange rate uncertainty, reclassification and deflation, and 

ROW uncertainty.  (that is, if the specific country of origin of each portion of the supply 

chain is known) This method would be akin to a hybrid life cycle assessment, where 

input-output analysis and process analysis are brought together to solve many of each 

other’s respective weaknesses(Bullard et al., 1978; Suh et al., 2004). While this may 

sound ideal, it must of course be remembered that this method would take a somewhat 

large amount of time for any single commodity, and is probably only appropriate for 

uses of MRIO for a single or a few specific commodities. While the creation of an 

MRIO model also takes a significant amount of practitioner time, it is usable for any 

arbitrary final demand once it is constructed.  
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6. Summary and Conclusions 

It is clear that several large uncertainties exist in the creation and use of environmental 

MRIO models, though it is also clear that their use is increasing due to the increasing 

desire to model international trade and differences in production practices across 

countries. Different modellers choose MRIO for different reasons, and for some uses 

(such as approximating multidirectional trade for a large number of commodities in 

countries with less detailed IOTs) the advantages of MRIO models probably outweigh 

the additional uncertainties in their use.  

However, as argued here, it is important to remember that MRIO models are no 

panacea for modelling the impacts of global trade. The necessary aggregation and 

simplification, along with exchange rate uncertainty, rest-of-world assumptions, and 

several other unquantifiable uncertainties make MRIO a minefield for practitioners 

desiring fairly accurate numbers. There is no doubt that the many uses of MRIO models 

in the past years have led to further understanding of many issues, most notably the 

importance of global trade for environmental issues (Wiedmann et al., 2007). However, 

given the uncertainties, detailed single region models with simplified trade modelling 

should also be considered, especially if the analysis only requires a few commodities to 

be modelled and a hybrid analysis using SPA is possible.  
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Tables: 
Table 1 

  IOT Year Sectors Make/Use 
Import 
Matrix Pricing Imports, $B Exports, $B 

Canada 1997 117 no no Producer 232 (17%) 160 (23%)  
China 1997 122 no no Producer 154 (11%) 22 (3%) 
Germany 2000 59 yes yes Basic 72 (5%) 26 (4%) 
Japan 2000 104 no no Producer 141 (10%) 51 (5%) 
Korea 2000 168 no no Basic 42 (3%) 23 (3%) 
Mexico 1989 92 no no Basic 153 (11%) 98 (14%) 
United 
Kingdom 2000 48 no yes Basic 45 (3%) 33 (5%) 
Rest of World 1997 491 yes yes Producer 512 (38%) 281 (40%) 
United States 1997 491 yes yes Producer - - 

Unaltered IO Table data with year of data, number of sectors, availability of make/use 
detail and import matrix, pricing system, and total imports to U.S. and exports from 

U.S. associated with the country or group 

Table 2 
  GDP, own GDP, $B US own/$US PPP, own/$US MER/PPP
Canada 1158 738 1.57 1.19 1.32
China 10517 1271 8.28 1.76 4.72
Germany 2107 1990 1.06 0.93 1.14
Japan 498045 3979 125 144 0.87
Korea 684264 548 1249 737 1.69
Mexico 6262 648 10 7 1.43
United Kingdom 1044 1568 0.67 0.65 1.02
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Rest of World - 32420 - - - 
United States 10487 10487 1 1 1

Data on Gross Domestic Product for model countries and rest of world block of 
countries in country’s national currency (“own”), $2002, market exchange rate (MER) 

of national currency, purchasing power parity (PPP) rate, and ratio of MER/PPP. 
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Table 3 
Source of Error Description 
Source data 
uncertainty  

Uncertainty arising from the estimation of elements of the IO 
accounts based regression of standard errors of survey data. 

Estimation of 
transactions 

Certain industries included in an IO account are not surveyed 
directly and therefore transactions must be calculated based on total 
expenditures.  Make table production and use table supply chains are 
adjusted to increase correlation between primary industries and 
commodities.  Finally entries in the make and use tables are adjusted 
to balance the total output values. 

Allocation 
uncertainty 

When an industry produces multiple products a portion of revenue 
and expenditures must be allocated to each.  Environmental impacts 
and material use must also be allocated across products.  Often it is 
unclear how these allocations should be performed. 

Proportionality 
assumption 
uncertainty 

Uncertainty due to the assumption that unit flows of commodities 
represented by monetary transactions are the same for all industries.  
Proportionality uncertainty also arises from the assumption that 
effects respond linearly to changes in the production level. 

Gate-to-grave 
truncation error 

Most IO LCA models only consider requirements and impacts due 
to the production of goods and services while not providing 
guidance related to use, maintenance, decommissioning, demolition, 
disposal or recycling. 

Changes in 
technology or 
production mix over 
time 

New technologies, new processes, or changes in production level 
leading to gain or loss of economies of scale would each change the 
structure of the direct and indirect requirements matrices and lead to 
different model results.  Generally the time elapsed between the US  
Economic Census and the BEA  release of input-output tables is 5 
years. 

Model input 
uncertainty 

Uncertainty introduced in the selection of final demand sector, value 
of functional unit, value of margins, and delivery costs. 

Aggregation 
uncertainty 

Uncertainty due to firms of various sizes utilizing different processes 
or technology mixes included in the same sector. 

Imports assumption 
uncertainty 

Uncertainty arising from the assumption that imported commodities 
are produced using a technology mix identical to that observed in the 
economy for which the account is being created.  A second (less 
important) source of uncertainty arises from the assumption that 
each foreign industry produces only one commodity type. 

Multiplier 
Uncertainty 

Direct and total output results from IO-LCA models are often 
multiplied by vectors representing impact per unit output.  The 
datasets used to create these multipliers each involve their own 
uncertainties.  Harmonizing between coding systems and data types 
also introduces error. 

Overview of common uncertainties in single region environmental input-output 
analysis, reprinted with permission from Hawkins (Hawkins et al.), previously adopted 

from (Lenzen) 
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Table 4 
Number OECD Sector Count Average StDev Min Max COV 

1 Agriculture 19 987 363 398 1777 0.37 
2 Energy mining 4 774 139 577 891 0.18 
3 Non-Energy Mining 7 1520 608 842 2678 0.40 
4 Food, Beverages, Tobacco 34 860 498 219 2941 0.58 
5 Textiles and Products 20 675 274 275 1226 0.41 
6 Wood and Products 9 585 227 418 1158 0.39 

7 
Pulp, Paper, Products, 
Publishing 16 698 522 97 1776 0.75 

8 Energy transformation 5 1553 609 954 2427 0.39 

9 
Chemicals exc. 
Pharmaceuticals 19 1834 1486 336 5757 0.81 

10 Pharmaceuticals 3 360 202 226 592 0.56 
11 Rubber and Plastics 11 935 166 739 1219 0.18 
12 Other nonmetal minerals 17 2180 2625 502 11480 1.20 
13 Iron and steel 3 2420 1940 926 4613 0.80 
14 Nonferrous metals 8 1506 1023 767 3940 0.68 
15 Metal Products 22 800 292 402 1553 0.37 
16 Machinery/Equipment NEC 25 540 85 360 718 0.16 

17 
Office and computer 
machinery 11 402 98 217 532 0.24 

18 Electrical machinery NEC 21 583 198 272 1104 0.34 
19 Communication Equipment 5 372 176 260 676 0.47 

20 
Medical and Precision 
equipment 11 331 61 231 439 0.19 

21 Motor Vehicles 8 598 95 492 696 0.16 
22 Ships and Boats 2 424 46 391 457 0.11 
23 Aircraft and Spacecraft 5 348 83 259 483 0.24 

24 
Rail Equipment and Transport 
NEC 4 565 107 466 708 0.19 

25 Other Manufacturing 25 464 146 208 884 0.32 
26 Electricity 3 8675 215 8545 8923 0.02 
27 Gas Distribution 1 700  700 700  
29 Water Utilities 1 287  287 287  
30 Construction 7 541 59 423 588 0.11 
31 Wholesale/Retail Trade 3 290 125 186 429 0.43 
32 Hotels and Restaurants 3 453 60 393 514 0.13 
33 Land Transport 5 1355 705 366 2236 0.52 
34 Water Transport 1 2756  2756 2756  
35 Air Transport 1 1904  1904 1904  
36 Auxiliary Transport 1 400  400 400  

37 
Post and 
Telecommunications 5 402 467 127 1233 1.16 

38 Finance and Insurance 6 84 18 62 103 0.21 
39 Real Estate 1 217  217 217  
40 Machinery/Equip Rental 3 179 44 146 228 0.24 
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41 Computer Activities 2 151 21 136 166 0.14 
42 Research and Development 1 303  303 303  
43 Other Business Services 25 168 83 78 387 0.50 
44 Government and Defence 6 271 162 170 559 0.60 
45 Education 3 383 279 168 698 0.73 
46 Health and Social Work 8 204 64 107 282 0.31 
47 Other social services 25 258 126 71 557 0.49 
48 Private Households 2 43 61 0 87 1.41 

Comparison of aggregation (Count of 426 sectors aggregated into a single sector and 
summary statistics of aggregate grouping) of CO2 multipliers (mt CO2/$M2002) in 
OECD sectors from 2002 U.S. Benchmark EIO-LCA model. COV = coefficient of 

variation = standard deviation / mean. 

Table 5 
Number Sector Count Average Stdev Min Max COV 

1 paddy rice 1 1292  1292 1292  
4 vegetables/fruits/nuts 3 812 8 803 817 0.01
5 oilseeds 1 1013  1013 1013  
6 sugar cane+beet 1 984  984 984  
7 plant fibers 1 1777  1777 1777  
8 crops nec 4 1073 462 689 1689 0.43
9 cattle, sheep and goats 1 1175  1175 1175  

10 other animals 2 908 352 659 1157 0.39
11 raw milk 1 964  964 964  
12 wool, silk 1 879  879 879  
13 forestry 2 427 41 398 456 0.10
14 fishing 1 1265  1265 1265  
15 coal 1 891  891 891  
16 oil 3 735 140 577 845 0.19
18 minerals nec 7 1520 608 842 2678 0.40
19 cattle, sheep and goats 1 934  934 934  
20 other meat 2 884 79 829 940 0.09
21 vegetable oils and fats 3 1720 1058 1074 2941 0.62
22 dairy products 4 805 102 656 881 0.13
23 processed rice 1 1129  1129 1129  
24 sugar 2 1826 146 1723 1929 0.08
25 Other food products 16 683 157 219 971 0.23
26 bev+tobacco 5 491 203 236 755 0.41
27 textiles 12 827 229 448 1226 0.28
28 apparel 5 393 93 275 532 0.24
29 leather products 3 540 206 382 773 0.38
30 wood products 9 585 227 418 1158 0.39
31 paper and publishing 16 698 522 97 1776 0.75
32 petrol and coal products 5 1553 609 954 2427 0.39
33 chemicals,rubber,and plastics 33 1400 1241 226 5757 0.89
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34 other nonmetallic minerals 17 2180 2625 502 11480 1.20
35 ferrous metals 3 2420 1940 926 4613 0.80
36 nonferrous metals 8 1506 1023 767 3940 0.68
37 metal products 22 800 292 402 1553 0.37
38 motor vehicles and parts 8 598 95 492 696 0.16
39 other transport equipment 11 441 130 259 708 0.30
40 electronic equipment 16 393 122 217 676 0.31
41 machinery+equipment, nec 57 516 163 231 1104 0.32
42 other manufacturing 25 464 146 208 884 0.32
43 electricity 3 8675 215 8545 8923 0.02
44 gas dist 1 700  700 700  
45 water 1 287  287 287  
46 construction 7 541 59 423 588 0.11
47 trdae 3 290 125 186 429 0.43
48 land,pipe,other transport 6 1196 739 366 2236 0.62
49 water transport 1 2756  2756 2756  
50 air transport 1 1904  1904 1904  
51 post and telecom 5 402 467 127 1233 1.16
52 financial services 4 85 15 62 97 0.18
53 insurance 2 83 29 62 103 0.35
54 business services nec 32 173 78 78 387 0.45
55 recreational/other services 28 278 135 71 557 0.48
56 government,education,health 16 258 155 107 698 0.60
57 owner oc dwellings 2 43 61 0 87 1.41

Comparison of aggregation (Count of 426 sectors aggregated into a single sector and 
summary statistics of aggregate grouping) of CO2 multipliers (mt CO2/$M2002) in 
OECD sectors from 2002 U.S. Benchmark EIO-LCA model. COV = coefficient of 

variation = standard deviation / mean. 
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Figures: 

Figure 1 

 

Implied exchange rate calculated using physical unit and monetary output values for 
2002 in the U.S. and China, compared to market exchange rate (MER) and purchasing 

power parity (PPP) rate 

 

 


